#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/ilist_iterator.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/IR/ValueMap.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GenericDomTree.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/LoopSimplify.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/SimplifyIndVar.h"
#include "llvm/Transforms/Utils/UnrollLoop.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <algorithm>
#include <assert.h>
#include <type_traits>
#include <vector>
namespace llvm {
class DataLayout;
class Value;
} 
using namespace llvm;
#define DEBUG_TYPE "loop-unroll"
STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
STATISTIC(NumUnrolledNotLatch, "Number of loops unrolled without a conditional "
                               "latch (completely or otherwise)");
static cl::opt<bool>
UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
                    cl::desc("Allow runtime unrolled loops to be unrolled "
                             "with epilog instead of prolog."));
static cl::opt<bool>
UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden,
                    cl::desc("Verify domtree after unrolling"),
#ifdef EXPENSIVE_CHECKS
    cl::init(true)
#else
    cl::init(false)
#endif
                    );
static cl::opt<bool>
UnrollVerifyLoopInfo("unroll-verify-loopinfo", cl::Hidden,
                    cl::desc("Verify loopinfo after unrolling"),
#ifdef EXPENSIVE_CHECKS
    cl::init(true)
#else
    cl::init(false)
#endif
                    );
static bool needToInsertPhisForLCSSA(Loop *L,
                                     const std::vector<BasicBlock *> &Blocks,
                                     LoopInfo *LI) {
  for (BasicBlock *BB : Blocks) {
    if (LI->getLoopFor(BB) == L)
      continue;
    for (Instruction &I : *BB) {
      for (Use &U : I.operands()) {
        if (const auto *Def = dyn_cast<Instruction>(U)) {
          Loop *DefLoop = LI->getLoopFor(Def->getParent());
          if (!DefLoop)
            continue;
          if (DefLoop->contains(L))
            return true;
        }
      }
    }
  }
  return false;
}
const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB,
                                           BasicBlock *ClonedBB, LoopInfo *LI,
                                           NewLoopsMap &NewLoops) {
    const Loop *OldLoop = LI->getLoopFor(OriginalBB);
  assert(OldLoop && "Should (at least) be in the loop being unrolled!");
  Loop *&NewLoop = NewLoops[OldLoop];
  if (!NewLoop) {
        assert(OriginalBB == OldLoop->getHeader() &&
           "Header should be first in RPO");
    NewLoop = LI->AllocateLoop();
    Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
    if (NewLoopParent)
      NewLoopParent->addChildLoop(NewLoop);
    else
      LI->addTopLevelLoop(NewLoop);
    NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
    return OldLoop;
  } else {
    NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
    return nullptr;
  }
}
static bool isEpilogProfitable(Loop *L) {
  BasicBlock *PreHeader = L->getLoopPreheader();
  BasicBlock *Header = L->getHeader();
  assert(PreHeader && Header);
  for (const PHINode &PN : Header->phis()) {
    if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader)))
      return true;
  }
  return false;
}
void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI,
                                   ScalarEvolution *SE, DominatorTree *DT,
                                   AssumptionCache *AC,
                                   const TargetTransformInfo *TTI) {
    if (SE && SimplifyIVs) {
    SmallVector<WeakTrackingVH, 16> DeadInsts;
    simplifyLoopIVs(L, SE, DT, LI, TTI, DeadInsts);
            while (!DeadInsts.empty()) {
      Value *V = DeadInsts.pop_back_val();
      if (Instruction *Inst = dyn_cast_or_null<Instruction>(V))
        RecursivelyDeleteTriviallyDeadInstructions(Inst);
    }
  }
      const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
  SmallVector<WeakTrackingVH, 16> DeadInsts;
  for (BasicBlock *BB : L->getBlocks()) {
