; Test 32-bit addition in which the second operand is variable. ; ; RUN: llc < %s -mtriple=s390x-linux-gnu | FileCheck %s declare i32 @foo() ; Check ALR. define zeroext i1 @f1(i32 %dummy, i32 %a, i32 %b, i32 *%res) { ; CHECK-LABEL: f1: ; CHECK: alr %r3, %r4 ; CHECK-DAG: st %r3, 0(%r5) ; CHECK-DAG: ipm [[REG:%r[0-5]]] ; CHECK-DAG: risbg %r2, [[REG]], 63, 191, 35 ; CHECK: br %r14 %t = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b) %val = extractvalue {i32, i1} %t, 0 %obit = extractvalue {i32, i1} %t, 1 store i32 %val, i32 *%res ret i1 %obit } ; Check using the overflow result for a branch. define void @f2(i32 %dummy, i32 %a, i32 %b, i32 *%res) { ; CHECK-LABEL: f2: ; CHECK: alr %r3, %r4 ; CHECK: st %r3, 0(%r5) ; CHECK: jgnle foo@PLT ; CHECK: br %r14 %t = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b) %val = extractvalue {i32, i1} %t, 0 %obit = extractvalue {i32, i1} %t, 1 store i32 %val, i32 *%res br i1 %obit, label %call, label %exit call: tail call i32 @foo() br label %exit exit: ret void } ; ... and the same with the inverted direction. define void @f3(i32 %dummy, i32 %a, i32 %b, i32 *%res) { ; CHECK-LABEL: f3: ; CHECK: alr %r3, %r4 ; CHECK: st %r3, 0(%r5) ; CHECK: jgle foo@PLT ; CHECK: br %r14 %t = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b) %val = extractvalue {i32, i1} %t, 0 %obit = extractvalue {i32, i1} %t, 1 store i32 %val, i32 *%res br i1 %obit, label %exit, label %call call: tail call i32 @foo() br label %exit exit: ret void } ; Check the low end of the AL range. define zeroext i1 @f4(i32 %dummy, i32 %a, i32 *%src, i32 *%res) { ; CHECK-LABEL: f4: ; CHECK: al %r3, 0(%r4) ; CHECK-DAG: st %r3, 0(%r5) ; CHECK-DAG: ipm [[REG:%r[0-5]]] ; CHECK-DAG: risbg %r2, [[REG]], 63, 191, 35 ; CHECK: br %r14 %b = load i32, i32 *%src %t = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b) %val = extractvalue {i32, i1} %t, 0 %obit = extractvalue {i32, i1} %t, 1 store i32 %val, i32 *%res ret i1 %obit } ; Check the high end of the aligned AL range. define zeroext i1 @f5(i32 %dummy, i32 %a, i32 *%src, i32 *%res) { ; CHECK-LABEL: f5: ; CHECK: al %r3, 4092(%r4) ; CHECK-DAG: st %r3, 0(%r5) ; CHECK-DAG: ipm [[REG:%r[0-5]]] ; CHECK-DAG: risbg %r2, [[REG]], 63, 191, 35 ; CHECK: br %r14 %ptr = getelementptr i32, i32 *%src, i64 1023 %b = load i32, i32 *%ptr %t = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b) %val = extractvalue {i32, i1} %t, 0 %obit = extractvalue {i32, i1} %t, 1 store i32 %val, i32 *%res ret i1 %obit } ; Check the next word up, which should use ALY instead of AL. define zeroext i1 @f6(i32 %dummy, i32 %a, i32 *%src, i32 *%res) { ; CHECK-LABEL: f6: ; CHECK: aly %r3, 4096(%r4) ; CHECK-DAG: st %r3, 0(%r5) ; CHECK-DAG: ipm [[REG:%r[0-5]]] ; CHECK-DAG: risbg %r2, [[REG]], 63, 191, 35 ; CHECK: br %r14 %ptr = getelementptr i32, i32 *%src, i64 1024 %b = load i32, i32 *%ptr %t = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b) %val = extractvalue {i32, i1} %t, 0 %obit = extractvalue {i32, i1} %t, 1 store i32 %val, i32 *%res ret i1 %obit } ; Check the high end of the aligned ALY range. define zeroext i1 @f7(i32 %dummy, i32 %a, i32 *%src, i32 *%res) { ; CHECK-LABEL: f7: ; CHECK: aly %r3, 524284(%r4) ; CHECK-DAG: st %r3, 0(%r5) ; CHECK-DAG: ipm [[REG:%r[0-5]]] ; CHECK-DAG: risbg %r2, [[REG]], 63, 191, 35 ; CHECK: br %r14 %ptr = getelementptr i32, i32 *%src, i64 131071 %b = load i32, i32 *%ptr %t = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b) %val = extractvalue {i32, i1} %t, 0 %obit = extractvalue {i32, i1} %t, 1 store i32 %val, i32 *%res ret i1 %obit } ; Check the next word up, which needs separate address logic. ; Other sequences besides this one would be OK. define zeroext i1 @f8(i32 %dummy, i32 %a, i32 *%src, i32 *%res) { ; CHECK-LABEL: f8: ; CHECK: agfi %r4, 524288 ; CHECK: al %r3, 0(%r4) ; CHECK-DAG: st %r3, 0(%r5) ; CHECK-DAG: ipm [[REG:%r[0-5]]] ; CHECK-DAG: risbg %r2, [[REG]], 63, 191, 35 ; CHECK: br %r14 %ptr = getelementptr i32, i32 *%src, i64 131072 %b = load i32, i32 *%ptr %t = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b) %val = extractvalue {i32, i1} %t, 0 %obit = extractvalue {i32, i1} %t, 1 store i32 %val, i32 *%res ret i1 %obit } ; Check the high end of the negative aligned ALY range. define zeroext i1 @f9(i32 %dummy, i32 %a, i32 *%src, i32 *%res) { ; CHECK-LABEL: f9: ; CHECK: aly %r3, -4(%r4) ; CHECK-DAG: st %r3, 0(%r5) ; CHECK-DAG: ipm [[REG:%r[0-5]]] ; CHECK-DAG: risbg %r2, [[REG]], 63, 191, 35 ; CHECK: br %r14 %ptr = getelementptr i32, i32 *%src, i64 -1 %b = load i32, i32 *%ptr %t = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b) %val = extractvalue {i32, i1} %t, 0 %obit = extractvalue {i32, i1} %t, 1 store i32 %val, i32 *%res ret i1 %obit } ; Check the low end of the ALY range. define zeroext i1 @f10(i32 %dummy, i32 %a, i32 *%src, i32 *%res) { ; CHECK-LABEL: f10: ; CHECK: aly %r3, -524288(%r4) ; CHECK-DAG: st %r3, 0(%r5) ; CHECK-DAG: ipm [[REG:%r[0-5]]] ; CHECK-DAG: risbg %r2, [[REG]], 63, 191, 35 ; CHECK: br %r14 %ptr = getelementptr i32, i32 *%src, i64 -131072 %b = load i32, i32 *%ptr %t = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b) %val = extractvalue {i32, i1} %t, 0 %obit = extractvalue {i32, i1} %t, 1 store i32 %val, i32 *%res ret i1 %obit } ; Check the next word down, which needs separate address logic. ; Other sequences besides this one would be OK. define zeroext i1 @f11(i32 %dummy, i32 %a, i32 *%src, i32 *%res) { ; CHECK-LABEL: f11: ; CHECK: agfi %r4, -524292 ; CHECK: al %r3, 0(%r4) ; CHECK-DAG: st %r3, 0(%r5) ; CHECK-DAG: ipm [[REG:%r[0-5]]] ; CHECK-DAG: risbg %r2, [[REG]], 63, 191, 35 ; CHECK: br %r14 %ptr = getelementptr i32, i32 *%src, i64 -131073 %b = load i32, i32 *%ptr %t = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b) %val = extractvalue {i32, i1} %t, 0 %obit = extractvalue {i32, i1} %t, 1 store i32 %val, i32 *%res ret i1 %obit } ; Check that AL allows an index. define zeroext i1 @f12(i64 %src, i64 %index, i32 %a, i32 *%res) { ; CHECK-LABEL: f12: ; CHECK: al %r4, 4092({{%r3,%r2|%r2,%r3}}) ; CHECK-DAG: st %r4, 0(%r5) ; CHECK-DAG: ipm [[REG:%r[0-5]]] ; CHECK-DAG: risbg %r2, [[REG]], 63, 191, 35 ; CHECK: br %r14 %add1 = add i64 %src, %index %add2 = add i64 %add1, 4092 %ptr = inttoptr i64 %add2 to i32 * %b = load i32, i32 *%ptr %t = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b) %val = extractvalue {i32, i1} %t, 0 %obit = extractvalue {i32, i1} %t, 1 store i32 %val, i32 *%res ret i1 %obit } ; Check that ALY allows an index. define zeroext i1 @f13(i64 %src, i64 %index, i32 %a, i32 *%res) { ; CHECK-LABEL: f13: ; CHECK: aly %r4, 4096({{%r3,%r2|%r2,%r3}}) ; CHECK-DAG: st %r4, 0(%r5) ; CHECK-DAG: ipm [[REG:%r[0-5]]] ; CHECK-DAG: risbg %r2, [[REG]], 63, 191, 35 ; CHECK: br %r14 %add1 = add i64 %src, %index %add2 = add i64 %add1, 4096 %ptr = inttoptr i64 %add2 to i32 * %b = load i32, i32 *%ptr %t = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b) %val = extractvalue {i32, i1} %t, 0 %obit = extractvalue {i32, i1} %t, 1 store i32 %val, i32 *%res ret i1 %obit } ; Check that additions of spilled values can use AL rather than ALR. define zeroext i1 @f14(i32 *%ptr0) { ; CHECK-LABEL: f14: ; CHECK: brasl %r14, foo@PLT ; CHECK: al %r2, 16{{[04]}}(%r15) ; CHECK: br %r14 %ptr1 = getelementptr i32, i32 *%ptr0, i64 2 %ptr2 = getelementptr i32, i32 *%ptr0, i64 4 %ptr3 = getelementptr i32, i32 *%ptr0, i64 6 %ptr4 = getelementptr i32, i32 *%ptr0, i64 8 %ptr5 = getelementptr i32, i32 *%ptr0, i64 10 %ptr6 = getelementptr i32, i32 *%ptr0, i64 12 %ptr7 = getelementptr i32, i32 *%ptr0, i64 14 %ptr8 = getelementptr i32, i32 *%ptr0, i64 16 %ptr9 = getelementptr i32, i32 *%ptr0, i64 18 %val0 = load i32, i32 *%ptr0 %val1 = load i32, i32 *%ptr1 %val2 = load i32, i32 *%ptr2 %val3 = load i32, i32 *%ptr3 %val4 = load i32, i32 *%ptr4 %val5 = load i32, i32 *%ptr5 %val6 = load i32, i32 *%ptr6 %val7 = load i32, i32 *%ptr7 %val8 = load i32, i32 *%ptr8 %val9 = load i32, i32 *%ptr9 %ret = call i32 @foo() %t0 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %ret, i32 %val0) %add0 = extractvalue {i32, i1} %t0, 0 %obit0 = extractvalue {i32, i1} %t0, 1 %t1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %add0, i32 %val1) %add1 = extractvalue {i32, i1} %t1, 0 %obit1 = extractvalue {i32, i1} %t1, 1 %res1 = or i1 %obit0, %obit1 %t2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %add1, i32 %val2) %add2 = extractvalue {i32, i1} %t2, 0 %obit2 = extractvalue {i32, i1} %t2, 1 %res2 = or i1 %res1, %obit2 %t3 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %add2, i32 %val3) %add3 = extractvalue {i32, i1} %t3, 0 %obit3 = extractvalue {i32, i1} %t3, 1 %res3 = or i1 %res2, %obit3 %t4 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %add3, i32 %val4) %add4 = extractvalue {i32, i1} %t4, 0 %obit4 = extractvalue {i32, i1} %t4, 1 %res4 = or i1 %res3, %obit4 %t5 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %add4, i32 %val5) %add5 = extractvalue {i32, i1} %t5, 0 %obit5 = extractvalue {i32, i1} %t5, 1 %res5 = or i1 %res4, %obit5 %t6 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %add5, i32 %val6) %add6 = extractvalue {i32, i1} %t6, 0 %obit6 = extractvalue {i32, i1} %t6, 1 %res6 = or i1 %res5, %obit6 %t7 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %add6, i32 %val7) %add7 = extractvalue {i32, i1} %t7, 0 %obit7 = extractvalue {i32, i1} %t7, 1 %res7 = or i1 %res6, %obit7 %t8 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %add7, i32 %val8) %add8 = extractvalue {i32, i1} %t8, 0 %obit8 = extractvalue {i32, i1} %t8, 1 %res8 = or i1 %res7, %obit8 %t9 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %add8, i32 %val9) %add9 = extractvalue {i32, i1} %t9, 0 %obit9 = extractvalue {i32, i1} %t9, 1 %res9 = or i1 %res8, %obit9 ret i1 %res9 } declare {i32, i1} @llvm.uadd.with.overflow.i32(i32, i32) nounwind readnone