; RUN: llc < %s -march=nvptx -mcpu=sm_20 -nvptx-prec-divf32=0 -nvptx-prec-sqrtf32=0 \ ; RUN: | FileCheck %s ; RUN: %if ptxas %{ \ ; RUN: llc < %s -march=nvptx -mcpu=sm_20 -nvptx-prec-divf32=0 -nvptx-prec-sqrtf32=0 \ ; RUN: | %ptxas-verify \ ; RUN: %} target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64" declare float @llvm.sqrt.f32(float) declare double @llvm.sqrt.f64(double) ; -- reciprocal sqrt -- ; CHECK-LABEL: test_rsqrt32 define float @test_rsqrt32(float %a) #0 { ; CHECK: rsqrt.approx.f32 %val = tail call float @llvm.sqrt.f32(float %a) %ret = fdiv float 1.0, %val ret float %ret } ; CHECK-LABEL: test_rsqrt_ftz define float @test_rsqrt_ftz(float %a) #0 #1 { ; CHECK: rsqrt.approx.ftz.f32 %val = tail call float @llvm.sqrt.f32(float %a) %ret = fdiv float 1.0, %val ret float %ret } ; CHECK-LABEL: test_rsqrt64 define double @test_rsqrt64(double %a) #0 { ; CHECK: rsqrt.approx.f64 %val = tail call double @llvm.sqrt.f64(double %a) %ret = fdiv double 1.0, %val ret double %ret } ; CHECK-LABEL: test_rsqrt64_ftz define double @test_rsqrt64_ftz(double %a) #0 #1 { ; There's no rsqrt.approx.ftz.f64 instruction; we just use the non-ftz version. ; CHECK: rsqrt.approx.f64 %val = tail call double @llvm.sqrt.f64(double %a) %ret = fdiv double 1.0, %val ret double %ret } ; -- sqrt -- ; CHECK-LABEL: test_sqrt32 define float @test_sqrt32(float %a) #0 { ; CHECK: sqrt.rn.f32 %ret = tail call float @llvm.sqrt.f32(float %a) ret float %ret } ; CHECK-LABEL: test_sqrt32_ninf define float @test_sqrt32_ninf(float %a) #0 { ; CHECK: sqrt.approx.f32 %ret = tail call ninf afn float @llvm.sqrt.f32(float %a) ret float %ret } ; CHECK-LABEL: test_sqrt_ftz define float @test_sqrt_ftz(float %a) #0 #1 { ; CHECK: sqrt.rn.ftz.f32 %ret = tail call float @llvm.sqrt.f32(float %a) ret float %ret } ; CHECK-LABEL: test_sqrt_ftz_ninf define float @test_sqrt_ftz_ninf(float %a) #0 #1 { ; CHECK: sqrt.approx.ftz.f32 %ret = tail call ninf afn float @llvm.sqrt.f32(float %a) ret float %ret } ; CHECK-LABEL: test_sqrt64 define double @test_sqrt64(double %a) #0 { ; CHECK: sqrt.rn.f64 %ret = tail call double @llvm.sqrt.f64(double %a) ret double %ret } ; CHECK-LABEL: test_sqrt64_ninf define double @test_sqrt64_ninf(double %a) #0 { ; There's no sqrt.approx.f64 instruction; we emit ; reciprocal(rsqrt.approx.f64(x)). There's no non-ftz approximate reciprocal, ; so we just use the ftz version. ; CHECK: rsqrt.approx.f64 ; CHECK: rcp.approx.ftz.f64 %ret = tail call ninf afn double @llvm.sqrt.f64(double %a) ret double %ret } ; CHECK-LABEL: test_sqrt64_ftz define double @test_sqrt64_ftz(double %a) #0 #1 { ; CHECK: sqrt.rn.f64 %ret = tail call double @llvm.sqrt.f64(double %a) ret double %ret } ; CHECK-LABEL: test_sqrt64_ftz_ninf define double @test_sqrt64_ftz_ninf(double %a) #0 #1 { ; There's no sqrt.approx.ftz.f64 instruction; we just use the non-ftz version. ; CHECK: rsqrt.approx.f64 ; CHECK: rcp.approx.ftz.f64 %ret = tail call ninf