    for (Instruction &Inst : llvm::make_early_inc_range(*BB)) {
      if (Value *V = simplifyInstruction(&Inst, {DL, nullptr, DT, AC}))
        if (LI->replacementPreservesLCSSAForm(&Inst, V))
          Inst.replaceAllUsesWith(V);
      if (isInstructionTriviallyDead(&Inst))
        DeadInsts.emplace_back(&Inst);
    }
                RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
  }
}
LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI,
                                  ScalarEvolution *SE, DominatorTree *DT,
                                  AssumptionCache *AC,
                                  const TargetTransformInfo *TTI,
                                  OptimizationRemarkEmitter *ORE,
                                  bool PreserveLCSSA, Loop **RemainderLoop) {
  assert(DT && "DomTree is required");
  if (!L->getLoopPreheader()) {
    LLVM_DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
    return LoopUnrollResult::Unmodified;
  }
  if (!L->getLoopLatch()) {
    LLVM_DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
    return LoopUnrollResult::Unmodified;
  }
    if (!L->isSafeToClone()) {
    LLVM_DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
    return LoopUnrollResult::Unmodified;
  }
  if (L->getHeader()->hasAddressTaken()) {
        LLVM_DEBUG(
        dbgs() << "  Won't unroll loop: address of header block is taken.\n");
    return LoopUnrollResult::Unmodified;
  }
  assert(ULO.Count > 0);
      BasicBlock *Preheader = L->getLoopPreheader();
  BasicBlock *Header = L->getHeader();
  BasicBlock *LatchBlock = L->getLoopLatch();
  SmallVector<BasicBlock *, 4> ExitBlocks;
  L->getExitBlocks(ExitBlocks);
  std::vector<BasicBlock *> OriginalLoopBlocks = L->getBlocks();
  const unsigned MaxTripCount = SE->getSmallConstantMaxTripCount(L);
  const bool MaxOrZero = SE->isBackedgeTakenCountMaxOrZero(L);
      if (MaxTripCount && ULO.Count > MaxTripCount)
    ULO.Count = MaxTripCount;
  struct ExitInfo {
    unsigned TripCount;
    unsigned TripMultiple;
    unsigned BreakoutTrip;
    bool ExitOnTrue;
    SmallVector<BasicBlock *> ExitingBlocks;
  };
  DenseMap<BasicBlock *, ExitInfo> ExitInfos;
  SmallVector<BasicBlock *, 4> ExitingBlocks;
  L->getExitingBlocks(ExitingBlocks);
  for (auto *ExitingBlock : ExitingBlocks) {
            auto *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
    if (!BI)
      continue;
    ExitInfo &Info = ExitInfos.try_emplace(ExitingBlock).first->second;
    Info.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
    Info.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
    if (Info.TripCount != 0) {
      Info.BreakoutTrip = Info.TripCount % ULO.Count;
      Info.TripMultiple = 0;
    } else {
      Info.BreakoutTrip = Info.TripMultiple =
          (unsigned)GreatestCommonDivisor64(ULO.Count, Info.TripMultiple);
    }
    Info.ExitOnTrue = !L->contains(BI->getSuccessor(0));
    Info.ExitingBlocks.push_back(ExitingBlock);
    LLVM_DEBUG(dbgs() << "  Exiting block %" << ExitingBlock->getName()
                      << ": TripCount=" << Info.TripCount
                      << ", TripMultiple=" << Info.TripMultiple
                      << ", BreakoutTrip=" << Info.BreakoutTrip << "\n");
  }
        const bool CompletelyUnroll = ULO.Count == MaxTripCount;
  const bool PreserveOnlyFirst = CompletelyUnroll && MaxOrZero;
      if (CompletelyUnroll)
    ULO.Runtime = false;
              bool NeedToFixLCSSA =
      PreserveLCSSA && CompletelyUnroll &&
      any_of(ExitBlocks,
             [](const BasicBlock *BB) { return isa<PHINode>(BB->begin()); });
              BranchInst *LatchBI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
      bool LatchIsExiting = L->isLoopExiting(LatchBlock);
  if (!LatchBI || (LatchBI->isConditional() && !LatchIsExiting)) {
    LLVM_DEBUG(
        dbgs() << "Can't unroll; a conditional latch must exit the loop");
    return LoopUnrollResult::Unmodified;
  }
        LLVM_DEBUG(
      {
        bool HasConvergent = false;
        for (auto &BB : L->blocks())
          for (auto &I : *BB)
            if (auto *CB = dyn_cast<CallBase>(&I))
