#include "MCTargetDesc/PPCMCTargetDesc.h"
#include "MCTargetDesc/PPCPredicates.h"
#include "PPC.h"
#include "PPCISelLowering.h"
#include "PPCMachineFunctionInfo.h"
#include "PPCSubtarget.h"
#include "PPCTargetMachine.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/IntrinsicsPowerPC.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <limits>
#include <memory>
#include <new>
#include <tuple>
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "ppc-codegen"
STATISTIC(NumSextSetcc,
"Number of (sext(setcc)) nodes expanded into GPR sequence.");
STATISTIC(NumZextSetcc,
"Number of (zext(setcc)) nodes expanded into GPR sequence.");
STATISTIC(SignExtensionsAdded,
"Number of sign extensions for compare inputs added.");
STATISTIC(ZeroExtensionsAdded,
"Number of zero extensions for compare inputs added.");
STATISTIC(NumLogicOpsOnComparison,
"Number of logical ops on i1 values calculated in GPR.");
STATISTIC(OmittedForNonExtendUses,
"Number of compares not eliminated as they have non-extending uses.");
STATISTIC(NumP9Setb,
"Number of compares lowered to setb.");
cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug",
cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden);
static cl::opt<bool>
UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true),
cl::desc("use aggressive ppc isel for bit permutations"),
cl::Hidden);
static cl::opt<bool> BPermRewriterNoMasking(
"ppc-bit-perm-rewriter-stress-rotates",
cl::desc("stress rotate selection in aggressive ppc isel for "
"bit permutations"),
cl::Hidden);
static cl::opt<bool> EnableBranchHint(
"ppc-use-branch-hint", cl::init(true),
cl::desc("Enable static hinting of branches on ppc"),
cl::Hidden);
static cl::opt<bool> EnableTLSOpt(
"ppc-tls-opt", cl::init(true),
cl::desc("Enable tls optimization peephole"),
cl::Hidden);
enum ICmpInGPRType { ICGPR_All, ICGPR_None, ICGPR_I32, ICGPR_I64,
ICGPR_NonExtIn, ICGPR_Zext, ICGPR_Sext, ICGPR_ZextI32,
ICGPR_SextI32, ICGPR_ZextI64, ICGPR_SextI64 };
static cl::opt<ICmpInGPRType> CmpInGPR(
"ppc-gpr-icmps", cl::Hidden, cl::init(ICGPR_All),
cl::desc("Specify the types of comparisons to emit GPR-only code for."),
cl::values(clEnumValN(ICGPR_None, "none", "Do not modify integer comparisons."),
clEnumValN(ICGPR_All, "all", "All possible int comparisons in GPRs."),
clEnumValN(ICGPR_I32, "i32", "Only i32 comparisons in GPRs."),
clEnumValN(ICGPR_I64, "i64", "Only i64 comparisons in GPRs."),
clEnumValN(ICGPR_NonExtIn, "nonextin",
"Only comparisons where inputs don't need [sz]ext."),
clEnumValN(ICGPR_Zext, "zext", "Only comparisons with zext result."),
clEnumValN(ICGPR_ZextI32, "zexti32",
"Only i32 comparisons with zext result."),
clEnumValN(ICGPR_ZextI64, "zexti64",
"Only i64 comparisons with zext result."),
clEnumValN(ICGPR_Sext, "sext", "Only comparisons with sext result."),
clEnumValN(ICGPR_SextI32, "sexti32",
"Only i32 comparisons with sext result."),
clEnumValN(ICGPR_SextI64, "sexti64",
"Only i64 comparisons with sext result.")));
namespace {
class PPCDAGToDAGISel : public SelectionDAGISel {
const PPCTargetMachine &TM;
const PPCSubtarget *Subtarget = nullptr;
const PPCTargetLowering *PPCLowering = nullptr;
unsigned GlobalBaseReg = 0;
public:
explicit PPCDAGToDAGISel(PPCTargetMachine &tm, CodeGenOpt::Level OptLevel)
: SelectionDAGISel(tm, OptLevel), TM(tm) {}
bool runOnMachineFunction(MachineFunction &MF) override {
GlobalBaseReg = 0;
Subtarget = &MF.getSubtarget<PPCSubtarget>();
PPCLowering = Subtarget->getTargetLowering();
if (Subtarget->hasROPProtect()) {
MachineFrameInfo &MFI = MF.getFrameInfo();
PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
const int Result = MFI.CreateStackObject(8, Align(8), false);
FI->setROPProtectionHashSaveIndex(Result);
}
SelectionDAGISel::runOnMachineFunction(MF);
return true;
}
void PreprocessISelDAG() override;
void PostprocessISelDAG() override;
inline SDValue getI16Imm(unsigned Imm, const SDLoc &dl) {
return CurDAG->getTargetConstant(Imm, dl, MVT::i16);
}
inline SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
}
inline SDValue getI64Imm(uint64_t Imm, const SDLoc &dl) {
return CurDAG->getTargetConstant(Imm, dl, MVT::i64);
}
inline SDValue getSmallIPtrImm(uint64_t Imm, const SDLoc &dl) {
return CurDAG->getTargetConstant(
Imm, dl, PPCLowering->getPointerTy(CurDAG->getDataLayout()));
}
static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask,
unsigned &SH, unsigned &MB, unsigned &ME);
SDNode *getGlobalBaseReg();
void selectFrameIndex(SDNode *SN, SDNode *N, uint64_t Offset = 0);
void Select(SDNode *N) override;
bool tryBitfieldInsert(SDNode *N);
bool tryBitPermutation(SDNode *N);
bool tryIntCompareInGPR(SDNode *N);
bool tryTLSXFormLoad(LoadSDNode *N);
bool tryTLSXFormStore(StoreSDNode *N);
SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
const SDLoc &dl, SDValue Chain = SDValue());
bool SelectAddrImmOffs(SDValue N, SDValue &Out) const {
if (N.getOpcode() == ISD::TargetConstant ||
N.getOpcode() == ISD::TargetGlobalAddress) {
Out = N;
return true;
}
return false;
}
bool SelectDSForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
Align(4)) == PPC::AM_DSForm;
}
bool SelectDQForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
Align(16)) == PPC::AM_DQForm;
}
bool SelectDForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
None) == PPC::AM_DForm;
}
bool SelectPCRelForm(SDNode *Parent, SDValue N, SDValue &Disp,
SDValue &Base) {
return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
None) == PPC::AM_PCRel;
}
bool SelectPDForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
None) == PPC::AM_PrefixDForm;
}
bool SelectXForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
None) == PPC::AM_XForm;
}
bool SelectForceXForm(SDNode *Parent, SDValue N, SDValue &Disp,
SDValue &Base) {
return PPCLowering->SelectForceXFormMode(N, Disp, Base, *CurDAG) ==
PPC::AM_XForm;
}
bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) {
return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, None);
}
bool SelectAddrIdxX4(SDValue N, SDValue &Base, SDValue &Index) {
return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG,
Align(4));
}
bool SelectAddrIdxX16(SDValue N, SDValue &Base, SDValue &Index) {
return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG,
Align(16));
}
bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) {
return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
}
bool SelectAddrImm(SDValue N, SDValue &Disp,
SDValue &Base) {
return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, None);
}
bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) {
return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, Align(4));
}
bool SelectAddrImmX16(SDValue N, SDValue &Disp, SDValue &Base) {
return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG,
Align(16));
}
bool SelectAddrImmX34(SDValue N, SDValue &Disp, SDValue &Base) {
return PPCLowering->SelectAddressRegImm34(N, Disp, Base, *CurDAG);
}
bool SelectAddr(SDValue N, SDValue &Base) {
Base = N;
return true;
}
bool SelectAddrPCRel(SDValue N, SDValue &Base) {
return PPCLowering->SelectAddressPCRel(N, Base);
}
bool SelectInlineAsmMemoryOperand(const SDValue &Op,
unsigned ConstraintID,
std::vector<SDValue> &OutOps) override {
switch(ConstraintID) {
default:
errs() << "ConstraintID: " << ConstraintID << "\n";
llvm_unreachable("Unexpected asm memory constraint");
case InlineAsm::Constraint_es:
case InlineAsm::Constraint_m:
case InlineAsm::Constraint_o:
case InlineAsm::Constraint_Q:
case InlineAsm::Constraint_Z:
case InlineAsm::Constraint_Zy:
const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, 1);
SDLoc dl(Op);
SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32);
SDValue NewOp =
SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
dl, Op.getValueType(),
Op, RC), 0);
OutOps.push_back(NewOp);
return false;
}
return true;
}
StringRef getPassName() const override {
return "PowerPC DAG->DAG Pattern Instruction Selection";
}
#include "PPCGenDAGISel.inc"
private:
bool trySETCC(SDNode *N);
bool tryFoldSWTestBRCC(SDNode *N);
bool tryAsSingleRLDICL(SDNode *N);
bool tryAsSingleRLDICR(SDNode *N);
bool tryAsSingleRLWINM(SDNode *N);
bool tryAsSingleRLWINM8(SDNode *N);
bool tryAsSingleRLWIMI(SDNode *N);
bool tryAsPairOfRLDICL(SDNode *N);
bool tryAsSingleRLDIMI(SDNode *N);
void PeepholePPC64();
void PeepholePPC64ZExt();
void PeepholeCROps();
SDValue combineToCMPB(SDNode *N);
void foldBoolExts(SDValue &Res, SDNode *&N);
bool AllUsersSelectZero(SDNode *N);
void SwapAllSelectUsers(SDNode *N);
bool isOffsetMultipleOf(SDNode *N, unsigned Val) const;
void transferMemOperands(SDNode *N, SDNode *Result);
};
}
SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
if (!GlobalBaseReg) {
const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
MachineBasicBlock &FirstMBB = MF->front();
MachineBasicBlock::iterator MBBI = FirstMBB.begin();
const Module *M = MF->getFunction().getParent();
DebugLoc dl;
if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) == MVT::i32) {
if (Subtarget->isTargetELF()) {
GlobalBaseReg = PPC::R30;
if (!Subtarget->isSecurePlt() &&
M->getPICLevel() == PICLevel::SmallPIC) {
BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR));
BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
} else {
BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
Register TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
BuildMI(FirstMBB, MBBI, dl,
TII.get(PPC::UpdateGBR), GlobalBaseReg)
.addReg(TempReg, RegState::Define).addReg(GlobalBaseReg);
MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
}
} else {
GlobalBaseReg =
RegInfo->createVirtualRegister(&PPC::GPRC_and_GPRC_NOR0RegClass);
BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
}
} else {
MF->getInfo<PPCFunctionInfo>()->setShrinkWrapDisabled(true);
GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass);
BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8));
BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg);
}
}
return CurDAG->getRegister(GlobalBaseReg,
PPCLowering->getPointerTy(CurDAG->getDataLayout()))
.getNode();
}
static bool hasTocDataAttr(SDValue Val, unsigned PointerSize) {
GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Val);
if (!GA)
return false;
const GlobalVariable *GV = dyn_cast_or_null<GlobalVariable>(GA->getGlobal());
if (!GV)
return false;
if (!GV->hasAttribute("toc-data"))
return false;
assert(
PointerSize >= GV->getAlign().valueOrOne().value() &&
"GlobalVariables with an alignment requirement stricter than TOC entry "
"size not supported by the toc data transformation.");
Type *GVType = GV->getValueType();
assert(GVType->isSized() && "A GlobalVariable's size must be known to be "
"supported by the toc data transformation.");
if (GVType->isVectorTy())
report_fatal_error("A GlobalVariable of Vector type is not currently "
"supported by the toc data transformation.");
if (GVType->isArrayTy())
report_fatal_error("A GlobalVariable of Array type is not currently "
"supported by the toc data transformation.");
if (GVType->isStructTy())
report_fatal_error("A GlobalVariable of Struct type is not currently "
"supported by the toc data transformation.");
assert(GVType->getPrimitiveSizeInBits() <= PointerSize * 8 &&
"A GlobalVariable with size larger than a TOC entry is not currently "
"supported by the toc data transformation.");
if (GV->hasLocalLinkage() || GV->hasPrivateLinkage())
report_fatal_error("A GlobalVariable with private or local linkage is not "
"currently supported by the toc data transformation.");
assert(!GV->hasCommonLinkage() &&
"Tentative definitions cannot have the mapping class XMC_TD.");
return true;
}
static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
Imm = cast<ConstantSDNode>(N)->getZExtValue();
return true;
}
return false;
}
static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
Imm = cast<ConstantSDNode>(N)->getZExtValue();
return true;
}
return false;
}
static bool isInt32Immediate(SDValue N, unsigned &Imm) {
return isInt32Immediate(N.getNode(), Imm);
}
static bool isInt64Immediate(SDValue N, uint64_t &Imm) {
return isInt64Immediate(N.getNode(), Imm);
}
static unsigned getBranchHint(unsigned PCC,
const FunctionLoweringInfo &FuncInfo,
const SDValue &DestMBB) {
assert(isa<BasicBlockSDNode>(DestMBB));
if (!FuncInfo.BPI) return PPC::BR_NO_HINT;
const BasicBlock *BB = FuncInfo.MBB->getBasicBlock();
const Instruction *BBTerm = BB->getTerminator();
if (BBTerm->getNumSuccessors() != 2) return PPC::BR_NO_HINT;
const BasicBlock *TBB = BBTerm->getSuccessor(0);
const BasicBlock *FBB = BBTerm->getSuccessor(1);
auto TProb = FuncInfo.BPI->getEdgeProbability(BB, TBB);
auto FProb = FuncInfo.BPI->getEdgeProbability(BB, FBB);
const uint32_t Threshold = 10000;
if (std::max(TProb, FProb) / Threshold < std::min(TProb, FProb))
return PPC::BR_NO_HINT;
LLVM_DEBUG(dbgs() << "Use branch hint for '" << FuncInfo.Fn->getName()
<< "::" << BB->getName() << "'\n"
<< " -> " << TBB->getName() << ": " << TProb << "\n"
<< " -> " << FBB->getName() << ": " << FProb << "\n");
const BasicBlockSDNode *BBDN = cast<BasicBlockSDNode>(DestMBB);
if (BBDN->getBasicBlock()->getBasicBlock() != TBB)
std::swap(TProb, FProb);
return (TProb > FProb) ? PPC::BR_TAKEN_HINT : PPC::BR_NONTAKEN_HINT;
}
static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
return N->getOpcode() == Opc
&& isInt32Immediate(N->getOperand(1).getNode(), Imm);
}
void PPCDAGToDAGISel::selectFrameIndex(SDNode *SN, SDNode *N, uint64_t Offset) {
SDLoc dl(SN);
int FI = cast<FrameIndexSDNode>(N)->getIndex();
SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
if (SN->hasOneUse())
CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI,
getSmallIPtrImm(Offset, dl));
else
ReplaceNode(SN, CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
getSmallIPtrImm(Offset, dl)));
}
bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
bool isShiftMask, unsigned &SH,
unsigned &MB, unsigned &ME) {
if (N->getValueType(0) != MVT::i32)
return false;
unsigned Shift = 32;
unsigned Indeterminant = ~0; unsigned Opcode = N->getOpcode();
if (N->getNumOperands() != 2 ||
!isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31))
return false;
if (Opcode == ISD::SHL) {
if (isShiftMask) Mask = Mask << Shift;
Indeterminant = ~(0xFFFFFFFFu << Shift);
} else if (Opcode == ISD::SRL) {
if (isShiftMask) Mask = Mask >> Shift;
Indeterminant = ~(0xFFFFFFFFu >> Shift);
Shift = 32 - Shift;
} else if (Opcode == ISD::ROTL) {
Indeterminant = 0;
} else {
return false;
}
if (Mask && !(Mask & Indeterminant)) {
SH = Shift & 31;
return isRunOfOnes(Mask, MB, ME);
}
return false;
}
bool PPCDAGToDAGISel::tryTLSXFormStore(StoreSDNode *ST) {
SDValue Base = ST->getBasePtr();
if (Base.getOpcode() != PPCISD::ADD_TLS)
return false;
SDValue Offset = ST->getOffset();
if (!Offset.isUndef())
return false;
if (Base.getOperand(1).getOpcode() == PPCISD::TLS_LOCAL_EXEC_MAT_ADDR)
return false;
SDLoc dl(ST);
EVT MemVT = ST->getMemoryVT();
EVT RegVT = ST->getValue().getValueType();
unsigned Opcode;
switch (MemVT.getSimpleVT().SimpleTy) {
default:
return false;
case MVT::i8: {
Opcode = (RegVT == MVT::i32) ? PPC::STBXTLS_32 : PPC::STBXTLS;
break;
}
case MVT::i16: {
Opcode = (RegVT == MVT::i32) ? PPC::STHXTLS_32 : PPC::STHXTLS;
break;
}
case MVT::i32: {
Opcode = (RegVT == MVT::i32) ? PPC::STWXTLS_32 : PPC::STWXTLS;
break;
}
case MVT::i64: {
Opcode = PPC::STDXTLS;
break;
}
}
SDValue Chain = ST->getChain();
SDVTList VTs = ST->getVTList();
SDValue Ops[] = {ST->getValue(), Base.getOperand(0), Base.getOperand(1),
Chain};
SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
transferMemOperands(ST, MN);
ReplaceNode(ST, MN);
return true;
}
bool PPCDAGToDAGISel::tryTLSXFormLoad(LoadSDNode *LD) {
SDValue Base = LD->getBasePtr();
if (Base.getOpcode() != PPCISD::ADD_TLS)
return false;
SDValue Offset = LD->getOffset();
if (!Offset.isUndef())
return false;
if (Base.getOperand(1).getOpcode() == PPCISD::TLS_LOCAL_EXEC_MAT_ADDR)
return false;
SDLoc dl(LD);
EVT MemVT = LD->getMemoryVT();
EVT RegVT = LD->getValueType(0);
unsigned Opcode;
switch (MemVT.getSimpleVT().SimpleTy) {
default:
return false;
case MVT::i8: {
Opcode = (RegVT == MVT::i32) ? PPC::LBZXTLS_32 : PPC::LBZXTLS;
break;
}
case MVT::i16: {
Opcode = (RegVT == MVT::i32) ? PPC::LHZXTLS_32 : PPC::LHZXTLS;
break;
}
case MVT::i32: {
Opcode = (RegVT == MVT::i32) ? PPC::LWZXTLS_32 : PPC::LWZXTLS;
break;
}
case MVT::i64: {
Opcode = PPC::LDXTLS;
break;
}
}
SDValue Chain = LD->getChain();
SDVTList VTs = LD->getVTList();
SDValue Ops[] = {Base.getOperand(0), Base.getOperand(1), Chain};
SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
transferMemOperands(LD, MN);
ReplaceNode(LD, MN);
return true;
}
bool PPCDAGToDAGISel::tryBitfieldInsert(SDNode *N) {
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
SDLoc dl(N);
KnownBits LKnown = CurDAG->computeKnownBits(Op0);
KnownBits RKnown = CurDAG->computeKnownBits(Op1);
unsigned TargetMask = LKnown.Zero.getZExtValue();
unsigned InsertMask = RKnown.Zero.getZExtValue();
if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
unsigned Op0Opc = Op0.getOpcode();
unsigned Op1Opc = Op1.getOpcode();
unsigned Value, SH = 0;
TargetMask = ~TargetMask;
InsertMask = ~InsertMask;
if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
Op0.getOperand(0).getOpcode() == ISD::SRL) {
if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
Op1.getOperand(0).getOpcode() != ISD::SRL) {
std::swap(Op0, Op1);
std::swap(Op0Opc, Op1Opc);
std::swap(TargetMask, InsertMask);
}
}
} else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
Op1.getOperand(0).getOpcode() != ISD::SRL) {
std::swap(Op0, Op1);
std::swap(Op0Opc, Op1Opc);
std::swap(TargetMask, InsertMask);
}
}
unsigned MB, ME;
if (isRunOfOnes(InsertMask, MB, ME)) {
if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
isInt32Immediate(Op1.getOperand(1), Value)) {
Op1 = Op1.getOperand(0);
SH = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
}
if (Op1Opc == ISD::AND) {
KnownBits MKnown = CurDAG->computeKnownBits(Op1.getOperand(1));
bool CanFoldMask = InsertMask == MKnown.One.getZExtValue();
unsigned SHOpc = Op1.getOperand(0).getOpcode();
if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask &&
isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
Op1 = Op1.getOperand(0).getOperand(0);
SH = (SHOpc == ISD::SHL) ? Value : 32 - Value;
}
}
SH &= 31;
SDValue Ops[] = { Op0, Op1, getI32Imm(SH, dl), getI32Imm(MB, dl),
getI32Imm(ME, dl) };
ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops));
return true;
}
}
return false;
}
static unsigned allUsesTruncate(SelectionDAG *CurDAG, SDNode *N) {
unsigned MaxTruncation = 0;
for (SDNode::use_iterator Use = N->use_begin(), UseEnd = N->use_end();
Use != UseEnd; ++Use) {
unsigned Opc =
Use->isMachineOpcode() ? Use->getMachineOpcode() : Use->getOpcode();
switch (Opc) {
default: return 0;
case ISD::TRUNCATE:
if (Use->isMachineOpcode())
return 0;
MaxTruncation =
std::max(MaxTruncation, (unsigned)Use->getValueType(0).getSizeInBits());
continue;
case ISD::STORE: {
if (Use->isMachineOpcode())
return 0;
StoreSDNode *STN = cast<StoreSDNode>(*Use);
unsigned MemVTSize = STN->getMemoryVT().getSizeInBits();
if (MemVTSize == 64 || Use.getOperandNo() != 0)
return 0;
MaxTruncation = std::max(MaxTruncation, MemVTSize);
continue;
}
case PPC::STW8:
case PPC::STWX8:
case PPC::STWU8:
case PPC::STWUX8:
if (Use.getOperandNo() != 0)
return 0;
MaxTruncation = std::max(MaxTruncation, 32u);
continue;
case PPC::STH8:
case PPC::STHX8:
case PPC::STHU8:
case PPC::STHUX8:
if (Use.getOperandNo() != 0)
return 0;
MaxTruncation = std::max(MaxTruncation, 16u);
continue;
case PPC::STB8:
case PPC::STBX8:
case PPC::STBU8:
