#include <array>
#include <memory>
#include <string>
#include "Assembler.h"
#include "BenchmarkRunner.h"
#include "Error.h"
#include "MCInstrDescView.h"
#include "PerfHelper.h"
#include "Target.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/CrashRecoveryContext.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Program.h"
namespace llvm {
namespace exegesis {
BenchmarkRunner::BenchmarkRunner(const LLVMState &State,
InstructionBenchmark::ModeE Mode)
: State(State), Mode(Mode), Scratch(std::make_unique<ScratchSpace>()) {}
BenchmarkRunner::~BenchmarkRunner() = default;
namespace {
class FunctionExecutorImpl : public BenchmarkRunner::FunctionExecutor {
public:
FunctionExecutorImpl(const LLVMState &State,
object::OwningBinary<object::ObjectFile> Obj,
BenchmarkRunner::ScratchSpace *Scratch)
: State(State), Function(State.createTargetMachine(), std::move(Obj)),
Scratch(Scratch) {}
private:
Expected<int64_t> runAndMeasure(const char *Counters) const override {
auto ResultOrError = runAndSample(Counters);
if (ResultOrError)
return ResultOrError.get()[0];
return ResultOrError.takeError();
}
static void
accumulateCounterValues(const llvm::SmallVector<int64_t, 4> &NewValues,
llvm::SmallVector<int64_t, 4> *Result) {
const size_t NumValues = std::max(NewValues.size(), Result->size());
if (NumValues > Result->size())
Result->resize(NumValues, 0);
for (size_t I = 0, End = NewValues.size(); I < End; ++I)
(*Result)[I] += NewValues[I];
}
Expected<llvm::SmallVector<int64_t, 4>>
runAndSample(const char *Counters) const override {
llvm::SmallVector<int64_t, 4> CounterValues;
int Reserved = 0;
SmallVector<StringRef, 2> CounterNames;
StringRef(Counters).split(CounterNames, '+');
char *const ScratchPtr = Scratch->ptr();
const ExegesisTarget &ET = State.getExegesisTarget();
for (auto &CounterName : CounterNames) {
CounterName = CounterName.trim();
auto CounterOrError = ET.createCounter(CounterName, State);
if (!CounterOrError)
return CounterOrError.takeError();
pfm::Counter *Counter = CounterOrError.get().get();
if (Reserved == 0) {
Reserved = Counter->numValues();
CounterValues.reserve(Reserved);
} else if (Reserved != Counter->numValues())
return make_error<Failure>(
llvm::Twine("Inconsistent number of values for counter ")
.concat(CounterName)
.concat(std::to_string(Counter->numValues()))
.concat(" vs expected of ")
.concat(std::to_string(Reserved)));
Scratch->clear();
{
auto PS = ET.withSavedState();
CrashRecoveryContext CRC;
CrashRecoveryContext::Enable();
const bool Crashed = !CRC.RunSafely([this, Counter, ScratchPtr]() {
Counter->start();
this->Function(ScratchPtr);
Counter->stop();
});
CrashRecoveryContext::Disable();
PS.reset();
if (Crashed) {
std::string Msg = "snippet crashed while running";
#ifdef LLVM_ON_UNIX
constexpr const int kSigOffset = 128;
if (const char *const SigName = strsignal(CRC.RetCode - kSigOffset)) {
Msg += ": ";
Msg += SigName;
}
#endif
return make_error<SnippetCrash>(std::move(Msg));
}
}
auto ValueOrError = Counter->readOrError(Function.getFunctionBytes());
if (!ValueOrError)
return ValueOrError.takeError();
accumulateCounterValues(ValueOrError.get(), &CounterValues);
}
return CounterValues;
}
const LLVMState &State;
const ExecutableFunction Function;
BenchmarkRunner::ScratchSpace *const Scratch;
};
}
Expected<InstructionBenchmark> BenchmarkRunner::runConfiguration(
const BenchmarkCode &BC, unsigned NumRepetitions, unsigned LoopBodySize,
ArrayRef<std::unique_ptr<const SnippetRepetitor>> Repetitors,
bool DumpObjectToDisk) const {
InstructionBenchmark InstrBenchmark;
InstrBenchmark.Mode = Mode;
InstrBenchmark.CpuName = std::string(State.getTargetMachine().getTargetCPU());
InstrBenchmark.LLVMTriple =
State.getTargetMachine().getTargetTriple().normalize();
InstrBenchmark.NumRepetitions = NumRepetitions;
InstrBenchmark.Info = BC.Info;
const std::vector<MCInst> &Instructions = BC.Key.Instructions;