              HasConvergent |= CB->isConvergent();
        assert((!HasConvergent || !ULO.Runtime) &&
               "Can't runtime unroll if loop contains a convergent operation.");
      });
  bool EpilogProfitability =
      UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog
                                              : isEpilogProfitable(L);
  if (ULO.Runtime &&
      !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount,
                                  EpilogProfitability, ULO.UnrollRemainder,
                                  ULO.ForgetAllSCEV, LI, SE, DT, AC, TTI,
                                  PreserveLCSSA, RemainderLoop)) {
    if (ULO.Force)
      ULO.Runtime = false;
    else {
      LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be "
                           "generated when assuming runtime trip count\n");
      return LoopUnrollResult::Unmodified;
    }
  }
  using namespace ore;
    if (CompletelyUnroll) {
    LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
                      << " with trip count " << ULO.Count << "!\n");
    if (ORE)
      ORE->emit([&]() {
        return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
                                  L->getHeader())
               << "completely unrolled loop with "
               << NV("UnrollCount", ULO.Count) << " iterations";
      });
  } else {
    LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by "
                      << ULO.Count);
    if (ULO.Runtime)
      LLVM_DEBUG(dbgs() << " with run-time trip count");
    LLVM_DEBUG(dbgs() << "!\n");
    if (ORE)
      ORE->emit([&]() {
        OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
                                L->getHeader());
        Diag << "unrolled loop by a factor of " << NV("UnrollCount", ULO.Count);
        if (ULO.Runtime)
          Diag << " with run-time trip count";
        return Diag;
      });
  }
                  if (SE) {
    if (ULO.ForgetAllSCEV)
      SE->forgetAllLoops();
    else
      SE->forgetTopmostLoop(L);
  }
  if (!LatchIsExiting)
    ++NumUnrolledNotLatch;
      ValueToValueMapTy LastValueMap;
  std::vector<PHINode*> OrigPHINode;
  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
    OrigPHINode.push_back(cast<PHINode>(I));
  }
  std::vector<BasicBlock *> Headers;
  std::vector<BasicBlock *> Latches;
  Headers.push_back(Header);
  Latches.push_back(LatchBlock);
        LoopBlocksDFS DFS(L);
  DFS.perform(LI);
    LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
  LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
  std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
          SmallSetVector<Loop *, 4> LoopsToSimplify;
  for (Loop *SubLoop : *L)
    LoopsToSimplify.insert(SubLoop);
      if (Header->getParent()->isDebugInfoForProfiling() && !EnableFSDiscriminator)
    for (BasicBlock *BB : L->getBlocks())
      for (Instruction &I : *BB)
        if (!isa<DbgInfoIntrinsic>(&I))
          if (const DILocation *DIL = I.getDebugLoc()) {
            auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count);
            if (NewDIL)
              I.setDebugLoc(*NewDIL);
            else
              LLVM_DEBUG(dbgs()
                         << "Failed to create new discriminator: "
                         << DIL->getFilename() << " Line: " << DIL->getLine());
          }
      SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes;
  identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes);
        auto BlockInsertPt = std::next(LatchBlock->getIterator());
  for (unsigned It = 1; It != ULO.Count; ++It) {
    SmallVector<BasicBlock *, 8> NewBlocks;
    SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
    NewLoops[L] = L;
    for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
      ValueToValueMapTy VMap;
      BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
      Header->getParent()->getBasicBlockList().insert(BlockInsertPt, New);
      assert((*BB != Header || LI->getLoopFor(*BB) == L) &&
             "Header should not be in a sub-loop");