case PPC::STBUX8:
if (Use.getOperandNo() != 0)
return 0;
MaxTruncation = std::max(MaxTruncation, 8u);
continue;
}
}
return MaxTruncation;
}
static int findContiguousZerosAtLeast(uint64_t Imm, unsigned Num) {
unsigned HiTZ = countTrailingZeros<uint32_t>(Hi_32(Imm));
unsigned LoLZ = countLeadingZeros<uint32_t>(Lo_32(Imm));
if ((HiTZ + LoLZ) >= Num)
return (32 + HiTZ);
return 0;
}
static SDNode *selectI64ImmDirect(SelectionDAG *CurDAG, const SDLoc &dl,
uint64_t Imm, unsigned &InstCnt) {
unsigned TZ = countTrailingZeros<uint64_t>(Imm);
unsigned LZ = countLeadingZeros<uint64_t>(Imm);
unsigned TO = countTrailingOnes<uint64_t>(Imm);
unsigned LO = countLeadingOnes<uint64_t>(Imm);
unsigned Hi32 = Hi_32(Imm);
unsigned Lo32 = Lo_32(Imm);
SDNode *Result = nullptr;
unsigned Shift = 0;
auto getI32Imm = [CurDAG, dl](unsigned Imm) {
return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
};
InstCnt = 1;
if (isInt<16>(Imm)) {
SDValue SDImm = CurDAG->getTargetConstant(Imm, dl, MVT::i64);
return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm);
}
if (TZ > 15 && (LZ > 32 || LO > 32))
return CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64,
getI32Imm((Imm >> 16) & 0xffff));
InstCnt = 2;
assert(LZ < 64 && "Unexpected leading zeros here.");
unsigned FO = countLeadingOnes<uint64_t>(Imm << LZ);
if (isInt<32>(Imm)) {
uint64_t ImmHi16 = (Imm >> 16) & 0xffff;
unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16));
return CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
getI32Imm(Imm & 0xffff));
}
if ((LZ + FO + TZ) > 48) {
Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
getI32Imm((Imm >> TZ) & 0xffff));
return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0),
getI32Imm(TZ), getI32Imm(LZ));
}
if ((LZ + TO) > 48) {
assert(LZ <= 32 && "Unexpected shift value.");
Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
getI32Imm((Imm >> (48 - LZ) & 0xffff)));
return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
getI32Imm(48 - LZ), getI32Imm(LZ));
}
if ((LZ + FO + TO) > 48) {
Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
getI32Imm((Imm >> TO) & 0xffff));
return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
getI32Imm(TO), getI32Imm(LZ));
}
if (LZ == 32 && ((Lo32 & 0x8000) == 0)) {
Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
getI32Imm(Lo32 & 0xffff));
return CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64, SDValue(Result, 0),
getI32Imm(Lo32 >> 16));
}
if ((Shift = findContiguousZerosAtLeast(Imm, 49)) ||
(Shift = findContiguousZerosAtLeast(~Imm, 49))) {
uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue();
Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
getI32Imm(RotImm & 0xffff));
return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
getI32Imm(Shift), getI32Imm(0));
}
InstCnt = 3;
if ((LZ + FO + TZ) > 32) {
uint64_t ImmHi16 = (Imm >> (TZ + 16)) & 0xffff;
unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16));
Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
getI32Imm((Imm >> TZ) & 0xffff));
return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0),
getI32Imm(TZ), getI32Imm(LZ));
}
if ((LZ + TO) > 32) {
assert(LZ <= 32 && "Unexpected shift value.");
Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64,
getI32Imm((Imm >> (48 - LZ)) & 0xffff));
Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
getI32Imm((Imm >> (32 - LZ)) & 0xffff));
return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
getI32Imm(32 - LZ), getI32Imm(LZ));
}
if ((LZ + FO + TO) > 32) {
Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64,
getI32Imm((Imm >> (TO + 16)) & 0xffff));
Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
getI32Imm((Imm >> TO) & 0xffff));
return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
getI32Imm(TO), getI32Imm(LZ));
}
if (Hi32 == Lo32) {
uint64_t ImmHi16 = (Lo32 >> 16) & 0xffff;
unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16));
Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
getI32Imm(Lo32 & 0xffff));
SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(32),
getI32Imm(0)};
return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
}
if ((Shift = findContiguousZerosAtLeast(Imm, 33)) ||
(Shift = findContiguousZerosAtLeast(~Imm, 33))) {
uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue();
uint64_t ImmHi16 = (RotImm >> 16) & 0xffff;
unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16));
Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
getI32Imm(RotImm & 0xffff));
return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
getI32Imm(Shift), getI32Imm(0));
}
InstCnt = 0;
return nullptr;
}
static SDNode *selectI64ImmDirectPrefix(SelectionDAG *CurDAG, const SDLoc &dl,
uint64_t Imm, unsigned &InstCnt) {
unsigned TZ = countTrailingZeros<uint64_t>(Imm);
unsigned LZ = countLeadingZeros<uint64_t>(Imm);
unsigned TO = countTrailingOnes<uint64_t>(Imm);
unsigned FO = countLeadingOnes<uint64_t>(LZ == 64 ? 0 : (Imm << LZ));
unsigned Hi32 = Hi_32(Imm);
unsigned Lo32 = Lo_32(Imm);
auto getI32Imm = [CurDAG, dl](unsigned Imm) {
return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
};
auto getI64Imm = [CurDAG, dl](uint64_t Imm) {
return CurDAG->getTargetConstant(Imm, dl, MVT::i64);
};
InstCnt = 1;
if (isInt<34>(Imm))
return CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64,
CurDAG->getTargetConstant(Imm, dl, MVT::i64));
InstCnt = 2;
SDNode *Result = nullptr;
if ((LZ + FO + TZ) > 30) {
APInt SignedInt34 = APInt(34, (Imm >> TZ) & 0x3ffffffff);
APInt Extended = SignedInt34.sext(64);
Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64,
getI64Imm(*Extended.getRawData()));
return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0),
getI32Imm(TZ), getI32Imm(LZ));
}
if ((LZ + TO) > 30) {
APInt SignedInt34 = APInt(34, (Imm >> (30 - LZ)) & 0x3ffffffff);
APInt Extended = SignedInt34.sext(64);
Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64,
getI64Imm(*Extended.getRawData()));
return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
getI32Imm(30 - LZ), getI32Imm(LZ));
}
if ((LZ + FO + TO) > 30) {
APInt SignedInt34 = APInt(34, (Imm >> TO) & 0x3ffffffff);
APInt Extended = SignedInt34.sext(64);
Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64,
getI64Imm(*Extended.getRawData()));
return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
getI32Imm(TO), getI32Imm(LZ));
}
for (unsigned Shift = 0; Shift < 63; ++Shift) {
uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue();
if (isInt<34>(RotImm)) {
Result =
CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(RotImm));
return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
SDValue(Result, 0), getI32Imm(Shift),
getI32Imm(0));
}
}
if (Hi32 == Lo32) {
Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Hi32));
SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(32),
getI32Imm(0)};
return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
}
InstCnt = 3;
SDNode *ResultHi =
CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Hi32));
SDNode *ResultLo =
CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Lo32));
SDValue Ops[] = {SDValue(ResultLo, 0), SDValue(ResultHi, 0), getI32Imm(32),
getI32Imm(0)};
return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
}
static SDNode *selectI64Imm(SelectionDAG *CurDAG, const SDLoc &dl, uint64_t Imm,
unsigned *InstCnt = nullptr) {
unsigned InstCntDirect = 0;
SDNode *Result = selectI64ImmDirect(CurDAG, dl, Imm, InstCntDirect);
const PPCSubtarget &Subtarget =
CurDAG->getMachineFunction().getSubtarget<PPCSubtarget>();
if (Subtarget.hasPrefixInstrs() && InstCntDirect != 1) {
unsigned InstCntDirectP = 0;
SDNode *ResultP = selectI64ImmDirectPrefix(CurDAG, dl, Imm, InstCntDirectP);
if (ResultP && (!Result || InstCntDirectP < InstCntDirect)) {
if (InstCnt)
*InstCnt = InstCntDirectP;
return ResultP;
}
}
if (Result) {
if (InstCnt)
*InstCnt = InstCntDirect;
return Result;
}
auto getI32Imm = [CurDAG, dl](unsigned Imm) {
return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
};
Result =
selectI64ImmDirect(CurDAG, dl, Imm & 0xffffffff00000000, InstCntDirect);
if (uint32_t Hi16 = (Lo_32(Imm) >> 16) & 0xffff) {
Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64,
SDValue(Result, 0), getI32Imm(Hi16));
++InstCntDirect;
}
if (uint32_t Lo16 = Lo_32(Imm) & 0xffff) {
Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
getI32Imm(Lo16));
++InstCntDirect;
}
if (InstCnt)
*InstCnt = InstCntDirect;
return Result;
}
static SDNode *selectI64Imm(SelectionDAG *CurDAG, SDNode *N) {
SDLoc dl(N);
int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue();
if (unsigned MinSize = allUsesTruncate(CurDAG, N)) {
uint64_t SextImm = SignExtend64(Imm, MinSize);
SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64);
if (isInt<16>(SextImm))
return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm);
}
return selectI64Imm(CurDAG, dl, Imm);
}
namespace {
class BitPermutationSelector {
struct ValueBit {
SDValue V;
unsigned Idx;
enum Kind {
ConstZero,
Variable,
VariableKnownToBeZero
} K;
ValueBit(SDValue V, unsigned I, Kind K = Variable)
: V(V), Idx(I), K(K) {}
ValueBit(Kind K = Variable) : Idx(UINT32_MAX), K(K) {}
bool isZero() const {
return K == ConstZero || K == VariableKnownToBeZero;
}
bool hasValue() const {
return K == Variable || K == VariableKnownToBeZero;
}
SDValue getValue() const {
assert(hasValue() && "Cannot get the value of a constant bit");
return V;
}
unsigned getValueBitIndex() const {
assert(hasValue() && "Cannot get the value bit index of a constant bit");
return Idx;
}
};
struct BitGroup {
SDValue V;
unsigned RLAmt;
unsigned StartIdx, EndIdx;
bool Repl32;
bool Repl32CR;
bool Repl32Coalesced;
BitGroup(SDValue V, unsigned R, unsigned S, unsigned E)
: V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false),
Repl32Coalesced(false) {
LLVM_DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R
<< " [" << S << ", " << E << "]\n");
}
};
struct ValueRotInfo {
SDValue V;
unsigned RLAmt = std::numeric_limits<unsigned>::max();
unsigned NumGroups = 0;
unsigned FirstGroupStartIdx = std::numeric_limits<unsigned>::max();
bool Repl32 = false;
ValueRotInfo() = default;
bool operator < (const ValueRotInfo &Other) const {
if (Repl32 < Other.Repl32)
return true;
else if (Repl32 > Other.Repl32)
return false;
else if (NumGroups > Other.NumGroups)
return true;
else if (NumGroups < Other.NumGroups)
return false;
else if (RLAmt == 0 && Other.RLAmt != 0)
return true;
else if (RLAmt != 0 && Other.RLAmt == 0)
return false;
else if (FirstGroupStartIdx < Other.FirstGroupStartIdx)
return true;
return false;
}
};
using ValueBitsMemoizedValue = std::pair<bool, SmallVector<ValueBit, 64>>;
using ValueBitsMemoizer =
DenseMap<SDValue, std::unique_ptr<ValueBitsMemoizedValue>>;
ValueBitsMemoizer Memoizer;
std::pair<bool, SmallVector<ValueBit, 64> *> getValueBits(SDValue V,
unsigned NumBits) {
auto &ValueEntry = Memoizer[V];
if (ValueEntry)
return std::make_pair(ValueEntry->first, &ValueEntry->second);
ValueEntry.reset(new ValueBitsMemoizedValue());
bool &Interesting = ValueEntry->first;
SmallVector<ValueBit, 64> &Bits = ValueEntry->second;
Bits.resize(NumBits);
switch (V.getOpcode()) {
default: break;
case ISD::ROTL:
if (isa<ConstantSDNode>(V.getOperand(1))) {
unsigned RotAmt = V.getConstantOperandVal(1);
const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
for (unsigned i = 0; i < NumBits; ++i)
Bits[i] = LHSBits[i < RotAmt ? i + (NumBits - RotAmt) : i - RotAmt];
return std::make_pair(Interesting = true, &Bits);
}
break;
case ISD::SHL:
case PPCISD::SHL:
if (isa<ConstantSDNode>(V.getOperand(1))) {
unsigned ShiftAmt = V.getConstantOperandVal(1);
const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
for (unsigned i = ShiftAmt; i < NumBits; ++i)
Bits[i] = LHSBits[i - ShiftAmt];
for (unsigned i = 0; i < ShiftAmt; ++i)
Bits[i] = ValueBit(ValueBit::ConstZero);
return std::make_pair(Interesting = true, &Bits);
}
break;
case ISD::SRL:
case PPCISD::SRL:
if (isa<ConstantSDNode>(V.getOperand(1))) {
unsigned ShiftAmt = V.getConstantOperandVal(1);
const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
for (unsigned i = 0; i < NumBits - ShiftAmt; ++i)
Bits[i] = LHSBits[i + ShiftAmt];
for (unsigned i = NumBits - ShiftAmt; i < NumBits; ++i)
Bits[i] = ValueBit(ValueBit::ConstZero);
return std::make_pair(Interesting = true, &Bits);
}
break;
case ISD::AND:
if (isa<ConstantSDNode>(V.getOperand(1))) {
uint64_t Mask = V.getConstantOperandVal(1);
const SmallVector<ValueBit, 64> *LHSBits;
std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), NumBits);
for (unsigned i = 0; i < NumBits; ++i)
if (((Mask >> i) & 1) == 1)
Bits[i] = (*LHSBits)[i];
else {
if ((*LHSBits)[i].isZero())
Bits[i] = (*LHSBits)[i];
else
Bits[i] = ValueBit(ValueBit::ConstZero);
}
return std::make_pair(Interesting, &Bits);
}
break;
case ISD::OR: {
const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
const auto &RHSBits = *getValueBits(V.getOperand(1), NumBits).second;
bool AllDisjoint = true;
SDValue LastVal = SDValue();
unsigned LastIdx = 0;
for (unsigned i = 0; i < NumBits; ++i) {
if (LHSBits[i].isZero() && RHSBits[i].isZero()) {
if (LHSBits[i].hasValue() && LHSBits[i].getValue() == LastVal &&
LHSBits[i].getValueBitIndex() == LastIdx + 1)
Bits[i] = LHSBits[i];
else if (RHSBits[i].hasValue() && RHSBits[i].getValue() == LastVal &&
RHSBits[i].getValueBitIndex() == LastIdx + 1)
Bits[i] = RHSBits[i];
else
Bits[i] = ValueBit(ValueBit::ConstZero);
}
else if (LHSBits[i].isZero())
Bits[i] = RHSBits[i];
else if (RHSBits[i].isZero())
Bits[i] = LHSBits[i];
else {
AllDisjoint = false;
break;
}
if (Bits[i].hasValue()) {
LastVal = Bits[i].getValue();
LastIdx = Bits[i].getValueBitIndex();
}
else {
if (LastVal) LastVal = SDValue();
LastIdx = 0;
}
}
if (!AllDisjoint)
break;
return std::make_pair(Interesting = true, &Bits);
}
case ISD::ZERO_EXTEND: {
if (V.getValueType() != MVT::i64 ||
V.getOperand(0).getValueType() != MVT::i32)
break;
const SmallVector<ValueBit, 64> *LHSBits;
const unsigned NumOperandBits = 32;
std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0),
NumOperandBits);
for (unsigned i = 0; i < NumOperandBits; ++i)
Bits[i] = (*LHSBits)[i];
for (unsigned i = NumOperandBits; i < NumBits; ++i)
Bits[i] = ValueBit(ValueBit::ConstZero);
return std::make_pair(Interesting, &Bits);
}
case ISD::TRUNCATE: {
EVT FromType = V.getOperand(0).getValueType();
EVT ToType = V.getValueType();
if (FromType != MVT::i64 || ToType != MVT::i32)
break;
const unsigned NumAllBits = FromType.getSizeInBits();
SmallVector<ValueBit, 64> *InBits;
std::tie(Interesting, InBits) = getValueBits(V.getOperand(0),
NumAllBits);
const unsigned NumValidBits = ToType.getSizeInBits();
bool UseUpper32bit = false;
for (unsigned i = 0; i < NumValidBits; ++i)
if ((*InBits)[i].hasValue() && (*InBits)[i].getValueBitIndex() >= 32) {
UseUpper32bit = true;
break;
}
if (UseUpper32bit)
break;
for (unsigned i = 0; i < NumValidBits; ++i)
Bits[i] = (*InBits)[i];
return std::make_pair(Interesting, &Bits);
}
case ISD::AssertZext: {
const SmallVector<ValueBit, 64> *LHSBits;
std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0),
NumBits);
EVT FromType = cast<VTSDNode>(V.getOperand(1))->getVT();
const unsigned NumValidBits = FromType.getSizeInBits();
for (unsigned i = 0; i < NumValidBits; ++i)
Bits[i] = (*LHSBits)[i];
for (unsigned i = NumValidBits; i < NumBits; ++i)
Bits[i] = (*LHSBits)[i].hasValue()
? ValueBit((*LHSBits)[i].getValue(),
(*LHSBits)[i].getValueBitIndex(),
ValueBit::VariableKnownToBeZero)
: ValueBit(ValueBit::ConstZero);
return std::make_pair(Interesting, &Bits);
}
case ISD::LOAD:
LoadSDNode *LD = cast<LoadSDNode>(V);
if (ISD::isZEXTLoad(V.getNode()) && V.getResNo() == 0) {
EVT VT = LD->getMemoryVT();
const unsigned NumValidBits = VT.getSizeInBits();
for (unsigned i = 0; i < NumValidBits; ++i)
Bits[i] = ValueBit(V, i);
for (unsigned i = NumValidBits; i < NumBits; ++i)
Bits[i] = ValueBit(V, i, ValueBit::VariableKnownToBeZero);
return std::make_pair(Interesting = false, &Bits);
}
break;
}
for (unsigned i = 0; i < NumBits; ++i)
Bits[i] = ValueBit(V, i);
return std::make_pair(Interesting = false, &Bits);
}
void computeRotationAmounts() {
NeedMask = false;
RLAmt.resize(Bits.size());
for (unsigned i = 0; i < Bits.size(); ++i)
if (Bits[i].hasValue()) {
unsigned VBI = Bits[i].getValueBitIndex();
if (i >= VBI)
RLAmt[i] = i - VBI;
else
RLAmt[i] = Bits.size() - (VBI - i);
} else if (Bits[i].isZero()) {
NeedMask = true;
RLAmt[i] = UINT32_MAX;
} else {
llvm_unreachable("Unknown value bit type");
}
}
void collectBitGroups(bool LateMask) {
BitGroups.clear();
unsigned LastRLAmt = RLAmt[0];
SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue();
unsigned LastGroupStartIdx = 0;
bool IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue();
for (unsigned i = 1; i < Bits.size(); ++i) {
unsigned ThisRLAmt = RLAmt[i];
SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue();
if (LateMask && !ThisValue) {
ThisValue = LastValue;
ThisRLAmt = LastRLAmt;
if (BitGroups.empty())
LastGroupStartIdx = 0;
}
if (IsGroupOfZeros && Bits[i].isZero())
continue;
if (ThisRLAmt == LastRLAmt && ThisValue == LastValue)
if (!(IsGroupOfZeros && ThisValue && !Bits[i].isZero()))
continue;
if (LastValue.getNode())
BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
i-1));
LastRLAmt = ThisRLAmt;
LastValue = ThisValue;
LastGroupStartIdx = i;
IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue();
}
if (LastValue.getNode())
BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
Bits.size()-1));
if (BitGroups.empty())
return;
if (BitGroups.size() > 1) {
if (BitGroups[0].StartIdx == 0 &&
BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 &&
BitGroups[0].V == BitGroups[BitGroups.size()-1].V &&
BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) {
LLVM_DEBUG(dbgs() << "\tcombining final bit group with initial one\n");
BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx;
BitGroups.erase(BitGroups.begin());
}
}
}
void collectValueRotInfo() {
ValueRots.clear();
for (auto &BG : BitGroups) {
unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0);
ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)];
VRI.V = BG.V;
VRI.RLAmt = BG.RLAmt;
VRI.Repl32 = BG.Repl32;
VRI.NumGroups += 1;
VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx);
}
ValueRotsVec.clear();
for (auto &I : ValueRots) {
ValueRotsVec.push_back(I.second);
}
llvm::sort(ValueRotsVec);
}
void assignRepl32BitGroups() {
auto IsAllLow32 = [this](BitGroup & BG) {
if (BG.StartIdx <= BG.EndIdx) {
for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) {
if (!Bits[i].hasValue())
continue;
if (Bits[i].getValueBitIndex() >= 32)
return false;
}
} else {
for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) {
if (!Bits[i].hasValue())
continue;
if (Bits[i].getValueBitIndex() >= 32)
return false;
}
for (unsigned i = 0; i <= BG.EndIdx; ++i) {
if (!Bits[i].hasValue())
continue;
if (Bits[i].getValueBitIndex() >= 32)
return false;
}
}
return true;
};
for (auto &BG : BitGroups) {
if (BG.RLAmt == 0) {
auto PotentiallyMerged = [this](BitGroup & BG) {
for (auto &BG2 : BitGroups)
if (&BG != &BG2 && BG.V == BG2.V &&
(BG2.RLAmt == 0 || BG2.RLAmt == 32))
return true;
return false;
};
if (!PotentiallyMerged(BG))
continue;
}
if (BG.StartIdx < 32 && BG.EndIdx < 32) {
if (IsAllLow32(BG)) {
if (BG.RLAmt >= 32) {
BG.RLAmt -= 32;
BG.Repl32CR = true;
}
BG.Repl32 = true;
LLVM_DEBUG(dbgs() << "\t32-bit replicated bit group for "
<< BG.V.getNode() << " RLAmt = " << BG.RLAmt << " ["
<< BG.StartIdx << ", " << BG.EndIdx << "]\n");
}
}
}
for (auto I = BitGroups.begin(); I != BitGroups.end();) {
auto IP = (I == BitGroups.begin()) ?