InstrBenchmark.Key = BC.Key;
struct ClearBenchmarkOnReturn {
ClearBenchmarkOnReturn(InstructionBenchmark *IB) : IB(IB) {}
~ClearBenchmarkOnReturn() {
if (Clear)
IB->Measurements.clear();
}
void disarm() { Clear = false; }
private:
InstructionBenchmark *const IB;
bool Clear = true;
};
ClearBenchmarkOnReturn CBOR(&InstrBenchmark);
for (const std::unique_ptr<const SnippetRepetitor> &Repetitor : Repetitors) {
const int MinInstructionsForSnippet = 4 * Instructions.size();
const int LoopBodySizeForSnippet = 2 * Instructions.size();
{
SmallString<0> Buffer;
raw_svector_ostream OS(Buffer);
if (Error E = assembleToStream(
State.getExegesisTarget(), State.createTargetMachine(),
BC.LiveIns, BC.Key.RegisterInitialValues,
Repetitor->Repeat(Instructions, MinInstructionsForSnippet,
LoopBodySizeForSnippet),
OS)) {
return std::move(E);
}
const ExecutableFunction EF(State.createTargetMachine(),
getObjectFromBuffer(OS.str()));
const auto FnBytes = EF.getFunctionBytes();
llvm::append_range(InstrBenchmark.AssembledSnippet, FnBytes);
}
const auto Filler = Repetitor->Repeat(
Instructions, InstrBenchmark.NumRepetitions, LoopBodySize);
object::OwningBinary<object::ObjectFile> ObjectFile;
if (DumpObjectToDisk) {
auto ObjectFilePath = writeObjectFile(BC, Filler);
if (Error E = ObjectFilePath.takeError()) {
InstrBenchmark.Error = toString(std::move(E));
return InstrBenchmark;
}
outs() << "Check generated assembly with: /usr/bin/objdump -d "
<< *ObjectFilePath << "\n";
ObjectFile = getObjectFromFile(*ObjectFilePath);
} else {
SmallString<0> Buffer;
raw_svector_ostream OS(Buffer);
if (Error E = assembleToStream(
State.getExegesisTarget(), State.createTargetMachine(),
BC.LiveIns, BC.Key.RegisterInitialValues, Filler, OS)) {
return std::move(E);
}
ObjectFile = getObjectFromBuffer(OS.str());
}
const FunctionExecutorImpl Executor(State, std::move(ObjectFile),
Scratch.get());
auto NewMeasurements = runMeasurements(Executor);
if (Error E = NewMeasurements.takeError()) {
if (!E.isA<SnippetCrash>())
return std::move(E);
InstrBenchmark.Error = toString(std::move(E));
return InstrBenchmark;
}
assert(InstrBenchmark.NumRepetitions > 0 && "invalid NumRepetitions");
for (BenchmarkMeasure &BM : *NewMeasurements) {
BM.PerInstructionValue /= InstrBenchmark.NumRepetitions;
BM.PerSnippetValue *= static_cast<double>(Instructions.size()) /
InstrBenchmark.NumRepetitions;
}
if (InstrBenchmark.Measurements.empty()) {
InstrBenchmark.Measurements = std::move(*NewMeasurements);
continue;
}
assert(Repetitors.size() > 1 && !InstrBenchmark.Measurements.empty() &&
"We're in an 'min' repetition mode, and need to aggregate new "
"result to the existing result.");
assert(InstrBenchmark.Measurements.size() == NewMeasurements->size() &&
"Expected to have identical number of measurements.");
for (auto I : zip(InstrBenchmark.Measurements, *NewMeasurements)) {
BenchmarkMeasure &Measurement = std::get<0>(I);
BenchmarkMeasure &NewMeasurement = std::get<1>(I);
assert(Measurement.Key == NewMeasurement.Key &&
"Expected measurements to be symmetric");
Measurement.PerInstructionValue = std::min(
Measurement.PerInstructionValue, NewMeasurement.PerInstructionValue);
Measurement.PerSnippetValue =
std::min(Measurement.PerSnippetValue, NewMeasurement.PerSnippetValue);
}
}
CBOR.disarm();
return InstrBenchmark;
}
Expected<std::string>
BenchmarkRunner::writeObjectFile(const BenchmarkCode &BC,
const FillFunction &FillFunction) const {
int ResultFD = 0;
SmallString<256> ResultPath;
if (Error E = errorCodeToError(
sys::fs::createTemporaryFile("snippet", "o", ResultFD, ResultPath)))
return std::move(E);
raw_fd_ostream OFS(ResultFD, true );
if (Error E = assembleToStream(
State.getExegesisTarget(), State.createTargetMachine(), BC.LiveIns,
BC.Key.RegisterInitialValues, FillFunction, OFS)) {
return std::move(E);
}
return std::string(ResultPath.str());
}
BenchmarkRunner::FunctionExecutor::~FunctionExecutor() {}
} }