            const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);
      if (OldLoop)
        LoopsToSimplify.insert(NewLoops[OldLoop]);
      if (*BB == Header)
                        for (PHINode *OrigPHI : OrigPHINode) {
          PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
          Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
          if (Instruction *InValI = dyn_cast<Instruction>(InVal))
            if (It > 1 && L->contains(InValI))
              InVal = LastValueMap[InValI];
          VMap[OrigPHI] = InVal;
          New->getInstList().erase(NewPHI);
        }
            LastValueMap[*BB] = New;
      for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
           VI != VE; ++VI)
        LastValueMap[VI->first] = VI->second;
            for (BasicBlock *Succ : successors(*BB)) {
        if (L->contains(Succ))
          continue;
        for (PHINode &PHI : Succ->phis()) {
          Value *Incoming = PHI.getIncomingValueForBlock(*BB);
          ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
          if (It != LastValueMap.end())
            Incoming = It->second;
          PHI.addIncoming(Incoming, New);
        }
      }
                  if (*BB == Header)
        Headers.push_back(New);
      if (*BB == LatchBlock)
        Latches.push_back(New);
                  auto ExitInfoIt = ExitInfos.find(*BB);
      if (ExitInfoIt != ExitInfos.end())
        ExitInfoIt->second.ExitingBlocks.push_back(New);
      NewBlocks.push_back(New);
      UnrolledLoopBlocks.push_back(New);
                              if (*BB == Header)
        DT->addNewBlock(New, Latches[It - 1]);
      else {
        auto BBDomNode = DT->getNode(*BB);
        auto BBIDom = BBDomNode->getIDom();
        BasicBlock *OriginalBBIDom = BBIDom->getBlock();
        DT->addNewBlock(
            New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
      }
    }
        remapInstructionsInBlocks(NewBlocks, LastValueMap);
    for (BasicBlock *NewBlock : NewBlocks)
      for (Instruction &I : *NewBlock)
        if (auto *II = dyn_cast<AssumeInst>(&I))
          AC->registerAssumption(II);
    {
                        std::string ext = (Twine("It") + Twine(It)).str();
      cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks,
                                 Header->getContext(), ext);
    }
  }
    for (PHINode *PN : OrigPHINode) {
    if (CompletelyUnroll) {
      PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
      Header->getInstList().erase(PN);
    } else if (ULO.Count > 1) {
      Value *InVal = PN->removeIncomingValue(LatchBlock, false);
                  if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
        if (L->contains(InValI))
          InVal = LastValueMap[InVal];
      }
      assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
      PN->addIncoming(InVal, Latches.back());
    }
  }
      for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
    unsigned j = (i + 1) % e;
    Latches[i]->getTerminator()->replaceSuccessorWith(Headers[i], Headers[j]);
  }
          if (ULO.Count > 1) {
    for (auto *BB : OriginalLoopBlocks) {
      auto *BBDomNode = DT->getNode(BB);
      SmallVector<BasicBlock *, 16> ChildrenToUpdate;
      for (auto *ChildDomNode : BBDomNode->children()) {
        auto *ChildBB = ChildDomNode->getBlock();
        if (!L->contains(ChildBB))
          ChildrenToUpdate.push_back(ChildBB);
      }
                              BasicBlock *NewIDom = DT->findNearestCommonDominator(BB, LatchBlock);
      for (auto *ChildBB : ChildrenToUpdate)
        DT->changeImmediateDominator(ChildBB, NewIDom);
    }
  }
  assert(!UnrollVerifyDomtree ||
         DT->verify(DominatorTree::VerificationLevel::Fast));
  DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
  auto SetDest = [&](BasicBlock *Src, bool WillExit, bool ExitOnTrue) {
    auto *Term = cast<BranchInst>(Src->getTerminator());
    const unsigned Idx = ExitOnTrue ^ WillExit;
    BasicBlock *Dest = Term->getSuccessor(Idx);
    BasicBlock *DeadSucc = Term->getSuccessor(1-Idx);