std::prev(BitGroups.end()) : std::prev(I);
if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt &&
I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) {
LLVM_DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for "
<< I->V.getNode() << " RLAmt = " << I->RLAmt << " ["
<< I->StartIdx << ", " << I->EndIdx
<< "] with group with range [" << IP->StartIdx << ", "
<< IP->EndIdx << "]\n");
IP->EndIdx = I->EndIdx;
IP->Repl32CR = IP->Repl32CR || I->Repl32CR;
IP->Repl32Coalesced = true;
I = BitGroups.erase(I);
continue;
} else {
if (I->StartIdx == 32 && I->EndIdx == 63) {
assert(std::next(I) == BitGroups.end() &&
"bit group ends at index 63 but there is another?");
auto IN = BitGroups.begin();
if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V &&
(I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt &&
IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP &&
IsAllLow32(*I)) {
LLVM_DEBUG(dbgs() << "\tcombining bit group for " << I->V.getNode()
<< " RLAmt = " << I->RLAmt << " [" << I->StartIdx
<< ", " << I->EndIdx
<< "] with 32-bit replicated groups with ranges ["
<< IP->StartIdx << ", " << IP->EndIdx << "] and ["
<< IN->StartIdx << ", " << IN->EndIdx << "]\n");
if (IP == IN) {
IP->StartIdx = 31;
IP->EndIdx = 30;
IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32;
IP->Repl32Coalesced = true;
I = BitGroups.erase(I);
} else {
IP->EndIdx = IN->EndIdx;
IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32;
IP->Repl32Coalesced = true;
I = BitGroups.erase(I);
BitGroups.erase(BitGroups.begin());
}
break;
}
}
}
++I;
}
}
SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
}
uint64_t getZerosMask() {
uint64_t Mask = 0;
for (unsigned i = 0; i < Bits.size(); ++i) {
if (Bits[i].hasValue())
continue;
Mask |= (UINT64_C(1) << i);
}
return ~Mask;
}
SDValue ExtendToInt64(SDValue V, const SDLoc &dl) {
if (V.getValueSizeInBits() == 64)
return V;
assert(V.getValueSizeInBits() == 32);
SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
SDValue ImDef = SDValue(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl,
MVT::i64), 0);
SDValue ExtVal = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl,
MVT::i64, ImDef, V,
SubRegIdx), 0);
return ExtVal;
}
SDValue TruncateToInt32(SDValue V, const SDLoc &dl) {
if (V.getValueSizeInBits() == 32)
return V;
assert(V.getValueSizeInBits() == 64);
SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
SDValue SubVal = SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl,
MVT::i32, V, SubRegIdx), 0);
return SubVal;
}
void SelectAndParts32(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) {
if (BPermRewriterNoMasking)
return;
for (ValueRotInfo &VRI : ValueRotsVec) {
unsigned Mask = 0;
for (unsigned i = 0; i < Bits.size(); ++i) {
if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V)
continue;
if (RLAmt[i] != VRI.RLAmt)
continue;
Mask |= (1u << i);
}
unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
assert((ANDIMask != 0 || ANDISMask != 0) &&
"No set bits in mask for value bit groups");
bool NeedsRotate = VRI.RLAmt != 0;
unsigned NumAndInsts = (unsigned) NeedsRotate +
(unsigned) (ANDIMask != 0) +
(unsigned) (ANDISMask != 0) +
(unsigned) (ANDIMask != 0 && ANDISMask != 0) +
(unsigned) (bool) Res;
LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode()
<< " RL: " << VRI.RLAmt << ":"
<< "\n\t\t\tisel using masking: " << NumAndInsts
<< " using rotates: " << VRI.NumGroups << "\n");
if (NumAndInsts >= VRI.NumGroups)
continue;
LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n");
if (InstCnt) *InstCnt += NumAndInsts;
SDValue VRot;
if (VRI.RLAmt) {
SDValue Ops[] =
{ TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl),
getI32Imm(0, dl), getI32Imm(31, dl) };
VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
Ops), 0);
} else {
VRot = TruncateToInt32(VRI.V, dl);
}
SDValue ANDIVal, ANDISVal;
if (ANDIMask != 0)
ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI_rec, dl, MVT::i32,
VRot, getI32Imm(ANDIMask, dl)),
0);
if (ANDISMask != 0)
ANDISVal =
SDValue(CurDAG->getMachineNode(PPC::ANDIS_rec, dl, MVT::i32, VRot,
getI32Imm(ANDISMask, dl)),
0);
SDValue TotalVal;
if (!ANDIVal)
TotalVal = ANDISVal;
else if (!ANDISVal)
TotalVal = ANDIVal;
else
TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
ANDIVal, ANDISVal), 0);
if (!Res)
Res = TotalVal;
else
Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
Res, TotalVal), 0);
eraseMatchingBitGroups([VRI](const BitGroup &BG) {
return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt;
});
}
}
SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) {
SDLoc dl(N);
SDValue Res;
if (InstCnt) *InstCnt = 0;
SelectAndParts32(dl, Res, InstCnt);
if ((!NeedMask || LateMask) && !Res) {
ValueRotInfo &VRI = ValueRotsVec[0];
if (VRI.RLAmt) {
if (InstCnt) *InstCnt += 1;
SDValue Ops[] =
{ TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl),
getI32Imm(0, dl), getI32Imm(31, dl) };
Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops),
0);
} else {
Res = TruncateToInt32(VRI.V, dl);
}
eraseMatchingBitGroups([VRI](const BitGroup &BG) {
return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt;
});
}
if (InstCnt) *InstCnt += BitGroups.size();
for (auto &BG : BitGroups) {
if (!Res) {
SDValue Ops[] =
{ TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl),
getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
} else {
SDValue Ops[] =
{ Res, TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl),
getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0);
}
}
if (LateMask) {
unsigned Mask = (unsigned) getZerosMask();
unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
assert((ANDIMask != 0 || ANDISMask != 0) &&
"No set bits in zeros mask?");
if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
(unsigned) (ANDISMask != 0) +
(unsigned) (ANDIMask != 0 && ANDISMask != 0);
SDValue ANDIVal, ANDISVal;
if (ANDIMask != 0)
ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI_rec, dl, MVT::i32,
Res, getI32Imm(ANDIMask, dl)),
0);
if (ANDISMask != 0)
ANDISVal =
SDValue(CurDAG->getMachineNode(PPC::ANDIS_rec, dl, MVT::i32, Res,
getI32Imm(ANDISMask, dl)),
0);
if (!ANDIVal)
Res = ANDISVal;
else if (!ANDISVal)
Res = ANDIVal;
else
Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
ANDIVal, ANDISVal), 0);
}
return Res.getNode();
}
unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32,
unsigned MaskStart, unsigned MaskEnd,
bool IsIns) {
unsigned InstMaskStart = 64 - MaskEnd - 1,
InstMaskEnd = 64 - MaskStart - 1;
if (Repl32)
return 1;
if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) ||
InstMaskEnd == 63 - RLAmt)
return 1;
return 2;
}
SDValue SelectRotMask64(SDValue V, const SDLoc &dl, unsigned RLAmt,
bool Repl32, unsigned MaskStart, unsigned MaskEnd,
unsigned *InstCnt = nullptr) {
unsigned InstMaskStart = 64 - MaskEnd - 1,
InstMaskEnd = 64 - MaskStart - 1;
if (InstCnt) *InstCnt += 1;
if (Repl32) {
assert(InstMaskStart >= 32 && "Mask cannot start out of range");
assert(InstMaskEnd >= 32 && "Mask cannot end out of range");
SDValue Ops[] =
{ ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) };
return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64,
Ops), 0);
}
if (InstMaskEnd == 63) {
SDValue Ops[] =
{ ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
getI32Imm(InstMaskStart, dl) };
return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0);
}
if (InstMaskStart == 0) {
SDValue Ops[] =
{ ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
getI32Imm(InstMaskEnd, dl) };
return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0);
}
if (InstMaskEnd == 63 - RLAmt) {
SDValue Ops[] =
{ ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
getI32Imm(InstMaskStart, dl) };
return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0);
}
if (InstCnt) *InstCnt += 1;
unsigned RLAmt2 = MaskStart;
unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
if (RLAmt1)
V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd);
}
SDValue SelectRotMaskIns64(SDValue Base, SDValue V, const SDLoc &dl,
unsigned RLAmt, bool Repl32, unsigned MaskStart,
unsigned MaskEnd, unsigned *InstCnt = nullptr) {
unsigned InstMaskStart = 64 - MaskEnd - 1,
InstMaskEnd = 64 - MaskStart - 1;
if (InstCnt) *InstCnt += 1;
if (Repl32) {
assert(InstMaskStart >= 32 && "Mask cannot start out of range");
assert(InstMaskEnd >= 32 && "Mask cannot end out of range");
SDValue Ops[] =
{ ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) };
return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64,
Ops), 0);
}
if (InstMaskEnd == 63 - RLAmt) {
SDValue Ops[] =
{ ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
getI32Imm(InstMaskStart, dl) };
return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0);
}
if (InstCnt) *InstCnt += 1;
unsigned RLAmt2 = MaskStart;
unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
if (RLAmt1)
V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd);
}
void SelectAndParts64(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) {
if (BPermRewriterNoMasking)
return;
for (ValueRotInfo &VRI : ValueRotsVec) {
uint64_t Mask = 0;
auto MatchingBG = [VRI](const BitGroup &BG) {
if (VRI.V != BG.V)
return false;
unsigned EffRLAmt = BG.RLAmt;
if (!VRI.Repl32 && BG.Repl32) {
if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx &&
!BG.Repl32Coalesced) {
if (BG.Repl32CR)
EffRLAmt += 32;
} else {
return false;
}
} else if (VRI.Repl32 != BG.Repl32) {
return false;
}
return VRI.RLAmt == EffRLAmt;
};
for (auto &BG : BitGroups) {
if (!MatchingBG(BG))
continue;
if (BG.StartIdx <= BG.EndIdx) {
for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i)
Mask |= (UINT64_C(1) << i);
} else {
for (unsigned i = BG.StartIdx; i < Bits.size(); ++i)
Mask |= (UINT64_C(1) << i);
for (unsigned i = 0; i <= BG.EndIdx; ++i)
Mask |= (UINT64_C(1) << i);
}
}
bool Use32BitInsts = isUInt<32>(Mask);
unsigned ANDIMask = (Mask & UINT16_MAX),
ANDISMask = (Mask >> 16) & UINT16_MAX;
bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask));
unsigned NumAndInsts = (unsigned) NeedsRotate +
(unsigned) (bool) Res;
unsigned NumOfSelectInsts = 0;
selectI64Imm(CurDAG, dl, Mask, &NumOfSelectInsts);
assert(NumOfSelectInsts > 0 && "Failed to select an i64 constant.");
if (Use32BitInsts)
NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) +
(unsigned) (ANDIMask != 0 && ANDISMask != 0);
else
NumAndInsts += NumOfSelectInsts + 1;
unsigned NumRLInsts = 0;
bool FirstBG = true;
bool MoreBG = false;
for (auto &BG : BitGroups) {
if (!MatchingBG(BG)) {
MoreBG = true;
continue;
}
NumRLInsts +=
SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx,
!FirstBG);
FirstBG = false;
}
LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode()
<< " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":")
<< "\n\t\t\tisel using masking: " << NumAndInsts
<< " using rotates: " << NumRLInsts << "\n");
if (NumAndInsts > NumRLInsts)
continue;
if ((Use32BitInsts || MoreBG) && NumAndInsts == NumRLInsts)
continue;
LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n");
if (InstCnt) *InstCnt += NumAndInsts;
SDValue VRot;
if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)))
VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63);
else
VRot = VRI.V;
SDValue TotalVal;
if (Use32BitInsts) {
assert((ANDIMask != 0 || ANDISMask != 0) &&
"No set bits in mask when using 32-bit ands for 64-bit value");
SDValue ANDIVal, ANDISVal;
if (ANDIMask != 0)
ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI8_rec, dl, MVT::i64,
ExtendToInt64(VRot, dl),
getI32Imm(ANDIMask, dl)),
0);
if (ANDISMask != 0)
ANDISVal =
SDValue(CurDAG->getMachineNode(PPC::ANDIS8_rec, dl, MVT::i64,
ExtendToInt64(VRot, dl),
getI32Imm(ANDISMask, dl)),
0);
if (!ANDIVal)
TotalVal = ANDISVal;
else if (!ANDISVal)
TotalVal = ANDIVal;
else
TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
ExtendToInt64(ANDIVal, dl), ANDISVal), 0);
} else {
TotalVal = SDValue(selectI64Imm(CurDAG, dl, Mask), 0);
TotalVal =
SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
ExtendToInt64(VRot, dl), TotalVal),
0);
}
if (!Res)
Res = TotalVal;
else
Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
ExtendToInt64(Res, dl), TotalVal),
0);
eraseMatchingBitGroups(MatchingBG);
}
}
SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) {
SDLoc dl(N);
SDValue Res;
if (InstCnt) *InstCnt = 0;
SelectAndParts64(dl, Res, InstCnt);
if ((!NeedMask || LateMask) && !Res) {
unsigned MaxGroupsIdx = 0;
if (!ValueRotsVec[0].Repl32) {
for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i)
if (ValueRotsVec[i].Repl32) {
if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups)
MaxGroupsIdx = i;
break;
}
}
ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx];
bool NeedsRotate = false;
if (VRI.RLAmt) {
NeedsRotate = true;
} else if (VRI.Repl32) {
for (auto &BG : BitGroups) {
if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt ||
BG.Repl32 != VRI.Repl32)
continue;
if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx)
continue;
NeedsRotate = true;
break;
}
}
if (NeedsRotate)
Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63,
InstCnt);
else
Res = VRI.V;
if (Res)
eraseMatchingBitGroups([VRI](const BitGroup &BG) {
return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt &&
BG.Repl32 == VRI.Repl32;
});
}
if (!Res)
for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) {
if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
false) <
SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
true)) {
if (I != BitGroups.begin()) {
BitGroup BG = *I;
BitGroups.erase(I);
BitGroups.insert(BitGroups.begin(), BG);
}
break;
}
}
for (auto &BG : BitGroups) {
if (!Res)
Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx,
BG.EndIdx, InstCnt);
else
Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32,
BG.StartIdx, BG.EndIdx, InstCnt);
}
if (LateMask) {
uint64_t Mask = getZerosMask();
bool Use32BitInsts = isUInt<32>(Mask);
unsigned ANDIMask = (Mask & UINT16_MAX),
ANDISMask = (Mask >> 16) & UINT16_MAX;
if (Use32BitInsts) {
assert((ANDIMask != 0 || ANDISMask != 0) &&
"No set bits in mask when using 32-bit ands for 64-bit value");
if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
(unsigned) (ANDISMask != 0) +
(unsigned) (ANDIMask != 0 && ANDISMask != 0);
SDValue ANDIVal, ANDISVal;
if (ANDIMask != 0)
ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI8_rec, dl, MVT::i64,
ExtendToInt64(Res, dl),
getI32Imm(ANDIMask, dl)),
0);
if (ANDISMask != 0)
ANDISVal =
SDValue(CurDAG->getMachineNode(PPC::ANDIS8_rec, dl, MVT::i64,
ExtendToInt64(Res, dl),
getI32Imm(ANDISMask, dl)),
0);
if (!ANDIVal)
Res = ANDISVal;
else if (!ANDISVal)
Res = ANDIVal;
else
Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
ExtendToInt64(ANDIVal, dl), ANDISVal), 0);
} else {
unsigned NumOfSelectInsts = 0;
SDValue MaskVal =
SDValue(selectI64Imm(CurDAG, dl, Mask, &NumOfSelectInsts), 0);
Res = SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
ExtendToInt64(Res, dl), MaskVal),
0);
if (InstCnt)
*InstCnt += NumOfSelectInsts + 1;
}
}
return Res.getNode();
}
SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) {
collectBitGroups(LateMask);
if (BitGroups.empty())
return nullptr;
if (Bits.size() == 64)
assignRepl32BitGroups();
collectValueRotInfo();
if (Bits.size() == 32) {
return Select32(N, LateMask, InstCnt);
} else {
assert(Bits.size() == 64 && "Not 64 bits here?");
return Select64(N, LateMask, InstCnt);
}
return nullptr;
}
void eraseMatchingBitGroups(function_ref<bool(const BitGroup &)> F) {
erase_if(BitGroups, F);
}
SmallVector<ValueBit, 64> Bits;
bool NeedMask = false;
SmallVector<unsigned, 64> RLAmt;
SmallVector<BitGroup, 16> BitGroups;
DenseMap<std::pair<SDValue, unsigned>, ValueRotInfo> ValueRots;
SmallVector<ValueRotInfo, 16> ValueRotsVec;
SelectionDAG *CurDAG = nullptr;
public:
BitPermutationSelector(SelectionDAG *DAG)
: CurDAG(DAG) {}
SDNode *Select(SDNode *N) {
Memoizer.clear();
auto Result =
getValueBits(SDValue(N, 0), N->getValueType(0).getSizeInBits());
if (!Result.first)
return nullptr;
Bits = std::move(*Result.second);
LLVM_DEBUG(dbgs() << "Considering bit-permutation-based instruction"
" selection for: ");
LLVM_DEBUG(N->dump(CurDAG));
computeRotationAmounts();
if (!NeedMask)
return Select(N, false);
unsigned InstCnt = 0, InstCntLateMask = 0;
LLVM_DEBUG(dbgs() << "\tEarly masking:\n");
SDNode *RN = Select(N, false, &InstCnt);
LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n");
LLVM_DEBUG(dbgs() << "\tLate masking:\n");
SDNode *RNLM = Select(N, true, &InstCntLateMask);
LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask
<< " instructions\n");
if (InstCnt <= InstCntLateMask) {
LLVM_DEBUG(dbgs() << "\tUsing early-masking for isel\n");
return RN;
}
LLVM_DEBUG(dbgs() << "\tUsing late-masking for isel\n");
return RNLM;
}
};
class IntegerCompareEliminator {
SelectionDAG *CurDAG;
PPCDAGToDAGISel *S;
enum ExtOrTruncConversion { Ext, Trunc };
enum SetccInGPROpts { ZExtOrig, ZExtInvert, SExtOrig, SExtInvert };
enum ZeroCompare { GEZExt, GESExt, LEZExt, LESExt };
SDNode *tryEXTEND(SDNode *N);
SDNode *tryLogicOpOfCompares(SDNode *N);
SDValue computeLogicOpInGPR(SDValue LogicOp);
SDValue signExtendInputIfNeeded(SDValue Input);
SDValue zeroExtendInputIfNeeded(SDValue Input);
SDValue addExtOrTrunc(SDValue NatWidthRes, ExtOrTruncConversion Conv);
SDValue getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl,
ZeroCompare CmpTy);
SDValue get32BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
int64_t RHSValue, SDLoc dl);
SDValue get32BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
int64_t RHSValue, SDLoc dl);
SDValue get64BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
int64_t RHSValue, SDLoc dl);
SDValue get64BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
int64_t RHSValue, SDLoc dl);
SDValue getSETCCInGPR(SDValue Compare, SetccInGPROpts ConvOpts);
public:
IntegerCompareEliminator(SelectionDAG *DAG,
PPCDAGToDAGISel *Sel) : CurDAG(DAG), S(Sel) {
assert(CurDAG->getTargetLoweringInfo()
.getPointerTy(CurDAG->getDataLayout()).getSizeInBits() == 64 &&
"Only expecting to use this on 64 bit targets.");
}
SDNode *Select(SDNode *N) {
if (CmpInGPR == ICGPR_None)
return nullptr;
switch (N->getOpcode()) {
default: break;
case ISD::ZERO_EXTEND:
if (CmpInGPR == ICGPR_Sext || CmpInGPR == ICGPR_SextI32 ||
CmpInGPR == ICGPR_SextI64)
return nullptr;
LLVM_FALLTHROUGH;
case ISD::SIGN_EXTEND:
if (CmpInGPR == ICGPR_Zext || CmpInGPR == ICGPR_ZextI32 ||
CmpInGPR == ICGPR_ZextI64)
return nullptr;
return tryEXTEND(N);
case ISD::AND:
case ISD::OR:
case ISD::XOR:
return tryLogicOpOfCompares(N);
}
return nullptr;
}
};
static bool isLogicOp(unsigned Opc) {
return Opc == ISD::AND || Opc == ISD::OR || Opc == ISD::XOR;
}
SDNode *IntegerCompareEliminator::tryEXTEND(SDNode *N) {
assert((N->getOpcode() == ISD::ZERO_EXTEND ||
N->getOpcode() == ISD::SIGN_EXTEND) &&
"Expecting a zero/sign extend node!");
SDValue WideRes;
if (isLogicOp(N->getOperand(0).getOpcode()) &&
N->getOperand(0).getValueType() == MVT::i1 &&
N->getOpcode() == ISD::ZERO_EXTEND)
WideRes = computeLogicOpInGPR(N->getOperand(0));
else if (N->getOperand(0).getOpcode() != ISD::SETCC)
return nullptr;
else
WideRes =
getSETCCInGPR(N->getOperand(0),
N->getOpcode() == ISD::SIGN_EXTEND ?
