; NOTE: Assertions have been autogenerated by utils/update_test_checks.py ; RUN: opt < %s -passes=instcombine -S -data-layout="E-n64" | FileCheck %s --check-prefixes=ALL,BE ; RUN: opt < %s -passes=instcombine -S -data-layout="e-n64" | FileCheck %s --check-prefixes=ALL,LE declare void @use(<2 x i8>) ; i16 is a common type, so we can convert independently of the data layout. ; Endian determines if a shift is needed (and so the transform is avoided). define i16 @insert0_v2i8(i16 %x, i8 %y) { ; BE-LABEL: @insert0_v2i8( ; BE-NEXT: [[V:%.*]] = bitcast i16 [[X:%.*]] to <2 x i8> ; BE-NEXT: [[I:%.*]] = insertelement <2 x i8> [[V]], i8 [[Y:%.*]], i64 0 ; BE-NEXT: [[R:%.*]] = bitcast <2 x i8> [[I]] to i16 ; BE-NEXT: ret i16 [[R]] ; ; LE-LABEL: @insert0_v2i8( ; LE-NEXT: [[TMP1:%.*]] = and i16 [[X:%.*]], -256 ; LE-NEXT: [[TMP2:%.*]] = zext i8 [[Y:%.*]] to i16 ; LE-NEXT: [[R:%.*]] = or i16 [[TMP1]], [[TMP2]] ; LE-NEXT: ret i16 [[R]] ; %v = bitcast i16 %x to <2 x i8> %i = insertelement <2 x i8> %v, i8 %y, i8 0 %r = bitcast <2 x i8> %i to i16 ret i16 %r } ; i16 is a common type, so we can convert independently of the data layout. ; Endian determines if a shift is needed (and so the transform is avoided). define i16 @insert1_v2i8(i16 %x, i8 %y) { ; BE-LABEL: @insert1_v2i8( ; BE-NEXT: [[TMP1:%.*]] = and i16 [[X:%.*]], -256 ; BE-NEXT: [[TMP2:%.*]] = zext i8 [[Y:%.*]] to i16 ; BE-NEXT: [[R:%.*]] = or i16 [[TMP1]], [[TMP2]] ; BE-NEXT: ret i16 [[R]] ; ; LE-LABEL: @insert1_v2i8( ; LE-NEXT: [[V:%.*]] = bitcast i16 [[X:%.*]] to <2 x i8> ; LE-NEXT: [[I:%.*]] = insertelement <2 x i8> [[V]], i8 [[Y:%.*]], i64 1 ; LE-NEXT: [[R:%.*]] = bitcast <2 x i8> [[I]] to i16 ; LE-NEXT: ret i16 [[R]] ; %v = bitcast i16 %x to <2 x i8> %i = insertelement <2 x i8> %v, i8 %y, i8 1 %r = bitcast <2 x i8> %i to i16 ret i16 %r } ; i32 is a common type, so we can convert independently of the data layout. ; Endian determines if a shift is needed (and so the transform is avoided). define i32 @insert0_v4i8(i32 %x, i8 %y) { ; BE-LABEL: @insert0_v4i8( ; BE-NEXT: [[V:%.*]] = bitcast i32 [[X:%.*]] to <4 x i8> ; BE-NEXT: [[I:%.*]] = insertelement <4 x i8> [[V]], i8 [[Y:%.*]], i64 0 ; BE-NEXT: [[R:%.*]] = bitcast <4 x i8> [[I]] to i32 ; BE-NEXT: ret i32 [[R]] ; ; LE-LABEL: @insert0_v4i8( ; LE-NEXT: [[TMP1:%.*]] = and i32 [[X:%.*]], -256 ; LE-NEXT: [[TMP2:%.*]] = zext i8 [[Y:%.*]] to i32 ; LE-NEXT: [[R:%.*]] = or i32 [[TMP1]], [[TMP2]] ; LE-NEXT: ret i32 [[R]] ; %v = bitcast i32 %x to <4 x i8> %i = insertelement <4 x i8> %v, i8 %y, i8 0 %r = bitcast <4 x i8> %i to i32 ret i32 %r } ; i32 is a common type, so we can convert independently of the data layout. ; Endian determines if a shift is needed (and so the transform is avoided). ; half type can not be used in zext instruction (and so the transform is avoided). define i32 @insert0_v2half(i32 %x, half %y) { ; ALL-LABEL: @insert0_v2half( ; ALL-NEXT: [[V:%.*]] = bitcast i32 [[X:%.*]] to <2 x half> ; ALL-NEXT: [[I:%.*]] = insertelement <2 x half> [[V]], half [[Y:%.*]], i64 0 ; ALL-NEXT: [[R:%.*]] = bitcast <2 x half> [[I]] to i32 ; ALL-NEXT: ret i32 [[R]] ; %v = bitcast i32 %x to <2 x half> %i = insertelement <2 x half> %v, half %y, i8 0 %r = bitcast <2 x half> %i to i32 ret i32 %r } ; i64 is a legal type, so we can convert based on the data layout. ; Endian determines if a shift is needed (and so the transform is avoided). define i64 @insert0_v4i16(i64 %x, i16 %y) { ; BE-LABEL: @insert0_v4i16( ; BE-NEXT: [[V:%.