afn double @llvm.sqrt.f64(double %a) ret double %ret } ; -- refined sqrt and rsqrt -- ; ; The sqrt and rsqrt refinement algorithms both emit an rsqrt.approx, followed ; by some math. ; CHECK-LABEL: test_rsqrt32_refined define float @test_rsqrt32_refined(float %a) #0 #2 { ; CHECK: rsqrt.approx.f32 %val = tail call float @llvm.sqrt.f32(float %a) %ret = fdiv float 1.0, %val ret float %ret } ; CHECK-LABEL: test_sqrt32_refined define float @test_sqrt32_refined(float %a) #0 #2 { ; CHECK: sqrt.rn.f32 %ret = tail call float @llvm.sqrt.f32(float %a) ret float %ret } ; CHECK-LABEL: test_sqrt32_refined_ninf define float @test_sqrt32_refined_ninf(float %a) #0 #2 { ; CHECK: rsqrt.approx.f32 %ret = tail call ninf afn float @llvm.sqrt.f32(float %a) ret float %ret } ; CHECK-LABEL: test_rsqrt64_refined define double @test_rsqrt64_refined(double %a) #0 #2 { ; CHECK: rsqrt.approx.f64 %val = tail call double @llvm.sqrt.f64(double %a) %ret = fdiv double 1.0, %val ret double %ret } ; CHECK-LABEL: test_sqrt64_refined define double @test_sqrt64_refined(double %a) #0 #2 { ; CHECK: sqrt.rn.f64 %ret = tail call double @llvm.sqrt.f64(double %a) ret double %ret } ; CHECK-LABEL: test_sqrt64_refined_ninf define double @test_sqrt64_refined_ninf(double %a) #0 #2 { ; CHECK: rsqrt.approx.f64 %ret = tail call ninf afn double @llvm.sqrt.f64(double %a) ret double %ret } ; -- refined sqrt and rsqrt with ftz enabled -- ; CHECK-LABEL: test_rsqrt32_refined_ftz define float @test_rsqrt32_refined_ftz(float %a) #0 #1 #2 { ; CHECK: rsqrt.approx.ftz.f32 %val = tail call float @llvm.sqrt.f32(float %a) %ret = fdiv float 1.0, %val ret float %ret } ; CHECK-LABEL: test_sqrt32_refined_ftz define float @test_sqrt32_refined_ftz(float %a) #0 #1 #2 { ; CHECK: sqrt.rn.ftz.f32 %ret = tail call float @llvm.sqrt.f32(float %a) ret float %ret } ; CHECK-LABEL: test_sqrt32_refined_ftz_ninf define float @test_sqrt32_refined_ftz_ninf(float %a) #0 #1 #2 { ; CHECK: rsqrt.approx.ftz.f32 %ret = tail call ninf afn float @llvm.sqrt.f32(float %a) ret float %ret } ; CHECK-LABEL: test_rsqrt64_refined_ftz define double @test_rsqrt64_refined_ftz(double %a) #0 #1 #2 { ; There's no rsqrt.approx.ftz.f64, so we just use the non-ftz version. ; CHECK: rsqrt.approx.f64 %val = tail call double @llvm.sqrt.f64(double %a) %ret = fdiv double 1.0, %val ret double %ret } ; CHECK-LABEL: test_sqrt64_refined_ftz define double @test_sqrt64_refined_ftz(double %a) #0 #1 #2 { ; CHECK: sqrt.rn.f64 %ret = tail call double @llvm.sqrt.f64(double %a) ret double %ret } ; CHECK-LABEL: test_sqrt64_refined_ftz_ninf define double @test_sqrt64_refined_ftz_ninf(double %a) #0 #1 #2 { ; CHECK: rsqrt.approx.f64 %ret = tail call ninf afn double @llvm.sqrt.f64(double %a) ret double %ret } attributes #0 = { "unsafe-fp-math" = "true" } attributes #1 = { "denormal-fp-math-f32" = "preserve-sign,preserve-sign" } attributes #2 = { "reciprocal-estimates" = "rsqrtf:1,rsqrtd:1,sqrtf:1,sqrtd:1" }