SetccInGPROpts::SExtOrig : SetccInGPROpts::ZExtOrig);
if (!WideRes)
return nullptr;
SDLoc dl(N);
bool Input32Bit = WideRes.getValueType() == MVT::i32;
bool Output32Bit = N->getValueType(0) == MVT::i32;
NumSextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 1 : 0;
NumZextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 0 : 1;
SDValue ConvOp = WideRes;
if (Input32Bit != Output32Bit)
ConvOp = addExtOrTrunc(WideRes, Input32Bit ? ExtOrTruncConversion::Ext :
ExtOrTruncConversion::Trunc);
return ConvOp.getNode();
}
SDNode *IntegerCompareEliminator::tryLogicOpOfCompares(SDNode *N) {
if (N->getValueType(0) != MVT::i1)
return nullptr;
assert(isLogicOp(N->getOpcode()) &&
"Expected a logic operation on setcc results.");
SDValue LoweredLogical = computeLogicOpInGPR(SDValue(N, 0));
if (!LoweredLogical)
return nullptr;
SDLoc dl(N);
bool IsBitwiseNegate = LoweredLogical.getMachineOpcode() == PPC::XORI8;
unsigned SubRegToExtract = IsBitwiseNegate ? PPC::sub_eq : PPC::sub_gt;
SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
SDValue LHS = LoweredLogical.getOperand(0);
SDValue RHS = LoweredLogical.getOperand(1);
SDValue WideOp;
SDValue OpToConvToRecForm;
if (IsBitwiseNegate &&
LoweredLogical.getOperand(0).getMachineOpcode() == PPC::INSERT_SUBREG)
OpToConvToRecForm = LoweredLogical.getOperand(0).getOperand(1);
else if (IsBitwiseNegate)
OpToConvToRecForm = LoweredLogical.getOperand(0);
else
OpToConvToRecForm = LoweredLogical;
uint16_t NonRecOpc = OpToConvToRecForm.getMachineOpcode();
int NewOpc = PPCInstrInfo::getRecordFormOpcode(NonRecOpc);
if (NewOpc != -1 && IsBitwiseNegate) {
assert(LoweredLogical.getConstantOperandVal(1) == 1 &&
"Expected a PPC::XORI8 only for bitwise negation.");
std::vector<SDValue> Ops;
for (int i = 0, e = OpToConvToRecForm.getNumOperands(); i < e; i++)
Ops.push_back(OpToConvToRecForm.getOperand(i));
WideOp =
SDValue(CurDAG->getMachineNode(NewOpc, dl,
OpToConvToRecForm.getValueType(),
MVT::Glue, Ops), 0);
} else {
assert((NewOpc != -1 || !IsBitwiseNegate) &&
"No record form available for AND8/OR8/XOR8?");
WideOp =
SDValue(CurDAG->getMachineNode(NewOpc == -1 ? PPC::ANDI8_rec : NewOpc,
dl, MVT::i64, MVT::Glue, LHS, RHS),
0);
}
SDValue SRIdxVal =
CurDAG->getTargetConstant(SubRegToExtract, dl, MVT::i32);
SDValue CRBit =
SDValue(CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl,
MVT::i1, CR0Reg, SRIdxVal,
WideOp.getValue(1)), 0);
return CRBit.getNode();
}
SDValue IntegerCompareEliminator::computeLogicOpInGPR(SDValue LogicOp) {
assert(isLogicOp(LogicOp.getOpcode()) &&
"Can only handle logic operations here.");
assert(LogicOp.getValueType() == MVT::i1 &&
"Can only handle logic operations on i1 values here.");
SDLoc dl(LogicOp);
SDValue LHS, RHS;
bool IsBitwiseNegation = isBitwiseNot(LogicOp);
auto getLogicOperand = [&] (SDValue Operand) -> SDValue {
unsigned OperandOpcode = Operand.getOpcode();
if (OperandOpcode == ISD::SETCC)
return getSETCCInGPR(Operand, SetccInGPROpts::ZExtOrig);
else if (OperandOpcode == ISD::TRUNCATE) {
SDValue InputOp = Operand.getOperand(0);
EVT InVT = InputOp.getValueType();
return SDValue(CurDAG->getMachineNode(InVT == MVT::i32 ? PPC::RLDICL_32 :
PPC::RLDICL, dl, InVT, InputOp,
S->getI64Imm(0, dl),
S->getI64Imm(63, dl)), 0);
} else if (isLogicOp(OperandOpcode))
return computeLogicOpInGPR(Operand);
return SDValue();
};
LHS = getLogicOperand(LogicOp.getOperand(0));
RHS = getLogicOperand(LogicOp.getOperand(1));
if (!LHS || (!RHS && !IsBitwiseNegation))
return SDValue();
NumLogicOpsOnComparison++;
if (LHS.getValueType() == MVT::i32)
LHS = addExtOrTrunc(LHS, ExtOrTruncConversion::Ext);
if (!IsBitwiseNegation && RHS.getValueType() == MVT::i32)
RHS = addExtOrTrunc(RHS, ExtOrTruncConversion::Ext);
unsigned NewOpc;
switch (LogicOp.getOpcode()) {
default: llvm_unreachable("Unknown logic operation.");
case ISD::AND: NewOpc = PPC::AND8; break;
case ISD::OR: NewOpc = PPC::OR8; break;
case ISD::XOR: NewOpc = PPC::XOR8; break;
}
if (IsBitwiseNegation) {
RHS = S->getI64Imm(1, dl);
NewOpc = PPC::XORI8;
}
return SDValue(CurDAG->getMachineNode(NewOpc, dl, MVT::i64, LHS, RHS), 0);
}
SDValue IntegerCompareEliminator::signExtendInputIfNeeded(SDValue Input) {
assert(Input.getValueType() == MVT::i32 &&
"Can only sign-extend 32-bit values here.");
unsigned Opc = Input.getOpcode();
if (Opc == ISD::TRUNCATE &&
(Input.getOperand(0).getOpcode() == ISD::AssertSext ||
Input.getOperand(0).getOpcode() == ISD::SIGN_EXTEND))
return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input);
if (InputLoad && InputLoad->getExtensionType() == ISD::SEXTLOAD)
return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input);
if (InputConst)
return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
SDLoc dl(Input);
SignExtensionsAdded++;
return SDValue(CurDAG->getMachineNode(PPC::EXTSW_32_64, dl,
MVT::i64, Input), 0);
}
SDValue IntegerCompareEliminator::zeroExtendInputIfNeeded(SDValue Input) {
assert(Input.getValueType() == MVT::i32 &&
"Can only zero-extend 32-bit values here.");
unsigned Opc = Input.getOpcode();
bool IsTruncateOfZExt = Opc == ISD::TRUNCATE &&
(Input.getOperand(0).getOpcode() == ISD::AssertZext ||
Input.getOperand(0).getOpcode() == ISD::ZERO_EXTEND);
if (IsTruncateOfZExt)
return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input);
if (InputConst && InputConst->getSExtValue() >= 0)
return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input);
if (InputLoad && InputLoad->getExtensionType() != ISD::SEXTLOAD)
return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
SDLoc dl(Input);
ZeroExtensionsAdded++;
return SDValue(CurDAG->getMachineNode(PPC::RLDICL_32_64, dl, MVT::i64, Input,
S->getI64Imm(0, dl),
S->getI64Imm(32, dl)), 0);
}
SDValue IntegerCompareEliminator::addExtOrTrunc(SDValue NatWidthRes,
ExtOrTruncConversion Conv) {
SDLoc dl(NatWidthRes);
if (Conv == ExtOrTruncConversion::Ext) {
SDValue ImDef(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, MVT::i64), 0);
SDValue SubRegIdx =
CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
return SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, MVT::i64,
ImDef, NatWidthRes, SubRegIdx), 0);
}
assert(Conv == ExtOrTruncConversion::Trunc &&
"Unknown convertion between 32 and 64 bit values.");
SDValue SubRegIdx =
CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
return SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl, MVT::i32,
NatWidthRes, SubRegIdx), 0);
}
SDValue
IntegerCompareEliminator::getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl,
ZeroCompare CmpTy) {
EVT InVT = LHS.getValueType();
bool Is32Bit = InVT == MVT::i32;
SDValue ToExtend;
switch (CmpTy) {
case ZeroCompare::GEZExt:
case ZeroCompare::GESExt:
ToExtend = SDValue(CurDAG->getMachineNode(Is32Bit ? PPC::NOR : PPC::NOR8,
dl, InVT, LHS, LHS), 0);
break;
case ZeroCompare::LEZExt:
case ZeroCompare::LESExt: {
if (Is32Bit) {
LHS = signExtendInputIfNeeded(LHS);
SDValue Neg =
SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
ToExtend =
SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
Neg, S->getI64Imm(1, dl),
S->getI64Imm(63, dl)), 0);
} else {
SDValue Addi =
SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
S->getI64Imm(~0ULL, dl)), 0);
ToExtend = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
Addi, LHS), 0);
}
break;
}
}
if (!Is32Bit &&
(CmpTy == ZeroCompare::GEZExt || CmpTy == ZeroCompare::LEZExt))
return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
ToExtend, S->getI64Imm(1, dl),
S->getI64Imm(63, dl)), 0);
if (!Is32Bit &&
(CmpTy == ZeroCompare::GESExt || CmpTy == ZeroCompare::LESExt))
return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, ToExtend,
S->getI64Imm(63, dl)), 0);
assert(Is32Bit && "Should have handled the 32-bit sequences above.");
switch (CmpTy) {
case ZeroCompare::GEZExt: {
SDValue ShiftOps[] = { ToExtend, S->getI32Imm(1, dl), S->getI32Imm(31, dl),
S->getI32Imm(31, dl) };
return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
ShiftOps), 0);
}
case ZeroCompare::GESExt:
return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, ToExtend,
S->getI32Imm(31, dl)), 0);
case ZeroCompare::LEZExt:
return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, ToExtend,
S->getI32Imm(1, dl)), 0);
case ZeroCompare::LESExt:
return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, ToExtend,
S->getI32Imm(-1, dl)), 0);
}
llvm_unreachable("Unknown zero-comparison type.");
}
SDValue
IntegerCompareEliminator::get32BitZExtCompare(SDValue LHS, SDValue RHS,
ISD::CondCode CC,
int64_t RHSValue, SDLoc dl) {
if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 ||
CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Sext)
return SDValue();
bool IsRHSZero = RHSValue == 0;
bool IsRHSOne = RHSValue == 1;
bool IsRHSNegOne = RHSValue == -1LL;
switch (CC) {
default: return SDValue();
case ISD::SETEQ: {
SDValue Xor = IsRHSZero ? LHS :
SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
SDValue Clz =
SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl),
S->getI32Imm(31, dl) };
return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
ShiftOps), 0);
}
case ISD::SETNE: {
SDValue Xor = IsRHSZero ? LHS :
SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
SDValue Clz =
SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl),
S->getI32Imm(31, dl) };
SDValue Shift =
SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0);
return SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift,
S->getI32Imm(1, dl)), 0);
}
case ISD::SETGE: {
if(IsRHSZero)
return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
std::swap(LHS, RHS);
ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
IsRHSZero = RHSConst && RHSConst->isZero();
LLVM_FALLTHROUGH;
}
case ISD::SETLE: {
if (CmpInGPR == ICGPR_NonExtIn)
return SDValue();
if(IsRHSZero) {
if (CmpInGPR == ICGPR_NonExtIn)
return SDValue();
return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
}
LHS = signExtendInputIfNeeded(LHS);
RHS = signExtendInputIfNeeded(RHS);
SDValue Sub =
SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
SDValue Shift =
SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Sub,
S->getI64Imm(1, dl), S->getI64Imm(63, dl)),
0);
return
SDValue(CurDAG->getMachineNode(PPC::XORI8, dl,
MVT::i64, Shift, S->getI32Imm(1, dl)), 0);
}
case ISD::SETGT: {
if (IsRHSNegOne)
return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
if (IsRHSZero) {
if (CmpInGPR == ICGPR_NonExtIn)
return SDValue();
LHS = signExtendInputIfNeeded(LHS);
RHS = signExtendInputIfNeeded(RHS);
SDValue Neg =
SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
Neg, S->getI32Imm(1, dl), S->getI32Imm(63, dl)), 0);
}
std::swap(LHS, RHS);
ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
IsRHSZero = RHSConst && RHSConst->isZero();
IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
LLVM_FALLTHROUGH;
}
case ISD::SETLT: {
if (IsRHSOne) {
if (CmpInGPR == ICGPR_NonExtIn)
return SDValue();
return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
}
if (IsRHSZero) {
SDValue ShiftOps[] = { LHS, S->getI32Imm(1, dl), S->getI32Imm(31, dl),
S->getI32Imm(31, dl) };
return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
ShiftOps), 0);
}
if (CmpInGPR == ICGPR_NonExtIn)
return SDValue();
LHS = signExtendInputIfNeeded(LHS);
RHS = signExtendInputIfNeeded(RHS);
SDValue SUBFNode =
SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
SUBFNode, S->getI64Imm(1, dl),
S->getI64Imm(63, dl)), 0);
}
case ISD::SETUGE:
std::swap(LHS, RHS);
LLVM_FALLTHROUGH;
case ISD::SETULE: {
if (CmpInGPR == ICGPR_NonExtIn)
return SDValue();
LHS = zeroExtendInputIfNeeded(LHS);
RHS = zeroExtendInputIfNeeded(RHS);
SDValue Subtract =
SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
SDValue SrdiNode =
SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
Subtract, S->getI64Imm(1, dl),
S->getI64Imm(63, dl)), 0);
return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, SrdiNode,
S->getI32Imm(1, dl)), 0);
}
case ISD::SETUGT:
std::swap(LHS, RHS);
LLVM_FALLTHROUGH;
case ISD::SETULT: {
if (CmpInGPR == ICGPR_NonExtIn)
return SDValue();
LHS = zeroExtendInputIfNeeded(LHS);
RHS = zeroExtendInputIfNeeded(RHS);
SDValue Subtract =
SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
Subtract, S->getI64Imm(1, dl),
S->getI64Imm(63, dl)), 0);
}
}
}
SDValue
IntegerCompareEliminator::get32BitSExtCompare(SDValue LHS, SDValue RHS,
ISD::CondCode CC,
int64_t RHSValue, SDLoc dl) {
if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 ||
CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Zext)
return SDValue();
bool IsRHSZero = RHSValue == 0;
bool IsRHSOne = RHSValue == 1;
bool IsRHSNegOne = RHSValue == -1LL;
switch (CC) {
default: return SDValue();
case ISD::SETEQ: {
SDValue CountInput = IsRHSZero ? LHS :
SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
SDValue Cntlzw =
SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, CountInput), 0);
SDValue SHLOps[] = { Cntlzw, S->getI32Imm(27, dl),
S->getI32Imm(5, dl), S->getI32Imm(31, dl) };
SDValue Slwi =
SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, SHLOps), 0);
return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Slwi), 0);
}
case ISD::SETNE: {
SDValue Xor = IsRHSZero ? LHS :
SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
SDValue Clz =
SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
SDValue ShiftOps[] =
{ Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), S->getI32Imm(31, dl) };
SDValue Shift =
SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0);
SDValue Xori =
SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift,
S->getI32Imm(1, dl)), 0);
return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Xori), 0);
}
case ISD::SETGE: {
if (IsRHSZero)
return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
std::swap(LHS, RHS);
ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
IsRHSZero = RHSConst && RHSConst->isZero();
LLVM_FALLTHROUGH;
}
case ISD::SETLE: {
if (CmpInGPR == ICGPR_NonExtIn)
return SDValue();
if (IsRHSZero)
return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
LHS = signExtendInputIfNeeded(LHS);
RHS = signExtendInputIfNeeded(RHS);
SDValue SUBFNode =
SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, MVT::Glue,
LHS, RHS), 0);
SDValue Srdi =
SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
SUBFNode, S->getI64Imm(1, dl),
S->getI64Imm(63, dl)), 0);
return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Srdi,
S->getI32Imm(-1, dl)), 0);
}
case ISD::SETGT: {
if (IsRHSNegOne)
return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
if (IsRHSZero) {
if (CmpInGPR == ICGPR_NonExtIn)
return SDValue();
LHS = signExtendInputIfNeeded(LHS);
RHS = signExtendInputIfNeeded(RHS);
SDValue Neg =
SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Neg,
S->getI64Imm(63, dl)), 0);
}
std::swap(LHS, RHS);
ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
IsRHSZero = RHSConst && RHSConst->isZero();
IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
LLVM_FALLTHROUGH;
}
case ISD::SETLT: {
if (IsRHSOne) {
if (CmpInGPR == ICGPR_NonExtIn)
return SDValue();
return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
}
if (IsRHSZero)
return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, LHS,
S->getI32Imm(31, dl)), 0);
if (CmpInGPR == ICGPR_NonExtIn)
return SDValue();
LHS = signExtendInputIfNeeded(LHS);
RHS = signExtendInputIfNeeded(RHS);
SDValue SUBFNode =
SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
SUBFNode, S->getI64Imm(63, dl)), 0);
}
case ISD::SETUGE:
std::swap(LHS, RHS);
LLVM_FALLTHROUGH;
case ISD::SETULE: {
if (CmpInGPR == ICGPR_NonExtIn)
return SDValue();
LHS = zeroExtendInputIfNeeded(LHS);
RHS = zeroExtendInputIfNeeded(RHS);
SDValue Subtract =
SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
SDValue Shift =
SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Subtract,
S->getI32Imm(1, dl), S->getI32Imm(63,dl)),
0);
return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Shift,
S->getI32Imm(-1, dl)), 0);
}
case ISD::SETUGT:
std::swap(LHS, RHS);
LLVM_FALLTHROUGH;
case ISD::SETULT: {
if (CmpInGPR == ICGPR_NonExtIn)
return SDValue();
LHS = zeroExtendInputIfNeeded(LHS);
RHS = zeroExtendInputIfNeeded(RHS);
SDValue Subtract =
SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
Subtract, S->getI64Imm(63, dl)), 0);
}
}
}
SDValue
IntegerCompareEliminator::get64BitZExtCompare(SDValue LHS, SDValue RHS,
ISD::CondCode CC,
int64_t RHSValue, SDLoc dl) {
if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 ||
CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Sext)
return SDValue();
bool IsRHSZero = RHSValue == 0;
bool IsRHSOne = RHSValue == 1;
bool IsRHSNegOne = RHSValue == -1LL;
switch (CC) {
default: return SDValue();
case ISD::SETEQ: {
SDValue Xor = IsRHSZero ? LHS :
SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
SDValue Clz =
SDValue(CurDAG->getMachineNode(PPC::CNTLZD, dl, MVT::i64, Xor), 0);
return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Clz,
S->getI64Imm(58, dl),
S->getI64Imm(63, dl)), 0);
}
case ISD::SETNE: {
SDValue Xor = IsRHSZero ? LHS :
SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
SDValue AC =
SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue,
Xor, S->getI32Imm(~0U, dl)), 0);
return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, AC,
Xor, AC.getValue(1)), 0);
}
case ISD::SETGE: {
if (IsRHSZero)
return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
std::swap(LHS, RHS);
ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
IsRHSZero = RHSConst && RHSConst->isZero();
LLVM_FALLTHROUGH;
}
case ISD::SETLE: {
if (IsRHSZero)
return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
SDValue ShiftL =
SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
S->getI64Imm(1, dl),
S->getI64Imm(63, dl)), 0);
SDValue ShiftR =
SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS,
S->getI64Imm(63, dl)), 0);
SDValue SubtractCarry =
SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
LHS, RHS), 1);
return SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
ShiftR, ShiftL, SubtractCarry), 0);
}
case ISD::SETGT: {
if (IsRHSNegOne)
return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
if (IsRHSZero) {
SDValue Addi =
SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
S->getI64Imm(~0ULL, dl)), 0);
SDValue Nor =
SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Addi, LHS), 0);
return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Nor,
S->getI64Imm(1, dl),
S->getI64Imm(63, dl)), 0);
}
std::swap(LHS, RHS);
ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
IsRHSZero = RHSConst && RHSConst->isZero();
IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
LLVM_FALLTHROUGH;
}
case ISD::SETLT: {
if (IsRHSOne)
return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
if (IsRHSZero)
return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
S->getI64Imm(1, dl),
S->getI64Imm(63, dl)), 0);
SDValue SRADINode =
SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
LHS, S->getI64Imm(63, dl)), 0);
SDValue SRDINode =
SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
RHS, S->getI64Imm(1, dl),
S->getI64Imm(63, dl)), 0);
SDValue SUBFC8Carry =
SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
RHS, LHS), 1);
SDValue ADDE8Node =
SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
SRDINode, SRADINode, SUBFC8Carry), 0);
return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
ADDE8Node, S->getI64Imm(1, dl)), 0);
}
case ISD::SETUGE:
std::swap(LHS, RHS);
LLVM_FALLTHROUGH;
case ISD::SETULE: {
SDValue SUBFC8Carry =
SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
LHS, RHS), 1);
SDValue SUBFE8Node =
SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue,
LHS, LHS, SUBFC8Carry), 0);
return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64,
SUBFE8Node, S->getI64Imm(1, dl)), 0);
}
case ISD::SETUGT:
std::swap(LHS, RHS);
LLVM_FALLTHROUGH;
case ISD::SETULT: {
SDValue SubtractCarry =
SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
RHS, LHS), 1);
SDValue ExtSub =
SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64,
LHS, LHS, SubtractCarry), 0);
return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64,
ExtSub), 0);
}
}
}
SDValue
IntegerCompareEliminator::get64BitSExtCompare(SDValue LHS, SDValue RHS,
ISD::CondCode CC,
int64_t RHSValue, SDLoc dl) {
if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 ||
CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Zext)
return SDValue();
bool IsRHSZero = RHSValue == 0;
bool IsRHSOne = RHSValue == 1;
bool IsRHSNegOne = RHSValue == -1LL;
switch (CC) {
default: return SDValue();
case ISD::SETEQ: {
SDValue AddInput = IsRHSZero ? LHS :
SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
SDValue Addic =
SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue,
AddInput, S->getI32Imm(~0U, dl)), 0);
return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, Addic,
Addic, Addic.getValue(1)), 0);
}
case ISD::SETNE: {
SDValue Xor = IsRHSZero ? LHS :
SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
SDValue SC =
SDValue(CurDAG->getMachineNode(PPC::SUBFIC8, dl, MVT::i64, MVT::Glue,
Xor, S->getI32Imm(0, dl)), 0);
return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, SC,
SC, SC.getValue(1)), 0);
}
case ISD::SETGE: {
if (IsRHSZero)
return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
std::swap(LHS, RHS);
ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