*]] = bitcast i64 [[X:%.*]] to <4 x i16> ; BE-NEXT: [[I:%.*]] = insertelement <4 x i16> [[V]], i16 [[Y:%.*]], i64 0 ; BE-NEXT: [[R:%.*]] = bitcast <4 x i16> [[I]] to i64 ; BE-NEXT: ret i64 [[R]] ; ; LE-LABEL: @insert0_v4i16( ; LE-NEXT: [[TMP1:%.*]] = and i64 [[X:%.*]], -65536 ; LE-NEXT: [[TMP2:%.*]] = zext i16 [[Y:%.*]] to i64 ; LE-NEXT: [[R:%.*]] = or i64 [[TMP1]], [[TMP2]] ; LE-NEXT: ret i64 [[R]] ; %v = bitcast i64 %x to <4 x i16> %i = insertelement <4 x i16> %v, i16 %y, i8 0 %r = bitcast <4 x i16> %i to i64 ret i64 %r } ; Negative test - shifts needed for both endians. define i64 @insert1_v4i16(i64 %x, i16 %y) { ; ALL-LABEL: @insert1_v4i16( ; ALL-NEXT: [[V:%.*]] = bitcast i64 [[X:%.*]] to <4 x i16> ; ALL-NEXT: [[I:%.*]] = insertelement <4 x i16> [[V]], i16 [[Y:%.*]], i64 1 ; ALL-NEXT: [[R:%.*]] = bitcast <4 x i16> [[I]] to i64 ; ALL-NEXT: ret i64 [[R]] ; %v = bitcast i64 %x to <4 x i16> %i = insertelement <4 x i16> %v, i16 %y, i8 1 %r = bitcast <4 x i16> %i to i64 ret i64 %r } ; i64 is a legal type, so we can convert based on the data layout. ; Endian determines if a shift is needed (and so the transform is avoided). define i64 @insert3_v4i16(i64 %x, i16 %y) { ; BE-LABEL: @insert3_v4i16( ; BE-NEXT: [[TMP1:%.*]] = and i64 [[X:%.*]], -65536 ; BE-NEXT: [[TMP2:%.*]] = zext i16 [[Y:%.*]] to i64 ; BE-NEXT: [[R:%.*]] = or i64 [[TMP1]], [[TMP2]] ; BE-NEXT: ret i64 [[R]] ; ; LE-LABEL: @insert3_v4i16( ; LE-NEXT: [[V:%.*]] = bitcast i64 [[X:%.*]] to <4 x i16> ; LE-NEXT: [[I:%.*]] = insertelement <4 x i16> [[V]], i16 [[Y:%.*]], i64 3 ; LE-NEXT: [[R:%.*]] = bitcast <4 x i16> [[I]] to i64 ; LE-NEXT: ret i64 [[R]] ; %v = bitcast i64 %x to <4 x i16> %i = insertelement <4 x i16> %v, i16 %y, i8 3 %r = bitcast <4 x i16> %i to i64 ret i64 %r } ; Negative test - i128 is not a legal type, so we do not convert based on the data layout. define i128 @insert0_v4i32(i128 %x, i32 %y) { ; ALL-LABEL: @insert0_v4i32( ; ALL-NEXT: [[V:%.*]] = bitcast i128 [[X:%.*]] to <4 x i32> ; ALL-NEXT: [[I:%.*]] = insertelement <4 x i32> [[V]], i32 [[Y:%.*]], i64 0 ; ALL-NEXT: [[R:%.*]] = bitcast <4 x i32> [[I]] to i128 ; ALL-NEXT: ret i128 [[R]] ; %v = bitcast i128 %x to <4 x i32> %i = insertelement <4 x i32> %v, i32 %y, i8 0 %r = bitcast <4 x i32> %i to i128 ret i128 %r } ; Negative test - extra use requires more instructions. define i16 @insert0_v2i8_use1(i16 %x, i8 %y) { ; ALL-LABEL: @insert0_v2i8_use1( ; ALL-NEXT: [[V:%.*]] = bitcast i16 [[X:%.*]] to <2 x i8> ; ALL-NEXT: call void @use(<2 x i8> [[V]]) ; ALL-NEXT: [[I:%.*]] = insertelement <2 x i8> [[V]], i8 [[Y:%.*]], i64 0 ; ALL-NEXT: [[R:%.*]] = bitcast <2 x i8> [[I]] to i16 ; ALL-NEXT: ret i16 [[R]] ; %v = bitcast i16 %x to <2 x i8> call void @use(<2 x i8> %v) %i = insertelement <2 x i8> %v, i8 %y, i8 0 %r = bitcast <2 x i8> %i to i16 ret i16 %r } ; Negative test - extra use requires more instructions. define i16 @insert0_v2i8_use2(i16 %x, i8 %y) { ; ALL-LABEL: @insert0_v2i8_use2( ; ALL-NEXT: [[V:%.*]] = bitcast i16 [[X:%.*]] to <2 x i8> ; ALL-NEXT: [[I:%.*]] = insertelement <2 x i8> [[V]], i8 [[Y:%.*]], i64 0 ; ALL-NEXT: call void @use(<2 x i8> [[I]]) ; ALL-NEXT: [[R:%.*]] = bitcast <2 x i8> [[I]] to i16 ; ALL-NEXT: ret i16 [[R]] ; %v = bitcast i16 %x to <2 x i8> %i = insertelement <2 x i8> %v, i8 %y, i8 0 call void @use(<2 x i8> %i) %r = bitcast <2 x i8> %i to i16 ret i16 %r }