        DeadSucc->removePredecessor(Src,  true);
        BranchInst::Create(Dest, Term);
    Term->eraseFromParent();
    DTU.applyUpdates({{DominatorTree::Delete, Src, DeadSucc}});
  };
  auto WillExit = [&](const ExitInfo &Info, unsigned i, unsigned j,
                      bool IsLatch) -> Optional<bool> {
    if (CompletelyUnroll) {
      if (PreserveOnlyFirst) {
        if (i == 0)
          return None;
        return j == 0;
      }
            if (j == 0)
        return true;
      if (Info.TripCount && j != Info.TripCount)
        return false;
      return None;
    }
    if (ULO.Runtime) {
                  if (IsLatch && j != 0)
        return false;
      return None;
    }
    if (j != Info.BreakoutTrip &&
        (Info.TripMultiple == 0 || j % Info.TripMultiple != 0)) {
                  return false;
    }
    return None;
  };
      for (const auto &Pair : ExitInfos) {
    const ExitInfo &Info = Pair.second;
    for (unsigned i = 0, e = Info.ExitingBlocks.size(); i != e; ++i) {
            unsigned j = (i + 1) % e;
      bool IsLatch = Pair.first == LatchBlock;
      Optional<bool> KnownWillExit = WillExit(Info, i, j, IsLatch);
      if (!KnownWillExit)
        continue;
                                    if (*KnownWillExit && !IsLatch)
        continue;
      SetDest(Info.ExitingBlocks[i], *KnownWillExit, Info.ExitOnTrue);
    }
  }
    if (!LatchIsExiting && CompletelyUnroll)
    changeToUnreachable(Latches.back()->getTerminator(), PreserveLCSSA, &DTU);
    for (BasicBlock *Latch : Latches) {
    BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator());
    assert((Term ||
            (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) &&
           "Need a branch as terminator, except when fully unrolling with "
           "unconditional latch");
    if (Term && Term->isUnconditional()) {
      BasicBlock *Dest = Term->getSuccessor(0);
      BasicBlock *Fold = Dest->getUniquePredecessor();
      if (MergeBlockIntoPredecessor(Dest, &DTU, LI)) {
                std::replace(Latches.begin(), Latches.end(), Dest, Fold);
        llvm::erase_value(UnrolledLoopBlocks, Dest);
      }
    }
  }
    DT = &DTU.getDomTree();
  assert(!UnrollVerifyDomtree ||
         DT->verify(DominatorTree::VerificationLevel::Fast));
      simplifyLoopAfterUnroll(L, !CompletelyUnroll && ULO.Count > 1, LI, SE, DT, AC,
                          TTI);
  NumCompletelyUnrolled += CompletelyUnroll;
  ++NumUnrolled;
  Loop *OuterL = L->getParentLoop();
    if (CompletelyUnroll)
    LI->erase(L);
    if (UnrollVerifyLoopInfo)
    LI->verify(*DT);
                  if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
    NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
        if (OuterL) {
                if (NeedToFixLCSSA) {
                        Loop *LatchLoop = LI->getLoopFor(Latches.back());
      Loop *FixLCSSALoop = OuterL;
      if (!FixLCSSALoop->contains(LatchLoop))
        while (FixLCSSALoop->getParentLoop() != LatchLoop)
          FixLCSSALoop = FixLCSSALoop->getParentLoop();
      formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE);
    } else if (PreserveLCSSA) {
      assert(OuterL->isLCSSAForm(*DT) &&
             "Loops should be in LCSSA form after loop-unroll.");
    }
            simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA);
  } else {
        for (Loop *SubLoop : LoopsToSimplify)
      simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA);
  }
  return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
                          : LoopUnrollResult::PartiallyUnrolled;
}
MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
    assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
  assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
  for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
    MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
    if (!MD)
      continue;
    MDString *S = dyn_cast<MDString>(MD->getOperand(0));
    if (!S)
      continue;
    if (Name.equals(S->getString()))
      return MD;
  }
  return nullptr;
}