IsRHSZero = RHSConst && RHSConst->isZero();
LLVM_FALLTHROUGH;
}
case ISD::SETLE: {
if (IsRHSZero)
return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
SDValue ShiftR =
SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS,
S->getI64Imm(63, dl)), 0);
SDValue ShiftL =
SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
S->getI64Imm(1, dl),
S->getI64Imm(63, dl)), 0);
SDValue SubtractCarry =
SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
LHS, RHS), 1);
SDValue Adde =
SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
ShiftR, ShiftL, SubtractCarry), 0);
return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, Adde), 0);
}
case ISD::SETGT: {
if (IsRHSNegOne)
return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
if (IsRHSZero) {
SDValue Add =
SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
S->getI64Imm(-1, dl)), 0);
SDValue Nor =
SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Add, LHS), 0);
return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Nor,
S->getI64Imm(63, dl)), 0);
}
std::swap(LHS, RHS);
ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
IsRHSZero = RHSConst && RHSConst->isZero();
IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
LLVM_FALLTHROUGH;
}
case ISD::SETLT: {
if (IsRHSOne)
return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
if (IsRHSZero) {
return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, LHS,
S->getI64Imm(63, dl)), 0);
}
SDValue SRADINode =
SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
LHS, S->getI64Imm(63, dl)), 0);
SDValue SRDINode =
SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
RHS, S->getI64Imm(1, dl),
S->getI64Imm(63, dl)), 0);
SDValue SUBFC8Carry =
SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
RHS, LHS), 1);
SDValue ADDE8Node =
SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64,
SRDINode, SRADINode, SUBFC8Carry), 0);
SDValue XORI8Node =
SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
ADDE8Node, S->getI64Imm(1, dl)), 0);
return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64,
XORI8Node), 0);
}
case ISD::SETUGE:
std::swap(LHS, RHS);
LLVM_FALLTHROUGH;
case ISD::SETULE: {
SDValue SubtractCarry =
SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
LHS, RHS), 1);
SDValue ExtSub =
SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue, LHS,
LHS, SubtractCarry), 0);
return SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64,
ExtSub, ExtSub), 0);
}
case ISD::SETUGT:
std::swap(LHS, RHS);
LLVM_FALLTHROUGH;
case ISD::SETULT: {
SDValue SubCarry =
SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
RHS, LHS), 1);
return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64,
LHS, LHS, SubCarry), 0);
}
}
}
static bool allUsesExtend(SDValue Compare, SelectionDAG *CurDAG) {
assert(Compare.getOpcode() == ISD::SETCC &&
"An ISD::SETCC node required here.");
if (Compare.hasOneUse())
return true;
for (auto CompareUse : Compare.getNode()->uses())
if (CompareUse->getOpcode() != ISD::SIGN_EXTEND &&
CompareUse->getOpcode() != ISD::ZERO_EXTEND &&
CompareUse->getOpcode() != ISD::SELECT &&
!isLogicOp(CompareUse->getOpcode())) {
OmittedForNonExtendUses++;
return false;
}
return true;
}
SDValue IntegerCompareEliminator::getSETCCInGPR(SDValue Compare,
SetccInGPROpts ConvOpts) {
assert((Compare.getOpcode() == ISD::SETCC ||
Compare.getOpcode() == ISD::SELECT_CC) &&
"An ISD::SETCC node required here.");
if ((Compare.getOpcode() == ISD::SETCC) && !allUsesExtend(Compare, CurDAG))
return SDValue();
SDValue LHS = Compare.getOperand(0);
SDValue RHS = Compare.getOperand(1);
int CCOpNum = Compare.getOpcode() == ISD::SELECT_CC ? 4 : 2;
ISD::CondCode CC =
cast<CondCodeSDNode>(Compare.getOperand(CCOpNum))->get();
EVT InputVT = LHS.getValueType();
if (InputVT != MVT::i32 && InputVT != MVT::i64)
return SDValue();
if (ConvOpts == SetccInGPROpts::ZExtInvert ||
ConvOpts == SetccInGPROpts::SExtInvert)
CC = ISD::getSetCCInverse(CC, InputVT);
bool Inputs32Bit = InputVT == MVT::i32;
SDLoc dl(Compare);
ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
int64_t RHSValue = RHSConst ? RHSConst->getSExtValue() : INT64_MAX;
bool IsSext = ConvOpts == SetccInGPROpts::SExtOrig ||
ConvOpts == SetccInGPROpts::SExtInvert;
if (IsSext && Inputs32Bit)
return get32BitSExtCompare(LHS, RHS, CC, RHSValue, dl);
else if (Inputs32Bit)
return get32BitZExtCompare(LHS, RHS, CC, RHSValue, dl);
else if (IsSext)
return get64BitSExtCompare(LHS, RHS, CC, RHSValue, dl);
return get64BitZExtCompare(LHS, RHS, CC, RHSValue, dl);
}
}
bool PPCDAGToDAGISel::tryIntCompareInGPR(SDNode *N) {
if (N->getValueType(0) != MVT::i32 &&
N->getValueType(0) != MVT::i64)
return false;
if (TM.getOptLevel() == CodeGenOpt::None || !TM.isPPC64())
return false;
if (!(CmpInGPR.getNumOccurrences() > 0) && Subtarget->isISA3_1())
return false;
switch (N->getOpcode()) {
default: break;
case ISD::ZERO_EXTEND:
case ISD::SIGN_EXTEND:
case ISD::AND:
case ISD::OR:
case ISD::XOR: {
IntegerCompareEliminator ICmpElim(CurDAG, this);
if (SDNode *New = ICmpElim.Select(N)) {
ReplaceNode(N, New);
return true;
}
}
}
return false;
}
bool PPCDAGToDAGISel::tryBitPermutation(SDNode *N) {
if (N->getValueType(0) != MVT::i32 &&
N->getValueType(0) != MVT::i64)
return false;
if (!UseBitPermRewriter)
return false;
switch (N->getOpcode()) {
default: break;
case ISD::ROTL:
case ISD::SHL:
case ISD::SRL:
case ISD::AND:
case ISD::OR: {
BitPermutationSelector BPS(CurDAG);
if (SDNode *New = BPS.Select(N)) {
ReplaceNode(N, New);
return true;
}
return false;
}
}
return false;
}
SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
const SDLoc &dl, SDValue Chain) {
unsigned Opc;
if (LHS.getValueType() == MVT::i32) {
unsigned Imm;
if (CC == ISD::SETEQ || CC == ISD::SETNE) {
if (isInt32Immediate(RHS, Imm)) {
if (isUInt<16>(Imm))
return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
getI32Imm(Imm & 0xFFFF, dl)),
0);
if (isInt<16>((int)Imm))
return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
getI32Imm(Imm & 0xFFFF, dl)),
0);
SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS,
getI32Imm(Imm >> 16, dl)), 0);
return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor,
getI32Imm(Imm & 0xFFFF, dl)), 0);
}
Opc = PPC::CMPLW;
} else if (ISD::isUnsignedIntSetCC(CC)) {
if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm))
return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
getI32Imm(Imm & 0xFFFF, dl)), 0);
Opc = PPC::CMPLW;
} else {
int16_t SImm;
if (isIntS16Immediate(RHS, SImm))
return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
getI32Imm((int)SImm & 0xFFFF,
dl)),
0);
Opc = PPC::CMPW;
}
} else if (LHS.getValueType() == MVT::i64) {
uint64_t Imm;
if (CC == ISD::SETEQ || CC == ISD::SETNE) {
if (isInt64Immediate(RHS.getNode(), Imm)) {
if (isUInt<16>(Imm))
return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
getI32Imm(Imm & 0xFFFF, dl)),
0);
if (isInt<16>(Imm))
return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
getI32Imm(Imm & 0xFFFF, dl)),
0);
if (isUInt<32>(Imm)) {
SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS,
getI64Imm(Imm >> 16, dl)), 0);
return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor,
getI64Imm(Imm & 0xFFFF, dl)),
0);
}
}
Opc = PPC::CMPLD;
} else if (ISD::isUnsignedIntSetCC(CC)) {
if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm))
return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
getI64Imm(Imm & 0xFFFF, dl)), 0);
Opc = PPC::CMPLD;
} else {
int16_t SImm;
if (isIntS16Immediate(RHS, SImm))
return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
getI64Imm(SImm & 0xFFFF, dl)),
0);
Opc = PPC::CMPD;
}
} else if (LHS.getValueType() == MVT::f32) {
if (Subtarget->hasSPE()) {
switch (CC) {
default:
case ISD::SETEQ:
case ISD::SETNE:
Opc = PPC::EFSCMPEQ;
break;
case ISD::SETLT:
case ISD::SETGE:
case ISD::SETOLT:
case ISD::SETOGE:
case ISD::SETULT:
case ISD::SETUGE:
Opc = PPC::EFSCMPLT;
break;
case ISD::SETGT:
case ISD::SETLE:
case ISD::SETOGT:
case ISD::SETOLE:
case ISD::SETUGT:
case ISD::SETULE:
Opc = PPC::EFSCMPGT;
break;
}
} else
Opc = PPC::FCMPUS;
} else if (LHS.getValueType() == MVT::f64) {
if (Subtarget->hasSPE()) {
switch (CC) {
default:
case ISD::SETEQ:
case ISD::SETNE:
Opc = PPC::EFDCMPEQ;
break;
case ISD::SETLT:
case ISD::SETGE:
case ISD::SETOLT:
case ISD::SETOGE:
case ISD::SETULT:
case ISD::SETUGE:
Opc = PPC::EFDCMPLT;
break;
case ISD::SETGT:
case ISD::SETLE:
case ISD::SETOGT:
case ISD::SETOLE:
case ISD::SETUGT:
case ISD::SETULE:
Opc = PPC::EFDCMPGT;
break;
}
} else
Opc = Subtarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD;
} else {
assert(LHS.getValueType() == MVT::f128 && "Unknown vt!");
assert(Subtarget->hasP9Vector() && "XSCMPUQP requires Power9 Vector");
Opc = PPC::XSCMPUQP;
}
if (Chain)
return SDValue(
CurDAG->getMachineNode(Opc, dl, MVT::i32, MVT::Other, LHS, RHS, Chain),
0);
else
return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0);
}
static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC, const EVT &VT,
const PPCSubtarget *Subtarget) {
bool UseSPE = Subtarget->hasSPE() && VT.isFloatingPoint();
switch (CC) {
case ISD::SETUEQ:
case ISD::SETONE:
case ISD::SETOLE:
case ISD::SETOGE:
llvm_unreachable("Should be lowered by legalize!");
default: llvm_unreachable("Unknown condition!");
case ISD::SETOEQ:
case ISD::SETEQ:
return UseSPE ? PPC::PRED_GT : PPC::PRED_EQ;
case ISD::SETUNE:
case ISD::SETNE:
return UseSPE ? PPC::PRED_LE : PPC::PRED_NE;
case ISD::SETOLT:
case ISD::SETLT:
return UseSPE ? PPC::PRED_GT : PPC::PRED_LT;
case ISD::SETULE:
case ISD::SETLE:
return PPC::PRED_LE;
case ISD::SETOGT:
case ISD::SETGT:
return PPC::PRED_GT;
case ISD::SETUGE:
case ISD::SETGE:
return UseSPE ? PPC::PRED_LE : PPC::PRED_GE;
case ISD::SETO: return PPC::PRED_NU;
case ISD::SETUO: return PPC::PRED_UN;
case ISD::SETULT: return PPC::PRED_LT;
case ISD::SETUGT: return PPC::PRED_GT;
}
}
static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) {
Invert = false;
switch (CC) {
default: llvm_unreachable("Unknown condition!");
case ISD::SETOLT:
case ISD::SETLT: return 0; case ISD::SETOGT:
case ISD::SETGT: return 1; case ISD::SETOEQ:
case ISD::SETEQ: return 2; case ISD::SETUO: return 3; case ISD::SETUGE:
case ISD::SETGE: Invert = true; return 0; case ISD::SETULE:
case ISD::SETLE: Invert = true; return 1; case ISD::SETUNE:
case ISD::SETNE: Invert = true; return 2; case ISD::SETO: Invert = true; return 3; case ISD::SETUEQ:
case ISD::SETOGE:
case ISD::SETOLE:
case ISD::SETONE:
llvm_unreachable("Invalid branch code: should be expanded by legalize");
case ISD::SETULT: return 0;
case ISD::SETUGT: return 1;
}
}
static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC,
bool HasVSX, bool &Swap, bool &Negate) {
Swap = false;
Negate = false;
if (VecVT.isFloatingPoint()) {
switch (CC) {
case ISD::SETLE: CC = ISD::SETGE; Swap = true; break;
case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break;
case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break;
case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break;
default: break;
}
switch (CC) {
case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break;
case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break;
case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break;
default: break;
}
switch (CC) {
case ISD::SETEQ:
case ISD::SETOEQ:
if (VecVT == MVT::v4f32)
return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP;
else if (VecVT == MVT::v2f64)
return PPC::XVCMPEQDP;
break;
case ISD::SETGT:
case ISD::SETOGT:
if (VecVT == MVT::v4f32)
return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP;
else if (VecVT == MVT::v2f64)
return PPC::XVCMPGTDP;
break;
case ISD::SETGE:
case ISD::SETOGE:
if (VecVT == MVT::v4f32)
return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP;
else if (VecVT == MVT::v2f64)
return PPC::XVCMPGEDP;
break;
default:
break;
}
llvm_unreachable("Invalid floating-point vector compare condition");
} else {
switch (CC) {
case ISD::SETGE: CC = ISD::SETLE; Swap = true; break;
case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break;
default: break;
}
switch (CC) {
case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break;
case ISD::SETLE: CC = ISD::SETGT; Negate = true; break;
case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break;
default: break;
}
switch (CC) {
case ISD::SETEQ:
case ISD::SETUEQ:
if (VecVT == MVT::v16i8)
return PPC::VCMPEQUB;
else if (VecVT == MVT::v8i16)
return PPC::VCMPEQUH;
else if (VecVT == MVT::v4i32)
return PPC::VCMPEQUW;
else if (VecVT == MVT::v2i64)
return PPC::VCMPEQUD;
else if (VecVT == MVT::v1i128)
return PPC::VCMPEQUQ;
break;
case ISD::SETGT:
if (VecVT == MVT::v16i8)
return PPC::VCMPGTSB;
else if (VecVT == MVT::v8i16)
return PPC::VCMPGTSH;
else if (VecVT == MVT::v4i32)
return PPC::VCMPGTSW;
else if (VecVT == MVT::v2i64)
return PPC::VCMPGTSD;
else if (VecVT == MVT::v1i128)
return PPC::VCMPGTSQ;
break;
case ISD::SETUGT:
if (VecVT == MVT::v16i8)
return PPC::VCMPGTUB;
else if (VecVT == MVT::v8i16)
return PPC::VCMPGTUH;
else if (VecVT == MVT::v4i32)
return PPC::VCMPGTUW;
else if (VecVT == MVT::v2i64)
return PPC::VCMPGTUD;
else if (VecVT == MVT::v1i128)
return PPC::VCMPGTUQ;
break;
default:
break;
}
llvm_unreachable("Invalid integer vector compare condition");
}
}
bool PPCDAGToDAGISel::trySETCC(SDNode *N) {
SDLoc dl(N);
unsigned Imm;
bool IsStrict = N->isStrictFPOpcode();
ISD::CondCode CC =
cast<CondCodeSDNode>(N->getOperand(IsStrict ? 3 : 2))->get();
EVT PtrVT =
CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout());
bool isPPC64 = (PtrVT == MVT::i64);
SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
SDValue LHS = N->getOperand(IsStrict ? 1 : 0);
SDValue RHS = N->getOperand(IsStrict ? 2 : 1);
if (!IsStrict && !Subtarget->useCRBits() && isInt32Immediate(RHS, Imm)) {
if (Imm == 0) {
SDValue Op = LHS;
switch (CC) {
default: break;
case ISD::SETEQ: {
Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
SDValue Ops[] = { Op, getI32Imm(27, dl), getI32Imm(5, dl),
getI32Imm(31, dl) };
CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
return true;
}
case ISD::SETNE: {
if (isPPC64) break;
SDValue AD =
SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
Op, getI32Imm(~0U, dl)), 0);
CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1));
return true;
}
case ISD::SETLT: {
SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
getI32Imm(31, dl) };
CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
return true;
}
case ISD::SETGT: {
SDValue T =
SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0);
T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
SDValue Ops[] = { T, getI32Imm(1, dl), getI32Imm(31, dl),
getI32Imm(31, dl) };
CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
return true;
}
}
} else if (Imm == ~0U) { SDValue Op = LHS;
switch (CC) {
default: break;
case ISD::SETEQ:
if (isPPC64) break;
Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
Op, getI32Imm(1, dl)), 0);
CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
SDValue(CurDAG->getMachineNode(PPC::LI, dl,
MVT::i32,
getI32Imm(0, dl)),
0), Op.getValue(1));
return true;
case ISD::SETNE: {
if (isPPC64) break;
Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
Op, getI32Imm(~0U, dl));
CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0), Op,
SDValue(AD, 1));
return true;
}
case ISD::SETLT: {
SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op,
getI32Imm(1, dl)), 0);
SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD,
Op), 0);
SDValue Ops[] = { AN, getI32Imm(1, dl), getI32Imm(31, dl),
getI32Imm(31, dl) };
CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
return true;
}
case ISD::SETGT: {
SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
getI32Imm(31, dl) };
Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1, dl));
return true;
}
}
}
}
if (!IsStrict && LHS.getValueType().isVector()) {
if (Subtarget->hasSPE())
return false;
EVT VecVT = LHS.getValueType();
bool Swap, Negate;
unsigned int VCmpInst =
getVCmpInst(VecVT.getSimpleVT(), CC, Subtarget->hasVSX(), Swap, Negate);
if (Swap)
std::swap(LHS, RHS);
EVT ResVT = VecVT.changeVectorElementTypeToInteger();
if (Negate) {
SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, ResVT, LHS, RHS), 0);
CurDAG->SelectNodeTo(N, Subtarget->hasVSX() ? PPC::XXLNOR : PPC::VNOR,
ResVT, VCmp, VCmp);
return true;
}
CurDAG->SelectNodeTo(N, VCmpInst, ResVT, LHS, RHS);
return true;
}
if (Subtarget->useCRBits())
return false;
bool Inv;
unsigned Idx = getCRIdxForSetCC(CC, Inv);
SDValue CCReg = SelectCC(LHS, RHS, CC, dl, Chain);
if (IsStrict)
CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 1), CCReg.getValue(1));
SDValue IntCR;
if (Subtarget->hasSPE() && LHS.getValueType().isFloatingPoint()) {
Idx = 1;
}
SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
SDValue InFlag; CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg,
InFlag).getValue(1);
IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg,
CCReg), 0);
SDValue Ops[] = { IntCR, getI32Imm((32 - (3 - Idx)) & 31, dl),
getI32Imm(31, dl), getI32Imm(31, dl) };
if (!Inv) {
CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
return true;
}
SDValue Tmp =
SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1, dl));
return true;
}
bool PPCDAGToDAGISel::isOffsetMultipleOf(SDNode *N, unsigned Val) const {
LoadSDNode *LDN = dyn_cast<LoadSDNode>(N);
StoreSDNode *STN = dyn_cast<StoreSDNode>(N);
MemIntrinsicSDNode *MIN = dyn_cast<MemIntrinsicSDNode>(N);
SDValue AddrOp;
if (LDN || (MIN && MIN->getOpcode() == PPCISD::LD_SPLAT))
AddrOp = N->getOperand(1);
else if (STN)
AddrOp = STN->getOperand(2);
short Imm = 0;
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(
AddrOp.getOpcode() == ISD::ADD ? AddrOp.getOperand(0) :
AddrOp)) {
const MachineFrameInfo &MFI = CurDAG->getMachineFunction().getFrameInfo();
unsigned SlotAlign = MFI.getObjectAlign(FI->getIndex()).value();
if ((SlotAlign % Val) != 0)
return false;
if (AddrOp.getOpcode() != ISD::ADD)
return true;
}
if (AddrOp.getOpcode() == ISD::ADD)
return isIntS16Immediate(AddrOp.getOperand(1), Imm) && !(Imm % Val);
return AddrOp.getOpcode() == ISD::CopyFromReg;
}
void PPCDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) {
MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp});
}
static bool mayUseP9Setb(SDNode *N, const ISD::CondCode &CC, SelectionDAG *DAG,
bool &NeedSwapOps, bool &IsUnCmp) {
assert(N->getOpcode() == ISD::SELECT_CC && "Expecting a SELECT_CC here.");
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
SDValue TrueRes = N->getOperand(2);
SDValue FalseRes = N->getOperand(3);
ConstantSDNode *TrueConst = dyn_cast<ConstantSDNode>(TrueRes);
if (!TrueConst || (N->getSimpleValueType(0) != MVT::i64 &&
N->getSimpleValueType(0) != MVT::i32))
return false;
int64_t TrueResVal = TrueConst->getSExtValue();
if ((TrueResVal < -1 || TrueResVal > 1) ||
(TrueResVal == -1 && FalseRes.getOpcode() != ISD::ZERO_EXTEND) ||
(TrueResVal == 1 && FalseRes.getOpcode() != ISD::SIGN_EXTEND) ||
(TrueResVal == 0 &&
(FalseRes.getOpcode() != ISD::SELECT_CC || CC != ISD::SETEQ)))
return false;
SDValue SetOrSelCC = FalseRes.getOpcode() == ISD::SELECT_CC
? FalseRes
: FalseRes.getOperand(0);
bool InnerIsSel = SetOrSelCC.getOpcode() == ISD::SELECT_CC;
if (SetOrSelCC.getOpcode() != ISD::SETCC &&
SetOrSelCC.getOpcode() != ISD::SELECT_CC)
return false;
if (!SetOrSelCC.hasOneUse() || (!InnerIsSel && !FalseRes.hasOneUse()))
return false;
SDValue InnerLHS = SetOrSelCC.getOperand(0);
SDValue InnerRHS = SetOrSelCC.getOperand(1);
ISD::CondCode InnerCC =
cast<CondCodeSDNode>(SetOrSelCC.getOperand(InnerIsSel ? 4 : 2))->get();
if (InnerIsSel) {
ConstantSDNode *SelCCTrueConst =
dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(2));
ConstantSDNode *SelCCFalseConst =
dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(3));
if (!SelCCTrueConst || !SelCCFalseConst)
return false;
int64_t SelCCTVal = SelCCTrueConst->getSExtValue();
int64_t SelCCFVal = SelCCFalseConst->getSExtValue();
if (SelCCTVal == -1 && SelCCFVal == 1) {
std::swap(InnerLHS, InnerRHS);
} else if (SelCCTVal != 1 || SelCCFVal != -1)
return false;
}
if (InnerCC == ISD::SETULT || InnerCC == ISD::SETUGT) {
IsUnCmp = true;
InnerCC = (InnerCC == ISD::SETULT) ? ISD::SETLT : ISD::SETGT;
}
bool InnerSwapped = false;
if (LHS == InnerRHS && RHS == InnerLHS)
InnerSwapped = true;
else if (LHS != InnerLHS || RHS != InnerRHS)
return false;
switch (CC) {
case ISD::SETEQ:
if (!InnerIsSel)
return false;
if (InnerCC != ISD::SETLT && InnerCC != ISD::SETGT)
return false;
NeedSwapOps = (InnerCC == ISD::SETGT) ? InnerSwapped : !InnerSwapped;
break;
case ISD::SETULT:
if (!IsUnCmp && InnerCC != ISD::SETNE)
return false;
IsUnCmp = true;
LLVM_FALLTHROUGH;
case ISD::SETLT:
if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETGT && !InnerSwapped) ||
(InnerCC == ISD::SETLT && InnerSwapped))
NeedSwapOps = (TrueResVal == 1);
else
return false;
break;
case ISD::SETUGT:
if (!IsUnCmp && InnerCC != ISD::SETNE)
return false;
IsUnCmp = true;
LLVM_FALLTHROUGH;
case ISD::SETGT:
if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETLT && !InnerSwapped) ||
(InnerCC == ISD::SETGT && InnerSwapped))
NeedSwapOps = (TrueResVal == -1);
else
return false;
break;
default:
return false;
}
LLVM_DEBUG(dbgs() << "Found a node that can be lowered to a SETB: ");
LLVM_DEBUG(N->dump());
return true;
}
static bool isSWTestOp(SDValue N) {
if (N.getOpcode() == PPCISD::FTSQRT)
return true;
if (N.getNumOperands() < 1 || !isa<ConstantSDNode>(N.getOperand(0)) ||
N.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
return false;
switch (N.getConstantOperandVal(0)) {
case Intrinsic::ppc_vsx_xvtdivdp:
case Intrinsic::ppc_vsx_xvtdivsp:
case Intrinsic::ppc_vsx_xvtsqrtdp:
case Intrinsic::ppc_vsx_xvtsqrtsp:
return true;
}
return false;
}
bool PPCDAGToDAGISel::tryFoldSWTestBRCC(SDNode *N) {
assert(N->getOpcode() == ISD::BR_CC && "ISD::BR_CC is expected.");
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
if (CC != ISD::SETEQ && CC != ISD::SETNE)
return false;
SDValue CmpRHS = N->getOperand(3);
if (!isa<ConstantSDNode>(CmpRHS) ||
cast<ConstantSDNode>(CmpRHS)->getSExtValue() != 0)
return false;
SDValue CmpLHS = N->getOperand(2);
if (CmpLHS.getNumOperands() < 1 || !isSWTestOp(CmpLHS.getOperand(0)))
return false;
unsigned PCC = 0;
bool IsCCNE = CC == ISD::SETNE;
if (CmpLHS.getOpcode() == ISD::AND &&
isa<ConstantSDNode>(CmpLHS.getOperand(1)))
switch (CmpLHS.getConstantOperandVal(1)) {
case 1:
PCC = IsCCNE ? PPC::PRED_UN : PPC::PRED_NU;
break;
case 2:
PCC = IsCCNE ? PPC::PRED_EQ : PPC::PRED_NE;
break;
case 4:
PCC = IsCCNE ? PPC::PRED_GT : PPC::PRED_LE;
break;
case 8:
PCC = IsCCNE ? PPC::PRED_LT : PPC::PRED_GE;
break;
default:
return false;
}
else if (CmpLHS.getOpcode() == ISD::TRUNCATE &&
CmpLHS.getValueType() == MVT::i1)
PCC = IsCCNE ? PPC::PRED_UN : PPC::PRED_NU;
if (PCC) {
SDLoc dl(N);
SDValue Ops[] = {getI32Imm(PCC, dl), CmpLHS.getOperand(0), N->getOperand(4),
N->getOperand(0)};
CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
return true;
}
return false;
}
bool PPCDAGToDAGISel::tryAsSingleRLWINM(SDNode *N) {
assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
unsigned Imm;
if (!isInt32Immediate(N->getOperand(1), Imm))
return false;
SDLoc dl(N);
SDValue Val = N->getOperand(0);
unsigned SH, MB, ME;
if (isRotateAndMask(Val.getNode(), Imm, false, SH, MB, ME)) {
Val = Val.getOperand(0);
SDValue Ops[] = {Val, getI32Imm(SH, dl), getI32Imm(MB, dl),
getI32Imm(ME, dl)};
CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
return true;
}
if (isRunOfOnes(Imm, MB, ME) && Val.getOpcode() != ISD::ROTL) {
SDValue Ops[] = {Val, getI32Imm(0, dl), getI32Imm(MB, dl),
getI32Imm(ME, dl)};
CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
return true;
}
if (Imm == 0) {
ReplaceUses(SDValue(N, 0), N->getOperand(1));
return true;
}
return false;
}
bool PPCDAGToDAGISel::tryAsSingleRLWINM8(SDNode *N) {
assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
uint64_t Imm64;
if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64))
return false;
unsigned MB, ME;
if (isRunOfOnes64(Imm64, MB, ME) && MB >= 32 && MB <= ME) {
SDLoc dl(N);
SDValue Ops[] = {N->getOperand(0), getI64Imm(0, dl), getI64Imm(MB - 32, dl),
getI64Imm(ME - 32, dl)};
CurDAG->SelectNodeTo(N, PPC::RLWINM8, MVT::i64, Ops);
return true;
}
return false;
}
bool PPCDAGToDAGISel::tryAsPairOfRLDICL(SDNode *N) {
assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
uint64_t Imm64;
if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64))
return false;
if (isUInt<16>(Imm64))
return false;
SDLoc Loc(N);
SDValue Val = N->getOperand(0);
unsigned NumOfLeadingZeros = countLeadingZeros(Imm64);
if (NumOfLeadingZeros != 0)
Imm64 |= maskLeadingOnes<uint64_t>(NumOfLeadingZeros);
unsigned MB, ME;
if (!isRunOfOnes64(Imm64, MB, ME))
return false;
unsigned OnesOnLeft = ME + 1;
unsigned ZerosInBetween = (MB - ME + 63) & 63;
Val = SDValue(CurDAG->getMachineNode(PPC::RLDICL, Loc, MVT::i64, Val,
getI64Imm(OnesOnLeft, Loc),
getI64Imm(ZerosInBetween, Loc)),
0);
SDValue Ops[] = {Val, getI64Imm(64 - OnesOnLeft, Loc),
getI64Imm(NumOfLeadingZeros, Loc)};
CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
return true;
}
bool PPCDAGToDAGISel::tryAsSingleRLWIMI(SDNode *N) {
assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
unsigned Imm;
if (!isInt32Immediate(N->getOperand(1), Imm))
return false;
SDValue Val = N->getOperand(0);
unsigned Imm2;
if (Val.getOpcode() != ISD::OR || !isInt32Immediate(Val.getOperand(1), Imm2))
return false;
unsigned MB, ME;
if (isRunOfOnes(~(Imm ^ Imm2), MB, ME) && !(~Imm & Imm2)) {
SDLoc dl(N);
SDValue Ops[] = {Val.getOperand(0), Val.getOperand(1), getI32Imm(0, dl),
getI32Imm(MB, dl), getI32Imm(ME, dl)};
ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops));
return true;
}
return false;
}
bool PPCDAGToDAGISel::tryAsSingleRLDICL(SDNode *N) {
assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
uint64_t Imm64;
if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) || !isMask_64(Imm64))
return false;
unsigned MB = 64 - countTrailingOnes(Imm64);
unsigned SH = 0;
unsigned Imm;
SDValue Val = N->getOperand(0);
SDLoc dl(N);
if (Val.getOpcode() == ISD::ANY_EXTEND) {
auto Op0 = Val.getOperand(0);
if (Op0.getOpcode() == ISD::SRL &&
isInt32Immediate(Op0.getOperand(1).getNode(), Imm) && Imm <= MB) {
auto ResultType = Val.getNode()->getValueType(0);
auto ImDef = CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, ResultType);
SDValue IDVal(ImDef, 0);
Val = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, ResultType,
IDVal, Op0.getOperand(0),
getI32Imm(1, dl)),
0);
SH = 64 - Imm;
}
}
if (Val.getOpcode() == ISD::SRL &&
isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) {
assert(Imm < 64 && "Illegal shift amount");
Val = Val.getOperand(0);
SH = 64 - Imm;
}
SDValue Ops[] = {Val, getI32Imm(SH, dl), getI32Imm(MB, dl)};
CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
return true;
}
bool PPCDAGToDAGISel::tryAsSingleRLDICR(SDNode *N) {
assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
uint64_t Imm64;
if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) ||
!isMask_64(~Imm64))
return false;
unsigned MB = 63 - countTrailingOnes(~Imm64);
unsigned SH = 0;
SDLoc dl(N);
SDValue Ops[] = {N->getOperand(0), getI32Imm(SH, dl), getI32Imm(MB, dl)};
CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, Ops);
return true;
}
bool PPCDAGToDAGISel::tryAsSingleRLDIMI(SDNode *N) {
assert(N->getOpcode() == ISD::OR && "ISD::OR SDNode expected");
uint64_t Imm64;
unsigned MB, ME;
SDValue N0 = N->getOperand(0);
if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) ||
isUInt<32>(Imm64) || !isRunOfOnes64(Imm64, MB, ME) || !N0.hasOneUse())
return false;
unsigned SH = 63 - ME;
SDLoc Dl(N);
SDValue Ops[] = {
N->getOperand(0),
SDValue(selectI64Imm(CurDAG, getI64Imm(-1, Dl).getNode()), 0),
getI32Imm(SH, Dl), getI32Imm(MB, Dl)};
CurDAG->SelectNodeTo(N, PPC::RLDIMI, MVT::i64, Ops);
return true;
}
void PPCDAGToDAGISel::Select(SDNode *N) {
SDLoc dl(N);
if (N->isMachineOpcode()) {
N->setNodeId(-1);
return; }
if (N->getOpcode() == ISD::ADD &&
N->getOperand(1).getOpcode() == ISD::TargetConstant)
llvm_unreachable("Invalid ADD with TargetConstant operand");
if (tryBitPermutation(N))
return;
if (tryIntCompareInGPR(N))
return;
switch (N->getOpcode()) {
default: break;
case ISD::Constant:
if (N->getValueType(0) == MVT::i64) {
ReplaceNode(N, selectI64Imm(CurDAG, N));
return;
}
break;
case ISD::INTRINSIC_VOID: {
auto IntrinsicID = N->getConstantOperandVal(1);
if (IntrinsicID == Intrinsic::ppc_tdw || IntrinsicID == Intrinsic::ppc_tw) {
unsigned Opcode = IntrinsicID == Intrinsic::ppc_tdw ? PPC::TDI : PPC::TWI;
SDValue Ops[] = {N->getOperand(4), N->getOperand(2), N->getOperand(3)};
int16_t SImmOperand2;
int16_t SImmOperand3;
int16_t SImmOperand4;
bool isOperand2IntS16Immediate =
isIntS16Immediate(N->getOperand(2), SImmOperand2);
bool isOperand3IntS16Immediate =
isIntS16Immediate(N->getOperand(3), SImmOperand3);
if (isOperand2IntS16Immediate == isOperand3IntS16Immediate)
Opcode = IntrinsicID == Intrinsic::ppc_tdw ? PPC::TD : PPC::TW;
else if (isOperand3IntS16Immediate)
Ops[2] = getI32Imm(int(SImmOperand3) & 0xFFFF, dl);
else {
bool isOperand4IntS16Immediate =
isIntS16Immediate(N->getOperand(4), SImmOperand4);
(void)isOperand4IntS16Immediate;
assert(isOperand4IntS16Immediate &&
"The 4th operand is not an Immediate");
int16_t TO = int(SImmOperand4) & 0x1F;
if ((TO & 0x1) != ((TO & 0x2) >> 1))
TO = (TO & 0x1) ? TO + 1 : TO - 1;
if ((TO & 0x8) != ((TO & 0x10) >> 1))
TO = (TO & 0x8) ? TO + 8 : TO - 8;
Ops[0] = getI32Imm(TO, dl);
Ops[1] = N->getOperand(3);
Ops[2] = getI32Imm(int(SImmOperand2) & 0xFFFF, dl);
}
CurDAG->SelectNodeTo(N, Opcode, MVT::Other, Ops);
return;
}
break;
}
case ISD::INTRINSIC_WO_CHAIN: {
auto IntID = N->getConstantOperandVal(0);
if (IntID == Intrinsic::ppc_fsels) {
SDValue Ops[] = {N->getOperand(1), N->getOperand(2), N->getOperand(3)};
CurDAG->SelectNodeTo(N, PPC::FSELS, MVT::f32, Ops);
return;
}
if (IntID == Intrinsic::ppc_bcdadd_p || IntID == Intrinsic::ppc_bcdsub_p) {
auto Pred = N->getConstantOperandVal(1);
unsigned Opcode =
IntID == Intrinsic::ppc_bcdadd_p ? PPC::BCDADD_rec : PPC::BCDSUB_rec;
unsigned SubReg = 0;
unsigned ShiftVal = 0;
bool Reverse = false;
switch (Pred) {
case 0:
SubReg = PPC::sub_eq;
ShiftVal = 1;
break;
case 1:
SubReg = PPC::sub_eq;
ShiftVal = 1;
Reverse = true;
break;
case 2:
SubReg = PPC::sub_lt;
ShiftVal = 3;
break;
case 3:
SubReg = PPC::sub_lt;
ShiftVal = 3;
Reverse = true;
break;
case 4:
SubReg = PPC::sub_gt;
ShiftVal = 2;
break;
case 5:
SubReg = PPC::sub_gt;
ShiftVal = 2;
Reverse = true;
break;
case 6:
SubReg = PPC::sub_un;
break;
case 7:
SubReg = PPC::sub_un;
Reverse = true;
break;
}
EVT VTs[] = {MVT::v16i8, MVT::Glue};
SDValue Ops[] = {N->getOperand(2), N->getOperand(3),
CurDAG->getTargetConstant(0, dl, MVT::i32)};
SDValue BCDOp = SDValue(CurDAG->getMachineNode(Opcode, dl, VTs, Ops), 0);
SDValue CR6Reg = CurDAG->getRegister(PPC::CR6, MVT::i32);
if (Subtarget->isISA3_1()) {
SDValue SubRegIdx = CurDAG->getTargetConstant(SubReg, dl, MVT::i32);
SDValue CRBit = SDValue(
CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, MVT::i1,
CR6Reg, SubRegIdx, BCDOp.getValue(1)),
0);
CurDAG->SelectNodeTo(N, Reverse ? PPC::SETBCR : PPC::SETBC, MVT::i32,
CRBit);
} else {
SDValue Move =
SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR6Reg,
BCDOp.getValue(1)),
0);
SDValue Ops[] = {Move, getI32Imm((32 - (4 + ShiftVal)) & 31, dl),
getI32Imm(31, dl), getI32Imm(31, dl)};
if (!Reverse)
CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
else {
SDValue Shift = SDValue(
CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Shift, getI32Imm(1, dl));
}
}
return;
}
if (!Subtarget->isISA3_1())
break;
unsigned Opcode = 0;
switch (IntID) {
default:
break;
case Intrinsic::ppc_altivec_vstribr_p:
Opcode = PPC::VSTRIBR_rec;
break;
case Intrinsic::ppc_altivec_vstribl_p:
Opcode = PPC::VSTRIBL_rec;
break;
case Intrinsic::ppc_altivec_vstrihr_p:
Opcode = PPC::VSTRIHR_rec;
break;
case Intrinsic::ppc_altivec_vstrihl_p:
Opcode = PPC::VSTRIHL_rec;
break;
}
if (!Opcode)
break;
EVT VTs[] = {MVT::v16i8, MVT::Glue};
SDValue VecStrOp =
SDValue(CurDAG->getMachineNode(Opcode, dl, VTs, N->getOperand(2)), 0);
SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_eq, dl, MVT::i32);
SDValue CR6Reg = CurDAG->getRegister(PPC::CR6, MVT::i32);
SDValue CRBit = SDValue(
CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, MVT::i1,
CR6Reg, SubRegIdx, VecStrOp.getValue(1)),
0);
CurDAG->SelectNodeTo(N, PPC::SETBC, MVT::i32, CRBit);
return;
}
case ISD::SETCC:
case ISD::STRICT_FSETCC:
case ISD::STRICT_FSETCCS:
if (trySETCC(N))
return;
break;
case PPCISD::ADDI_TLSLD_L_ADDR:
case PPCISD::ADDI_TLSGD_L_ADDR: {
const Module *Mod = MF->getFunction().getParent();
if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 ||
!Subtarget->isSecurePlt() || !Subtarget->isTargetELF() ||
Mod->getPICLevel() == PICLevel::SmallPIC)
break;
getGlobalBaseReg();
} break;
case PPCISD::CALL: {
if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 ||
!TM.isPositionIndependent() || !Subtarget->isSecurePlt() ||
!Subtarget->isTargetELF())
break;
SDValue Op = N->getOperand(1);
if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
if (GA->getTargetFlags() == PPCII::MO_PLT)
getGlobalBaseReg();
}
else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
if (ES->getTargetFlags() == PPCII::MO_PLT)
getGlobalBaseReg();
}
}
break;
case PPCISD::GlobalBaseReg:
ReplaceNode(N, getGlobalBaseReg());
return;
case ISD::FrameIndex:
selectFrameIndex(N, N);
return;
case PPCISD::MFOCRF: {
SDValue InFlag = N->getOperand(1);
ReplaceNode(N, CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32,
N->getOperand(0), InFlag));
return;
}
case PPCISD::READ_TIME_BASE:
ReplaceNode(N, CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32,
MVT::Other, N->getOperand(0)));
return;
case PPCISD::SRA_ADDZE: {
SDValue N0 = N->getOperand(0);
SDValue ShiftAmt =
CurDAG->getTargetConstant(*cast<ConstantSDNode>(N->getOperand(1))->
getConstantIntValue(), dl,
N->getValueType(0));
if (N->getValueType(0) == MVT::i64) {
SDNode *Op =
CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue,
N0, ShiftAmt);
CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64, SDValue(Op, 0),
SDValue(Op, 1));
return;
} else {
assert(N->getValueType(0) == MVT::i32 &&
"Expecting i64 or i32 in PPCISD::SRA_ADDZE");
SDNode *Op =
CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
N0, ShiftAmt);
CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, SDValue(Op, 0),
SDValue(Op, 1));
return;
}
}
case ISD::STORE: {
StoreSDNode *ST = cast<StoreSDNode>(N);
if (EnableTLSOpt && Subtarget->isELFv2ABI() &&
ST->getAddressingMode() != ISD::PRE_INC)
if (tryTLSXFormStore(ST))
return;
break;
}
case ISD::LOAD: {
LoadSDNode *LD = cast<LoadSDNode>(N);
EVT LoadedVT = LD->getMemoryVT();
if (LD->getAddressingMode() != ISD::PRE_INC) {
if (EnableTLSOpt && Subtarget->isELFv2ABI())
if (tryTLSXFormLoad(LD))
return;
break;
}
SDValue Offset = LD->getOffset();
if (Offset.getOpcode() == ISD::TargetConstant ||
Offset.getOpcode() == ISD::TargetGlobalAddress) {
unsigned Opcode;
bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
if (LD->getValueType(0) != MVT::i64) {
assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
switch (LoadedVT.getSimpleVT().SimpleTy) {
default: llvm_unreachable("Invalid PPC load type!");
case MVT::f64: Opcode = PPC::LFDU; break;
case MVT::f32: Opcode = PPC::LFSU; break;
case MVT::i32: Opcode = PPC::LWZU; break;
case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
case MVT::i1:
case MVT::i8: Opcode = PPC::LBZU; break;
}
} else {
assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
switch (LoadedVT.getSimpleVT().SimpleTy) {
default: llvm_unreachable("Invalid PPC load type!");
case MVT::i64: Opcode = PPC::LDU; break;
case MVT::i32: Opcode = PPC::LWZU8; break;
case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
case MVT::i1:
case MVT::i8: Opcode = PPC::LBZU8; break;
}
}
SDValue Chain = LD->getChain();
SDValue Base = LD->getBasePtr();
SDValue Ops[] = { Offset, Base, Chain };
SDNode *MN = CurDAG->getMachineNode(
Opcode, dl, LD->getValueType(0),
PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops);
transferMemOperands(N, MN);
ReplaceNode(N, MN);
return;
} else {
unsigned Opcode;
bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
if (LD->getValueType(0) != MVT::i64) {
assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
switch (LoadedVT.getSimpleVT().SimpleTy) {
default: llvm_unreachable("Invalid PPC load type!");
case MVT::f64: Opcode = PPC::LFDUX; break;
case MVT::f32: Opcode = PPC::LFSUX; break;
case MVT::i32: Opcode = PPC::LWZUX; break;
case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break;
case MVT::i1:
case MVT::i8: Opcode = PPC::LBZUX; break;
}
} else {
assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) &&
"Invalid sext update load");
switch (LoadedVT.getSimpleVT().SimpleTy) {
default: llvm_unreachable("Invalid PPC load type!");
case MVT::i64: Opcode = PPC::LDUX; break;
case MVT::i32: Opcode = isSExt ? PPC::LWAUX : PPC::LWZUX8; break;
case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break;
case MVT::i1:
case MVT::i8: Opcode = PPC::LBZUX8; break;
}
}
SDValue Chain = LD->getChain();
SDValue Base = LD->getBasePtr();
SDValue Ops[] = { Base, Offset, Chain };
SDNode *MN = CurDAG->getMachineNode(
Opcode, dl, LD->getValueType(0),
PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops);
transferMemOperands(N, MN);
ReplaceNode(N, MN);
return;
}
}
case ISD::AND:
if (tryAsSingleRLWINM(N) || tryAsSingleRLWIMI(N) || tryAsSingleRLDICL(N) ||
tryAsSingleRLDICR(N) || tryAsSingleRLWINM8(N) || tryAsPairOfRLDICL(N))
return;
break;
case ISD::OR: {
if (N->getValueType(0) == MVT::i32)
if (tryBitfieldInsert(N))
return;
int16_t Imm;
if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
isIntS16Immediate(N->getOperand(1), Imm)) {
KnownBits LHSKnown = CurDAG->computeKnownBits(N->getOperand(0));
if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)Imm) == ~0ULL) {
selectFrameIndex(N, N->getOperand(0).getNode(), (int64_t)Imm);
return;
}
}
if (tryAsSingleRLDIMI(N))
return;
uint64_t Imm64 = 0;
bool IsPPC64 = Subtarget->isPPC64();
if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) &&
(Imm64 & ~0xFFFFFFFFuLL) == 0) {
uint64_t ImmHi = Imm64 >> 16;
uint64_t ImmLo = Imm64 & 0xFFFF;
if (ImmHi != 0 && ImmLo != 0) {
SDNode *Lo = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
N->getOperand(0),
getI16Imm(ImmLo, dl));
SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)};
CurDAG->SelectNodeTo(N, PPC::ORIS8, MVT::i64, Ops1);
return;
}
}
break;
}
case ISD::XOR: {
uint64_t Imm64 = 0;
bool IsPPC64 = Subtarget->isPPC64();
if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) &&
(Imm64 & ~0xFFFFFFFFuLL) == 0) {
uint64_t ImmHi = Imm64 >> 16;
uint64_t ImmLo = Imm64 & 0xFFFF;
if (ImmHi != 0 && ImmLo != 0) {
SDNode *Lo = CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
N->getOperand(0),
getI16Imm(ImmLo, dl));
SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)};
CurDAG->SelectNodeTo(N, PPC::XORIS8, MVT::i64, Ops1);
return;
}
}
break;
}
case ISD::ADD: {
int16_t Imm;
if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
isIntS16Immediate(N->getOperand(1), Imm)) {
selectFrameIndex(N, N->getOperand(0).getNode(), (int64_t)Imm);
return;
}
break;
}
case ISD::SHL: {
unsigned Imm, SH, MB, ME;
if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
isRotateAndMask(N, Imm, true, SH, MB, ME)) {
SDValue Ops[] = { N->getOperand(0).getOperand(0),
getI32Imm(SH, dl), getI32Imm(MB, dl),
getI32Imm(ME, dl) };
CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
return;
}
break;
}
case ISD::SRL: {
unsigned Imm, SH, MB, ME;
if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
isRotateAndMask(N, Imm, true, SH, MB, ME)) {
SDValue Ops[] = { N->getOperand(0).getOperand(0),
getI32Imm(SH, dl), getI32Imm(MB, dl),
getI32Imm(ME, dl) };
CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
return;
}
break;
}
case ISD::MUL: {
SDValue Op1 = N->getOperand(1);
if (Op1.getOpcode() != ISD::Constant ||
(Op1.getValueType() != MVT::i64 && Op1.getValueType() != MVT::i32))
break;
int64_t Imm = cast<ConstantSDNode>(Op1)->getZExtValue();
unsigned Shift = countTrailingZeros<uint64_t>(Imm);
if (isInt<16>(Imm) || !Shift)
break;
uint64_t ImmSh = Imm >> Shift;
if (!isInt<16>(ImmSh))
break;
uint64_t SextImm = SignExtend64(ImmSh & 0xFFFF, 16);
if (Op1.getValueType() == MVT::i64) {
SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64);
SDNode *MulNode = CurDAG->getMachineNode(PPC::MULLI8, dl, MVT::i64,
N->getOperand(0), SDImm);
SDValue Ops[] = {SDValue(MulNode, 0), getI32Imm(Shift, dl),
getI32Imm(63 - Shift, dl)};
CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, Ops);
return;
} else {
SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i32);
SDNode *MulNode = CurDAG->getMachineNode(PPC::MULLI, dl, MVT::i32,
N->getOperand(0), SDImm);
SDValue Ops[] = {SDValue(MulNode, 0), getI32Imm(Shift, dl),
getI32Imm(0, dl), getI32Imm(31 - Shift, dl)};
CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
return;
}
break;
}
case PPCISD::ANDI_rec_1_EQ_BIT:
case PPCISD::ANDI_rec_1_GT_BIT: {
if (!ANDIGlueBug)
break;
EVT InVT = N->getOperand(0).getValueType();
assert((InVT == MVT::i64 || InVT == MVT::i32) &&
"Invalid input type for ANDI_rec_1_EQ_BIT");
unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDI8_rec : PPC::ANDI_rec;
SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue,
N->getOperand(0),
CurDAG->getTargetConstant(1, dl, InVT)),
0);
SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
SDValue SRIdxVal = CurDAG->getTargetConstant(
N->getOpcode() == PPCISD::ANDI_rec_1_EQ_BIT ? PPC::sub_eq : PPC::sub_gt,
dl, MVT::i32);
CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1, CR0Reg,
SRIdxVal, SDValue(AndI.getNode(), 1) );
return;
}
case ISD::SELECT_CC: {
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
EVT PtrVT =
CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout());
bool isPPC64 = (PtrVT == MVT::i64);
if (Subtarget->useCRBits() && N->getOperand(0).getValueType() == MVT::i1)
break;
if (Subtarget->isISA3_0() && Subtarget->isPPC64()) {
bool NeedSwapOps = false;
bool IsUnCmp = false;
if (mayUseP9Setb(N, CC, CurDAG, NeedSwapOps, IsUnCmp)) {
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
if (NeedSwapOps)
std::swap(LHS, RHS);
SDValue GenCC =
SelectCC(LHS, RHS, IsUnCmp ? ISD::SETUGT : ISD::SETGT, dl);
CurDAG->SelectNodeTo(
N, N->getSimpleValueType(0) == MVT::i64 ? PPC::SETB8 : PPC::SETB,
N->getValueType(0), GenCC);
NumP9Setb++;
return;
}
}
if (!isPPC64)
if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
if (N1C->isZero() && N3C->isZero() && N2C->getZExtValue() == 1ULL &&
CC == ISD::SETNE &&
N->getValueType(0) == MVT::i32) {
SDNode *Tmp =
CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
N->getOperand(0), getI32Imm(~0U, dl));
CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(Tmp, 0),
N->getOperand(0), SDValue(Tmp, 1));
return;
}
SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
if (N->getValueType(0) == MVT::i1) {
bool Inv;
unsigned Idx = getCRIdxForSetCC(CC, Inv);
unsigned SRI;
switch (Idx) {
default: llvm_unreachable("Invalid CC index");
case 0: SRI = PPC::sub_lt; break;
case 1: SRI = PPC::sub_gt; break;
case 2: SRI = PPC::sub_eq; break;
case 3: SRI = PPC::sub_un; break;
}
SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg);
SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1,
CCBit, CCBit), 0);
SDValue C = Inv ? NotCCBit : CCBit,
NotC = Inv ? CCBit : NotCCBit;
SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
C, N->getOperand(2)), 0);
SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
NotC, N->getOperand(3)), 0);
CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF);
return;
}
unsigned BROpc =
getPredicateForSetCC(CC, N->getOperand(0).getValueType(), Subtarget);
unsigned SelectCCOp;
if (N->getValueType(0) == MVT::i32)
SelectCCOp = PPC::SELECT_CC_I4;
else if (N->getValueType(0) == MVT::i64)
SelectCCOp = PPC::SELECT_CC_I8;
else if (N->getValueType(0) == MVT::f32) {
if (Subtarget->hasP8Vector())
SelectCCOp = PPC::SELECT_CC_VSSRC;
else if (Subtarget->hasSPE())
SelectCCOp = PPC::SELECT_CC_SPE4;
else
SelectCCOp = PPC::SELECT_CC_F4;
} else if (N->getValueType(0) == MVT::f64) {
if (Subtarget->hasVSX())
SelectCCOp = PPC::SELECT_CC_VSFRC;
else if (Subtarget->hasSPE())
SelectCCOp = PPC::SELECT_CC_SPE;
else
SelectCCOp = PPC::SELECT_CC_F8;
} else if (N->getValueType(0) == MVT::f128)
SelectCCOp = PPC::SELECT_CC_F16;
else if (Subtarget->hasSPE())
SelectCCOp = PPC::SELECT_CC_SPE;
else if (N->getValueType(0) == MVT::v2f64 ||
N->getValueType(0) == MVT::v2i64)
SelectCCOp = PPC::SELECT_CC_VSRC;
else
SelectCCOp = PPC::SELECT_CC_VRRC;
SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
getI32Imm(BROpc, dl) };
CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops);
return;
}
case ISD::VECTOR_SHUFFLE:
if (Subtarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 ||
N->getValueType(0) == MVT::v2i64)) {
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1),
Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1);
unsigned DM[2];
for (int i = 0; i < 2; ++i)
if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2)
DM[i] = 0;
else
DM[i] = 1;
if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 &&
Op1.getOpcode() == ISD::SCALAR_TO_VECTOR &&
isa<LoadSDNode>(Op1.getOperand(0))) {
LoadSDNode *LD = cast<LoadSDNode>(Op1.getOperand(0));
SDValue Base, Offset;
if (LD->isUnindexed() && LD->hasOneUse() && Op1.hasOneUse() &&
(LD->getMemoryVT() == MVT::f64 ||
LD->getMemoryVT() == MVT::i64) &&
SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) {
SDValue Chain = LD->getChain();
SDValue Ops[] = { Base, Offset, Chain };
MachineMemOperand *MemOp = LD->getMemOperand();
SDNode *NewN = CurDAG->SelectNodeTo(N, PPC::LXVDSX,
N->getValueType(0), Ops);
CurDAG->setNodeMemRefs(cast<MachineSDNode>(NewN), {MemOp});
return;
}
}
if (Subtarget->isLittleEndian()) {
std::swap(Op1, Op2);
unsigned tmp = DM[0];
DM[0] = 1 - DM[1];
DM[1] = 1 - tmp;
}
SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), dl,
MVT::i32);
SDValue Ops[] = { Op1, Op2, DMV };
CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops);
return;
}
break;
case PPCISD::BDNZ:
case PPCISD::BDZ: {
bool IsPPC64 = Subtarget->isPPC64();
SDValue Ops[] = { N->getOperand(1), N->getOperand(0) };
CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ
? (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
: (IsPPC64 ? PPC::BDZ8 : PPC::BDZ),
MVT::Other, Ops);
return;
}
case PPCISD::COND_BRANCH: {
unsigned PCC = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
if (EnableBranchHint)
PCC |= getBranchHint(PCC, *FuncInfo, N->getOperand(3));
SDValue Pred = getI32Imm(PCC, dl);
SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
N->getOperand(0), N->getOperand(4) };
CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
return;
}
case ISD::BR_CC: {
if (tryFoldSWTestBRCC(N))
return;
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
unsigned PCC =
getPredicateForSetCC(CC, N->getOperand(2).getValueType(), Subtarget);
if (N->getOperand(2).getValueType() == MVT::i1) {
unsigned Opc;
bool Swap;
switch (PCC) {
default: llvm_unreachable("Unexpected Boolean-operand predicate");
case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true; break;
case PPC::PRED_LE: Opc = PPC::CRORC; Swap = true; break;
case PPC::PRED_EQ: Opc = PPC::CREQV; Swap = false; break;
case PPC::PRED_GE: Opc = PPC::CRORC; Swap = false; break;
case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break;
case PPC::PRED_NE: Opc = PPC::CRXOR; Swap = false; break;
}
if (ISD::isSignedIntSetCC(CC))
Swap = !Swap;
SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1,
N->getOperand(Swap ? 3 : 2),
N->getOperand(Swap ? 2 : 3)), 0);
CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other, BitComp, N->getOperand(4),
N->getOperand(0));
return;
}
if (EnableBranchHint)
PCC |= getBranchHint(PCC, *FuncInfo, N->getOperand(4));
SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl);
SDValue Ops[] = { getI32Imm(PCC, dl), CondCode,
N->getOperand(4), N->getOperand(0) };
CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
return;
}
case ISD::BRIND: {
SDValue Chain = N->getOperand(0);
SDValue Target = N->getOperand(1);
unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8;
Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target,
Chain), 0);
CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain);
return;
}
case PPCISD::TOC_ENTRY: {
const bool isPPC64 = Subtarget->isPPC64();
const bool isELFABI = Subtarget->isSVR4ABI();
const bool isAIXABI = Subtarget->isAIXABI();
const CodeModel::Model CModel = TM.getCodeModel();
assert(!(CModel == CodeModel::Tiny || CModel == CodeModel::Kernel) &&
"PowerPC doesn't support tiny or kernel code models.");
if (isAIXABI && CModel == CodeModel::Medium)
report_fatal_error("Medium code model is not supported on AIX.");
if (isPPC64 && !isAIXABI && CModel == CodeModel::Small)
break;
auto replaceWith = [this, &dl](unsigned OpCode, SDNode *TocEntry,
EVT OperandTy) {
SDValue GA = TocEntry->getOperand(0);
SDValue TocBase = TocEntry->getOperand(1);
SDNode *MN = CurDAG->getMachineNode(OpCode, dl, OperandTy, GA, TocBase);
transferMemOperands(TocEntry, MN);
ReplaceNode(TocEntry, MN);
};
if (!isPPC64 && CModel == CodeModel::Small) {
if (isELFABI) {
assert(TM.isPositionIndependent() &&
"32-bit ELF can only have TOC entries in position independent"
" code.");
replaceWith(PPC::LWZtoc, N, MVT::i32);
return;
}
assert(isAIXABI && "ELF ABI already handled");
if (hasTocDataAttr(N->getOperand(0),
CurDAG->getDataLayout().getPointerSize())) {
replaceWith(PPC::ADDItoc, N, MVT::i32);
return;
}
replaceWith(PPC::LWZtoc, N, MVT::i32);
return;
}
if (isPPC64 && CModel == CodeModel::Small) {
assert(isAIXABI && "ELF ABI handled in common SelectCode");
if (hasTocDataAttr(N->getOperand(0),
CurDAG->getDataLayout().getPointerSize())) {
replaceWith(PPC::ADDItoc8, N, MVT::i64);
return;
}
break;
}
assert(CModel != CodeModel::Small && "All small code models handled.");
assert((isPPC64 || (isAIXABI && !isPPC64)) && "We are dealing with 64-bit"
" ELF/AIX or 32-bit AIX in the following.");
SDValue GA = N->getOperand(0);
SDValue TOCbase = N->getOperand(1);
EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
SDNode *Tmp = CurDAG->getMachineNode(
isPPC64 ? PPC::ADDIStocHA8 : PPC::ADDIStocHA, dl, VT, TOCbase, GA);
if (PPCLowering->isAccessedAsGotIndirect(GA)) {
SDNode *MN = CurDAG->getMachineNode(
isPPC64 ? PPC::LDtocL : PPC::LWZtocL, dl, VT, GA, SDValue(Tmp, 0));
transferMemOperands(N, MN);
ReplaceNode(N, MN);
return;
}
ReplaceNode(N, CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64,
SDValue(Tmp, 0), GA));
return;
}
case PPCISD::PPC32_PICGOT:
assert(Subtarget->is32BitELFABI() &&
"PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4");
CurDAG->SelectNodeTo(N, PPC::PPC32PICGOT,
PPCLowering->getPointerTy(CurDAG->getDataLayout()),
MVT::i32);
return;
case PPCISD::VADD_SPLAT: {
assert(isa<ConstantSDNode>(N->getOperand(0)) &&
isa<ConstantSDNode>(N->getOperand(1)) &&
"Invalid operand on VADD_SPLAT!");
int Elt = N->getConstantOperandVal(0);
int EltSize = N->getConstantOperandVal(1);
unsigned Opc1, Opc2, Opc3;
EVT VT;
if (EltSize == 1) {
Opc1 = PPC::VSPLTISB;
Opc2 = PPC::VADDUBM;
Opc3 = PPC::VSUBUBM;
VT = MVT::v16i8;
} else if (EltSize == 2) {
Opc1 = PPC::VSPLTISH;
Opc2 = PPC::VADDUHM;
Opc3 = PPC::VSUBUHM;
VT = MVT::v8i16;
} else {
assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!");
Opc1 = PPC::VSPLTISW;
Opc2 = PPC::VADDUWM;
Opc3 = PPC::VSUBUWM;
VT = MVT::v4i32;
}
if ((Elt & 1) == 0) {
SDValue EltVal = getI32Imm(Elt >> 1, dl);
SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
SDValue TmpVal = SDValue(Tmp, 0);
ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal));
return;
} else if (Elt > 0) {
SDValue EltVal = getI32Imm(Elt - 16, dl);
SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
EltVal = getI32Imm(-16, dl);
SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
ReplaceNode(N, CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0),
SDValue(Tmp2, 0)));
return;
} else {
SDValue EltVal = getI32Imm(Elt + 16, dl);
SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
EltVal = getI32Imm(-16, dl);
SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0),
SDValue(Tmp2, 0)));
return;
}
}
case PPCISD::LD_SPLAT: {
if (!Subtarget->hasAltivec() || Subtarget->hasDirectMove())
break;
EVT Type = N->getValueType(0);
if (Type != MVT::v16i8 && Type != MVT::v8i16)
break;
if (cast<MemIntrinsicSDNode>(N)->getAlign() >= Align(16) &&
isOffsetMultipleOf(N, 16))
break;
SDValue ZeroReg =
CurDAG->getRegister(Subtarget->isPPC64() ? PPC::ZERO8 : PPC::ZERO,
Subtarget->isPPC64() ? MVT::i64 : MVT::i32);
unsigned LIOpcode = Subtarget->isPPC64() ? PPC::LI8 : PPC::LI;
unsigned SplatOp = (Type == MVT::v16i8) ? PPC::VSPLTB : PPC::VSPLTH;
unsigned SplatElemIndex =
Subtarget->isLittleEndian() ? ((Type == MVT::v16i8) ? 15 : 7) : 0;
SDNode *Mask = CurDAG->getMachineNode(
Subtarget->isLittleEndian() ? PPC::LVSR : PPC::LVSL, dl, Type, ZeroReg,
N->getOperand(1));
SDNode *LoadLow =
CurDAG->getMachineNode(PPC::LVX, dl, MVT::v16i8, MVT::Other,
{ZeroReg, N->getOperand(1), N->getOperand(0)});
SDNode *LoadHigh = LoadLow;
if (Type == MVT::v8i16) {
LoadHigh = CurDAG->getMachineNode(
PPC::LVX, dl, MVT::v16i8, MVT::Other,
{SDValue(CurDAG->getMachineNode(
LIOpcode, dl, MVT::i32,
CurDAG->getTargetConstant(1, dl, MVT::i8)),
0),
N->getOperand(1), SDValue(LoadLow, 1)});
}
CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 1), SDValue(LoadHigh, 1));
transferMemOperands(N, LoadHigh);
SDNode *Perm =
CurDAG->getMachineNode(PPC::VPERM, dl, Type, SDValue(LoadLow, 0),
SDValue(LoadHigh, 0), SDValue(Mask, 0));
CurDAG->SelectNodeTo(N, SplatOp, Type,
CurDAG->getTargetConstant(SplatElemIndex, dl, MVT::i8),
SDValue(Perm, 0));
return;
}
}
SelectCode(N);
}
SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) {
SDLoc dl(N);
assert(N->getOpcode() == ISD::OR &&
"Only OR nodes are supported for CMPB");
SDValue Res;
if (!Subtarget->hasCMPB())
return Res;
if (N->getValueType(0) != MVT::i32 &&
N->getValueType(0) != MVT::i64)
return Res;
EVT VT = N->getValueType(0);
SDValue RHS, LHS;
bool BytesFound[8] = {false, false, false, false, false, false, false, false};
uint64_t Mask = 0, Alt = 0;
auto IsByteSelectCC = [this](SDValue O, unsigned &b,
uint64_t &Mask, uint64_t &Alt,
SDValue &LHS, SDValue &RHS) {
if (O.getOpcode() != ISD::SELECT_CC)
return false;
ISD::CondCode CC = cast<CondCodeSDNode>(O.getOperand(4))->get();
if (!isa<ConstantSDNode>(O.getOperand(2)) ||
!isa<ConstantSDNode>(O.getOperand(3)))
return false;
uint64_t PM = O.getConstantOperandVal(2);
uint64_t PAlt = O.getConstantOperandVal(3);
for (b = 0; b < 8; ++b) {
uint64_t Mask = UINT64_C(0xFF) << (8*b);
if (PM && (PM & Mask) == PM && (PAlt & Mask) == PAlt)
break;
}
if (b == 8)
return false;
Mask |= PM;
Alt |= PAlt;
if (!isa<ConstantSDNode>(O.getOperand(1)) ||
O.getConstantOperandVal(1) != 0) {
SDValue Op0 = O.getOperand(0), Op1 = O.getOperand(1);
if (Op0.getOpcode() == ISD::TRUNCATE)
Op0 = Op0.getOperand(0);
if (Op1.getOpcode() == ISD::TRUNCATE)
Op1 = Op1.getOperand(0);
if (Op0.getOpcode() == ISD::SRL && Op1.getOpcode() == ISD::SRL &&
Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ &&
isa<ConstantSDNode>(Op0.getOperand(1))) {
unsigned Bits = Op0.getValueSizeInBits();
if (b != Bits/8-1)
return false;
if (Op0.getConstantOperandVal(1) != Bits-8)
return false;
LHS = Op0.getOperand(0);
RHS = Op1.getOperand(0);
return true;
}
if (Op0.getOpcode() == ISD::XOR && CC == ISD::SETULT &&
isa<ConstantSDNode>(O.getOperand(1))) {
uint64_t ULim = O.getConstantOperandVal(1);
if (ULim != (UINT64_C(1) << b*8))
return false;
unsigned Bits = Op0.getValueSizeInBits();
if (!CurDAG->MaskedValueIsZero(
Op0, APInt::getHighBitsSet(Bits, Bits - (b + 1) * 8)))
return false;
LHS = Op0.getOperand(0);
RHS = Op0.getOperand(1);
return true;
}
return false;
}
if (CC != ISD::SETEQ)
return false;
SDValue Op = O.getOperand(0);
if (Op.getOpcode() == ISD::AND) {
if (!isa<ConstantSDNode>(Op.getOperand(1)))
return false;
if (Op.getConstantOperandVal(1) != (UINT64_C(0xFF) << (8*b)))
return false;
SDValue XOR = Op.getOperand(0);
if (XOR.getOpcode() == ISD::TRUNCATE)
XOR = XOR.getOperand(0);
if (XOR.getOpcode() != ISD::XOR)
return false;
LHS = XOR.getOperand(0);
RHS = XOR.getOperand(1);
return true;
} else if (Op.getOpcode() == ISD::SRL) {
if (!isa<ConstantSDNode>(Op.getOperand(1)))
return false;
unsigned Bits = Op.getValueSizeInBits();
if (b != Bits/8-1)
return false;
if (Op.getConstantOperandVal(1) != Bits-8)
return false;
SDValue XOR = Op.getOperand(0);
if (XOR.getOpcode() == ISD::TRUNCATE)
XOR = XOR.getOperand(0);
if (XOR.getOpcode() != ISD::XOR)
return false;
LHS = XOR.getOperand(0);
RHS = XOR.getOperand(1);
return true;
}
return false;
};
SmallVector<SDValue, 8> Queue(1, SDValue(N, 0));
while (!Queue.empty()) {
SDValue V = Queue.pop_back_val();
for (const SDValue &O : V.getNode()->ops()) {
unsigned b = 0;
uint64_t M = 0, A = 0;
SDValue OLHS, ORHS;
if (O.getOpcode() == ISD::OR) {
Queue.push_back(O);
} else if (IsByteSelectCC(O, b, M, A, OLHS, ORHS)) {
if (!LHS) {
LHS = OLHS;
RHS = ORHS;
BytesFound[b] = true;
Mask |= M;
Alt |= A;
} else if ((LHS == ORHS && RHS == OLHS) ||
(RHS == ORHS && LHS == OLHS)) {
BytesFound[b] = true;
Mask |= M;
Alt |= A;
} else {
return Res;
}
} else {
return Res;
}
}
}
unsigned LastB = 0, BCnt = 0;
for (unsigned i = 0; i < 8; ++i)
if (BytesFound[LastB]) {
++BCnt;
LastB = i;
}
if (!LastB || BCnt < 2)
return Res;
if (LHS.getValueType() != VT) {
LHS = CurDAG->getAnyExtOrTrunc(LHS, dl, VT);
RHS = CurDAG->getAnyExtOrTrunc(RHS, dl, VT);
}
Res = CurDAG->getNode(PPCISD::CMPB, dl, VT, LHS, RHS);
bool NonTrivialMask = ((int64_t) Mask) != INT64_C(-1);
if (NonTrivialMask && !Alt) {
Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
CurDAG->getConstant(Mask, dl, VT));
} else if (Alt) {
Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
CurDAG->getConstant(Mask ^ Alt, dl, VT));
Res = CurDAG->getNode(ISD::XOR, dl, VT, Res,
CurDAG->getConstant(Alt, dl, VT));
}
return Res;
}
void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) {
if (!Subtarget->useCRBits())
return;
if (N->getOpcode() != ISD::ZERO_EXTEND &&
N->getOpcode() != ISD::SIGN_EXTEND &&
N->getOpcode() != ISD::ANY_EXTEND)
return;
if (N->getOperand(0).getValueType() != MVT::i1)
return;
if (!N->hasOneUse())
return;
SDLoc dl(N);
EVT VT = N->getValueType(0);
SDValue Cond = N->getOperand(0);
SDValue ConstTrue =
CurDAG->getConstant(N->getOpcode() == ISD::SIGN_EXTEND ? -1 : 1, dl, VT);
SDValue ConstFalse = CurDAG->getConstant(0, dl, VT);
do {
SDNode *User = *N->use_begin();
if (User->getNumOperands() != 2)
break;
auto TryFold = [this, N, User, dl](SDValue Val) {
SDValue UserO0 = User->getOperand(0), UserO1 = User->getOperand(1);
SDValue O0 = UserO0.getNode() == N ? Val : UserO0;
SDValue O1 = UserO1.getNode() == N ? Val : UserO1;
return CurDAG->FoldConstantArithmetic(User->getOpcode(), dl,
User->getValueType(0), {O0, O1});
};
SDValue TrueRes = TryFold(ConstTrue);
if (!TrueRes || TrueRes.isUndef())
break;
SDValue FalseRes = TryFold(ConstFalse);
if (!FalseRes || FalseRes.isUndef())
break;
uint64_t True = cast<ConstantSDNode>(TrueRes)->getZExtValue(),
False = cast<ConstantSDNode>(FalseRes)->getZExtValue();
if (!isInt<16>(True) || !isInt<16>(False))
break;
Res = CurDAG->getSelect(dl, User->getValueType(0), Cond, TrueRes, FalseRes);
N = User;
ConstTrue = TrueRes;
ConstFalse = FalseRes;
} while (N->hasOneUse());
}
void PPCDAGToDAGISel::PreprocessISelDAG() {
SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
bool MadeChange = false;
while (Position != CurDAG->allnodes_begin()) {
SDNode *N = &*--Position;
if (N->use_empty())
continue;
SDValue Res;
switch (N->getOpcode()) {
default: break;
case ISD::OR:
Res = combineToCMPB(N);
break;
}
if (!Res)
foldBoolExts(Res, N);
if (Res) {
LLVM_DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld: ");
LLVM_DEBUG(N->dump(CurDAG));
LLVM_DEBUG(dbgs() << "\nNew: ");
LLVM_DEBUG(Res.getNode()->dump(CurDAG));
LLVM_DEBUG(dbgs() << "\n");
CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
MadeChange = true;
}
}
if (MadeChange)
CurDAG->RemoveDeadNodes();
}
void PPCDAGToDAGISel::PostprocessISelDAG() {
if (TM.getOptLevel() == CodeGenOpt::None)
return;
PeepholePPC64();
PeepholeCROps();
PeepholePPC64ZExt();
}
bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) {
for (const SDNode *User : N->uses()) {
if (!User->isMachineOpcode())
return false;
if (User->getMachineOpcode() != PPC::SELECT_I4 &&
User->getMachineOpcode() != PPC::SELECT_I8)
return false;
SDNode *Op1 = User->getOperand(1).getNode();
SDNode *Op2 = User->getOperand(2).getNode();
if (Op1 == Op2)
return false;
if (!Op2->isMachineOpcode())
return false;
if (Op2->getMachineOpcode() != PPC::LI &&
Op2->getMachineOpcode() != PPC::LI8)
return false;
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op2->getOperand(0));
if (!C)
return false;
if (!C->isZero())
return false;
}
return true;
}
void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) {
SmallVector<SDNode *, 4> ToReplace;
for (SDNode *User : N->uses()) {
assert((User->getMachineOpcode() == PPC::SELECT_I4 ||
User->getMachineOpcode() == PPC::SELECT_I8) &&
"Must have all select users");
ToReplace.push_back(User);
}
for (SDNode *User : ToReplace) {
SDNode *ResNode =
CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User),
User->getValueType(0), User->getOperand(0),
User->getOperand(2),
User->getOperand(1));
LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld: ");
LLVM_DEBUG(User->dump(CurDAG));
LLVM_DEBUG(dbgs() << "\nNew: ");
LLVM_DEBUG(ResNode->dump(CurDAG));
LLVM_DEBUG(dbgs() << "\n");
ReplaceUses(User, ResNode);
}
}
void PPCDAGToDAGISel::PeepholeCROps() {
bool IsModified;
do {
IsModified = false;
for (SDNode &Node : CurDAG->allnodes()) {
MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(&Node);
if (!MachineNode || MachineNode->use_empty())
continue;
SDNode *ResNode = MachineNode;
bool Op1Set = false, Op1Unset = false,
Op1Not = false,
Op2Set = false, Op2Unset = false,
Op2Not = false;
unsigned Opcode = MachineNode->getMachineOpcode();
switch (Opcode) {
default: break;
case PPC::CRAND:
case PPC::CRNAND:
case PPC::CROR:
case PPC::CRXOR:
case PPC::CRNOR:
case PPC::CREQV:
case PPC::CRANDC:
case PPC::CRORC: {
SDValue Op = MachineNode->getOperand(1);
if (Op.isMachineOpcode()) {
if (Op.getMachineOpcode() == PPC::CRSET)
Op2Set = true;
else if (Op.getMachineOpcode() == PPC::CRUNSET)
Op2Unset = true;
else if (Op.getMachineOpcode() == PPC::CRNOR &&
Op.getOperand(0) == Op.getOperand(1))
Op2Not = true;
}
LLVM_FALLTHROUGH;
}
case PPC::BC:
case PPC::BCn:
case PPC::SELECT_I4:
case PPC::SELECT_I8:
case PPC::SELECT_F4:
case PPC::SELECT_F8:
case PPC::SELECT_SPE:
case PPC::SELECT_SPE4:
case PPC::SELECT_VRRC:
case PPC::SELECT_VSFRC:
case PPC::SELECT_VSSRC:
case PPC::SELECT_VSRC: {
SDValue Op = MachineNode->getOperand(0);
if (Op.isMachineOpcode()) {
if (Op.getMachineOpcode() == PPC::CRSET)
Op1Set = true;
else if (Op.getMachineOpcode() == PPC::CRUNSET)
Op1Unset = true;
else if (Op.getMachineOpcode() == PPC::CRNOR &&
Op.getOperand(0) == Op.getOperand(1))
Op1Not = true;
}
}
break;
}
bool SelectSwap = false;
switch (Opcode) {
default: break;
case PPC::CRAND:
if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
ResNode = MachineNode->getOperand(0).getNode();
else if (Op1Set)
ResNode = MachineNode->getOperand(1).getNode();
else if (Op2Set)
ResNode = MachineNode->getOperand(0).getNode();
else if (Op1Unset || Op2Unset)
ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
MVT::i1);
else if (Op1Not)
ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
MVT::i1, MachineNode->getOperand(1),
MachineNode->getOperand(0).
getOperand(0));
else if (Op2Not)
ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
MVT::i1, MachineNode->getOperand(0),
MachineNode->getOperand(1).
getOperand(0));
else if (AllUsersSelectZero(MachineNode)) {
ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
MVT::i1, MachineNode->getOperand(0),
MachineNode->getOperand(1));
SelectSwap = true;
}
break;
case PPC::CRNAND:
if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
MVT::i1, MachineNode->getOperand(0),
MachineNode->getOperand(0));
else if (Op1Set)
ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
MVT::i1, MachineNode->getOperand(1),
MachineNode->getOperand(1));
else if (Op2Set)
ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
MVT::i1, MachineNode->getOperand(0),
MachineNode->getOperand(0));
else if (Op1Unset || Op2Unset)
ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
MVT::i1);
else if (Op1Not)
ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
MVT::i1, MachineNode->getOperand(0).
getOperand(0),
MachineNode->getOperand(1));
else if (Op2Not)
ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
MVT::i1, MachineNode->getOperand(1).
getOperand(0),
MachineNode->getOperand(0));
else if (AllUsersSelectZero(MachineNode)) {
ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
MVT::i1, MachineNode->getOperand(0),
MachineNode->getOperand(1));
SelectSwap = true;
}
break;
case PPC::CROR:
if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
ResNode = MachineNode->getOperand(0).getNode();
else if (Op1Set || Op2Set)
ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
MVT::i1);
else if (Op1Unset)
ResNode = MachineNode->getOperand(1).getNode();
else if (Op2Unset)
ResNode = MachineNode->getOperand(0).getNode();
else if (Op1Not)
ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
MVT::i1, MachineNode->getOperand(1),
MachineNode->getOperand(0).
getOperand(0));
else if (Op2Not)
ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
MVT::i1, MachineNode->getOperand(0),
MachineNode->getOperand(1).
getOperand(0));
else if (AllUsersSelectZero(MachineNode)) {
ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
MVT::i1, MachineNode->getOperand(0),
MachineNode->getOperand(1));
SelectSwap = true;
}
break;
case PPC::CRXOR:
if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
MVT::i1);
else if (Op1Set)
ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
MVT::i1, MachineNode->getOperand(1),
MachineNode->getOperand(1));
else if (Op2Set)
ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
MVT::i1, MachineNode->getOperand(0),
MachineNode->getOperand(0));
else if (Op1Unset)
ResNode = MachineNode->getOperand(1).getNode();
else if (Op2Unset)
ResNode = MachineNode->getOperand(0).getNode();
else if (Op1Not)
ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
MVT::i1, MachineNode->getOperand(0).
getOperand(0),
MachineNode->getOperand(1));
else if (Op2Not)
ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
MVT::i1, MachineNode->getOperand(0),
MachineNode->getOperand(1).
getOperand(0));
else if (AllUsersSelectZero(MachineNode)) {
ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
MVT::i1, MachineNode->getOperand(0),
MachineNode->getOperand(1));
SelectSwap = true;
}
break;
case PPC::CRNOR:
if (Op1Set || Op2Set)
ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
MVT::i1);
else if (Op1Unset)
ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
MVT::i1, MachineNode->getOperand(1),
MachineNode->getOperand(1));
else if (Op2Unset)
ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
MVT::i1, MachineNode->getOperand(0),
MachineNode->getOperand(0));
else if (Op1Not)
ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
MVT::i1, MachineNode->getOperand(0).
getOperand(0),
MachineNode->getOperand(1));
else if (Op2Not)
ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
MVT::i1, MachineNode->getOperand(1).
getOperand(0),
MachineNode->getOperand(0));
else if (AllUsersSelectZero(MachineNode)) {
ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
MVT::i1, MachineNode->getOperand(0),
MachineNode->getOperand(1));
SelectSwap = true;
}
break;
case PPC::CREQV:
if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
MVT::i1);
else if (Op1Set)
ResNode = MachineNode->getOperand(1).getNode();
else if (Op2Set)
ResNode = MachineNode->getOperand(0).getNode();
else if (Op1Unset)
ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
MVT::i1, MachineNode->getOperand(1),
MachineNode->getOperand(1));
else if (Op2Unset)
ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
MVT::i1, MachineNode->getOperand(0),
MachineNode->getOperand(0));
else if (Op1Not)
ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
MVT::i1, MachineNode->getOperand(0).
getOperand(0),
MachineNode->getOperand(1));
else if (Op2Not)
ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
MVT::i1, MachineNode->getOperand(0),
MachineNode->getOperand(1).
getOperand(0));
else if (AllUsersSelectZero(MachineNode)) {
ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
MVT::i1, MachineNode->getOperand(0),
MachineNode->getOperand(1));
SelectSwap = true;
}
break;
case PPC::CRANDC:
if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
MVT::i1);
else if (Op1Set)
ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
MVT::i1, MachineNode->getOperand(1),
MachineNode->getOperand(1));
else if (Op1Unset || Op2Set)
ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
MVT::i1);
else if (Op2Unset)
ResNode = MachineNode->getOperand(0).getNode();
else if (Op1Not)
ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
MVT::i1, MachineNode->getOperand(0).
getOperand(0),
MachineNode->getOperand(1));
else if (Op2Not)
ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
MVT::i1, MachineNode->getOperand(0),
MachineNode->getOperand(1).
getOperand(0));
else if (AllUsersSelectZero(MachineNode)) {
ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
MVT::i1, MachineNode->getOperand(1),
MachineNode->getOperand(0));
SelectSwap = true;
}
break;
case PPC::CRORC:
if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
MVT::i1);
else if (Op1Set || Op2Unset)
ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
MVT::i1);
else if (Op2Set)
ResNode = MachineNode->getOperand(0).getNode();
else if (Op1Unset)
ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
MVT::i1, MachineNode->getOperand(1),
MachineNode->getOperand(1));
else if (Op1Not)
ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
MVT::i1, MachineNode->getOperand(0).
getOperand(0),
MachineNode->getOperand(1));
else if (Op2Not)
ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
MVT::i1, MachineNode->getOperand(0),
MachineNode->getOperand(1).
getOperand(0));
else if (AllUsersSelectZero(MachineNode)) {
ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
MVT::i1, MachineNode->getOperand(1),
MachineNode->getOperand(0));
SelectSwap = true;
}
break;
case PPC::SELECT_I4:
case PPC::SELECT_I8:
case PPC::SELECT_F4:
case PPC::SELECT_F8:
case PPC::SELECT_SPE:
case PPC::SELECT_SPE4:
case PPC::SELECT_VRRC:
case PPC::SELECT_VSFRC:
case PPC::SELECT_VSSRC:
case PPC::SELECT_VSRC:
if (Op1Set)
ResNode = MachineNode->getOperand(1).getNode();
else if (Op1Unset)
ResNode = MachineNode->getOperand(2).getNode();
else if (Op1Not)
ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(),
SDLoc(MachineNode),
MachineNode->getValueType(0),
MachineNode->getOperand(0).
getOperand(0),
MachineNode->getOperand(2),
MachineNode->getOperand(1));
break;
case PPC::BC:
case PPC::BCn:
if (Op1Not)
ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn :
PPC::BC,
SDLoc(MachineNode),
MVT::Other,
MachineNode->getOperand(0).
getOperand(0),
MachineNode->getOperand(1),
MachineNode->getOperand(2));
break;
}
if (SelectSwap)
SwapAllSelectUsers(MachineNode);
if (ResNode != MachineNode) {
LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld: ");
LLVM_DEBUG(MachineNode->dump(CurDAG));
LLVM_DEBUG(dbgs() << "\nNew: ");
LLVM_DEBUG(ResNode->dump(CurDAG));
LLVM_DEBUG(dbgs() << "\n");
ReplaceUses(MachineNode, ResNode);
IsModified = true;
}
}
if (IsModified)
CurDAG->RemoveDeadNodes();
} while (IsModified);
}
static bool PeepholePPC64ZExtGather(SDValue Op32,
SmallPtrSetImpl<SDNode *> &ToPromote) {
if (!Op32.isMachineOpcode())
return false;
if ((Op32.getMachineOpcode() == PPC::RLWINM ||
Op32.getMachineOpcode() == PPC::RLWNM) &&
Op32.getConstantOperandVal(2) <= Op32.getConstantOperandVal(3)) {
ToPromote.insert(Op32.getNode());
return true;
}
if (Op32.getMachineOpcode() == PPC::SLW ||
Op32.getMachineOpcode() == PPC::SRW) {
ToPromote.insert(Op32.getNode());
return true;
}
if (Op32.getMachineOpcode() == PPC::LI ||
Op32.getMachineOpcode() == PPC::LIS) {
if (!isUInt<15>(Op32.getConstantOperandVal(0)))
return false;
ToPromote.insert(Op32.getNode());
return true;
}
if (Op32.getMachineOpcode() == PPC::LHBRX ||
Op32.getMachineOpcode() == PPC::LWBRX) {
ToPromote.insert(Op32.getNode());
return true;
}
if (Op32.getMachineOpcode() == PPC::CNTLZW ||
Op32.getMachineOpcode() == PPC::CNTTZW) {
ToPromote.insert(Op32.getNode());
return true;
}
if (Op32.getMachineOpcode() == PPC::RLWIMI &&
Op32.getConstantOperandVal(3) <= Op32.getConstantOperandVal(4)) {
SmallPtrSet<SDNode *, 16> ToPromote1;
if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
return false;
ToPromote.insert(Op32.getNode());
ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
return true;
}
if (Op32.getMachineOpcode() == PPC::OR ||
Op32.getMachineOpcode() == PPC::SELECT_I4) {
unsigned B = Op32.getMachineOpcode() == PPC::SELECT_I4 ? 1 : 0;
SmallPtrSet<SDNode *, 16> ToPromote1;
if (!PeepholePPC64ZExtGather(Op32.getOperand(B+0), ToPromote1))
return false;
if (!PeepholePPC64ZExtGather(Op32.getOperand(B+1), ToPromote1))
return false;
ToPromote.insert(Op32.getNode());
ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
return true;
}
if (Op32.getMachineOpcode() == PPC::ORI ||
Op32.getMachineOpcode() == PPC::ORIS) {
SmallPtrSet<SDNode *, 16> ToPromote1;
if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
return false;
if (!isUInt<15>(Op32.getConstantOperandVal(1)))
return false;
ToPromote.insert(Op32.getNode());
ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
return true;
}
if (Op32.getMachineOpcode() == PPC::AND) {
SmallPtrSet<SDNode *, 16> ToPromote1, ToPromote2;
bool Op0OK =
PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
bool Op1OK =
PeepholePPC64ZExtGather(Op32.getOperand(1), ToPromote2);
if (!Op0OK && !Op1OK)
return false;
ToPromote.insert(Op32.getNode());
if (Op0OK)
ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
if (Op1OK)
ToPromote.insert(ToPromote2.begin(), ToPromote2.end());
return true;
}
if (Op32.getMachineOpcode() == PPC::ANDI_rec ||
Op32.getMachineOpcode() == PPC::ANDIS_rec) {
SmallPtrSet<SDNode *, 16> ToPromote1;
bool Op0OK =
PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
bool Op1OK = isUInt<15>(Op32.getConstantOperandVal(1));
if (!Op0OK && !Op1OK)
return false;
ToPromote.insert(Op32.getNode());
if (Op0OK)
ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
return true;
}
return false;
}
void PPCDAGToDAGISel::PeepholePPC64ZExt() {
if (!Subtarget->isPPC64())
return;
SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
bool MadeChange = false;
while (Position != CurDAG->allnodes_begin()) {
SDNode *N = &*--Position;
if (N->use_empty() || !N->isMachineOpcode())
continue;
if (N->getMachineOpcode() != PPC::RLDICL)
continue;
if (N->getConstantOperandVal(1) != 0 ||
N->getConstantOperandVal(2) != 32)
continue;
SDValue ISR = N->getOperand(0);
if (!ISR.isMachineOpcode() ||
ISR.getMachineOpcode() != TargetOpcode::INSERT_SUBREG)
continue;
if (!ISR.hasOneUse())
continue;
if (ISR.getConstantOperandVal(2) != PPC::sub_32)
continue;
SDValue IDef = ISR.getOperand(0);
if (!IDef.isMachineOpcode() ||
IDef.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF)
continue;
SDValue Op32 = ISR->getOperand(1);
if (!Op32.isMachineOpcode())
continue;
SmallPtrSet<SDNode *, 16> ToPromote;
if (!PeepholePPC64ZExtGather(Op32, ToPromote))
continue;
bool OutsideUse = false;
for (SDNode *PN : ToPromote) {
for (SDNode *UN : PN->uses()) {
if (!ToPromote.count(UN) && UN != ISR.getNode()) {
OutsideUse = true;
break;
}
}
if (OutsideUse)
break;
}
if (OutsideUse)
continue;
MadeChange = true;
for (SDNode *PN : ToPromote) {
unsigned NewOpcode;
switch (PN->getMachineOpcode()) {
default:
llvm_unreachable("Don't know the 64-bit variant of this instruction");
case PPC::RLWINM: NewOpcode = PPC::RLWINM8; break;
case PPC::RLWNM: NewOpcode = PPC::RLWNM8; break;
case PPC::SLW: NewOpcode = PPC::SLW8; break;
case PPC::SRW: NewOpcode = PPC::SRW8; break;
case PPC::LI: NewOpcode = PPC::LI8; break;
case PPC::LIS: NewOpcode = PPC::LIS8; break;
case PPC::LHBRX: NewOpcode = PPC::LHBRX8; break;
case PPC::LWBRX: NewOpcode = PPC::LWBRX8; break;
case PPC::CNTLZW: NewOpcode = PPC::CNTLZW8; break;
case PPC::CNTTZW: NewOpcode = PPC::CNTTZW8; break;
case PPC::RLWIMI: NewOpcode = PPC::RLWIMI8; break;
case PPC::OR: NewOpcode = PPC::OR8; break;
case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break;
case PPC::ORI: NewOpcode = PPC::ORI8; break;
case PPC::ORIS: NewOpcode = PPC::ORIS8; break;
case PPC::AND: NewOpcode = PPC::AND8; break;
case PPC::ANDI_rec:
NewOpcode = PPC::ANDI8_rec;
break;
case PPC::ANDIS_rec:
NewOpcode = PPC::ANDIS8_rec;
break;
}
SmallVector<SDValue, 4> Ops;
for (const SDValue &V : PN->ops()) {
if (!ToPromote.count(V.getNode()) && V.getValueType() == MVT::i32 &&
!isa<ConstantSDNode>(V)) {
SDValue ReplOpOps[] = { ISR.getOperand(0), V, ISR.getOperand(2) };
SDNode *ReplOp =
CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(V),
ISR.getNode()->getVTList(), ReplOpOps);
Ops.push_back(SDValue(ReplOp, 0));
} else {
Ops.push_back(V);
}
}
SmallVector<EVT, 2> NewVTs;
SDVTList VTs = PN->getVTList();
for (unsigned i = 0, ie = VTs.NumVTs; i != ie; ++i)
if (VTs.VTs[i] == MVT::i32)
NewVTs.push_back(MVT::i64);
else
NewVTs.push_back(VTs.VTs[i]);
LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld: ");
LLVM_DEBUG(PN->dump(CurDAG));
CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops);
LLVM_DEBUG(dbgs() << "\nNew: ");
LLVM_DEBUG(PN->dump(CurDAG));
LLVM_DEBUG(dbgs() << "\n");
}
LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld: ");
LLVM_DEBUG(N->dump(CurDAG));
LLVM_DEBUG(dbgs() << "\nNew: ");
LLVM_DEBUG(Op32.getNode()->dump(CurDAG));
LLVM_DEBUG(dbgs() << "\n");
ReplaceUses(N, Op32.getNode());
}
if (MadeChange)
CurDAG->RemoveDeadNodes();
}
static bool isVSXSwap(SDValue N) {
if (!N->isMachineOpcode())
return false;
unsigned Opc = N->getMachineOpcode();
if (Opc == PPC::XXPERMDIs) {
return isa<ConstantSDNode>(N->getOperand(1)) &&
N->getConstantOperandVal(1) == 2;
} else if (Opc == PPC::XXPERMDI || Opc == PPC::XXSLDWI) {
return N->getOperand(0) == N->getOperand(1) &&
isa<ConstantSDNode>(N->getOperand(2)) &&
N->getConstantOperandVal(2) == 2;
}
return false;
}
static bool isLaneInsensitive(SDValue N) {
if (!N->isMachineOpcode())
return false;
unsigned Opc = N->getMachineOpcode();
switch (Opc) {
default:
return false;
case PPC::VAVGSB:
case PPC::VAVGUB:
case PPC::VAVGSH:
case PPC::VAVGUH:
case PPC::VAVGSW:
case PPC::VAVGUW:
case PPC::VMAXFP:
case PPC::VMAXSB:
case PPC::VMAXUB:
case PPC::VMAXSH:
case PPC::VMAXUH:
case PPC::VMAXSW:
case PPC::VMAXUW:
case PPC::VMINFP:
case PPC::VMINSB:
case PPC::VMINUB:
case PPC::VMINSH:
case PPC::VMINUH:
case PPC::VMINSW:
case PPC::VMINUW:
case PPC::VADDFP:
case PPC::VADDUBM:
case PPC::VADDUHM:
case PPC::VADDUWM:
case PPC::VSUBFP:
case PPC::VSUBUBM:
case PPC::VSUBUHM:
case PPC::VSUBUWM:
case PPC::VAND:
case PPC::VANDC:
case PPC::VOR:
case PPC::VORC:
case PPC::VXOR:
case PPC::VNOR:
case PPC::VMULUWM:
return true;
}
}
static void reduceVSXSwap(SDNode *N, SelectionDAG *DAG) {
auto SkipRCCopy = [](SDValue V) {
while (V->isMachineOpcode() &&
V->getMachineOpcode() == TargetOpcode::COPY_TO_REGCLASS) {
if (V->use_empty() || !V->use_begin()->isOnlyUserOf(V.getNode()))
return SDValue();
V = V->getOperand(0);
}
return V.hasOneUse() ? V : SDValue();
};
SDValue VecOp = SkipRCCopy(N->getOperand(0));
if (!VecOp || !isLaneInsensitive(VecOp))
return;
SDValue LHS = SkipRCCopy(VecOp.getOperand(0)),
RHS = SkipRCCopy(VecOp.getOperand(1));
if (!LHS || !RHS || !isVSXSwap(LHS) || !isVSXSwap(RHS))
return;
DAG->ReplaceAllUsesOfValueWith(LHS, LHS.getOperand(0));
DAG->ReplaceAllUsesOfValueWith(RHS, RHS.getOperand(0));
DAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), N->getOperand(0));
}
void PPCDAGToDAGISel::PeepholePPC64() {
SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
while (Position != CurDAG->allnodes_begin()) {
SDNode *N = &*--Position;
if (N->use_empty() || !N->isMachineOpcode())
continue;
if (isVSXSwap(SDValue(N, 0)))
reduceVSXSwap(N, CurDAG);
unsigned FirstOp;
unsigned StorageOpcode = N->getMachineOpcode();
bool RequiresMod4Offset = false;
switch (StorageOpcode) {
default: continue;
case PPC::LWA:
case PPC::LD:
case PPC::DFLOADf64:
case PPC::DFLOADf32:
RequiresMod4Offset = true;
LLVM_FALLTHROUGH;
case PPC::LBZ:
case PPC::LBZ8:
case PPC::LFD:
case PPC::LFS:
case PPC::LHA:
case PPC::LHA8:
case PPC::LHZ:
case PPC::LHZ8:
case PPC::LWZ:
case PPC::LWZ8:
FirstOp = 0;
break;
case PPC::STD:
case PPC::DFSTOREf64:
case PPC::DFSTOREf32:
RequiresMod4Offset = true;
LLVM_FALLTHROUGH;
case PPC::STB:
case PPC::STB8:
case PPC::STFD:
case PPC::STFS:
case PPC::STH:
case PPC::STH8:
case PPC::STW:
case PPC::STW8:
FirstOp = 1;
break;
}
if (!isa<ConstantSDNode>(N->getOperand(FirstOp)))
continue;
SDValue Base = N->getOperand(FirstOp + 1);
if (!Base.isMachineOpcode())
continue;
unsigned Flags = 0;
bool ReplaceFlags = true;
switch (Base.getMachineOpcode()) {
default: continue;
case PPC::ADDI8:
case PPC::ADDI:
ReplaceFlags = false;
if (RequiresMod4Offset &&
(!isa<ConstantSDNode>(Base.getOperand(1)) ||
Base.getConstantOperandVal(1) % 4 != 0))
continue;
break;
case PPC::ADDIdtprelL:
Flags = PPCII::MO_DTPREL_LO;
break;
case PPC::ADDItlsldL:
Flags = PPCII::MO_TLSLD_LO;
break;
case PPC::ADDItocL:
Flags = PPCII::MO_TOC_LO;
break;
}
SDValue ImmOpnd = Base.getOperand(1);
int MaxDisplacement = 7;
if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
const GlobalValue *GV = GA->getGlobal();
Align Alignment = GV->getPointerAlignment(CurDAG->getDataLayout());
MaxDisplacement = std::min((int)Alignment.value() - 1, MaxDisplacement);
}
bool UpdateHBase = false;
SDValue HBase = Base.getOperand(0);
int Offset = N->getConstantOperandVal(FirstOp);
if (ReplaceFlags) {
if (Offset < 0 || Offset > MaxDisplacement) {
if (Base.getMachineOpcode() != PPC::ADDItocL)
continue;
if (!HBase.isMachineOpcode() ||
HBase.getMachineOpcode() != PPC::ADDIStocHA8)
continue;
if (!Base.hasOneUse() || !HBase.hasOneUse())
continue;
SDValue HImmOpnd = HBase.getOperand(1);
if (HImmOpnd != ImmOpnd)
continue;
UpdateHBase = true;
}
} else {
if (auto *C = dyn_cast<ConstantSDNode>(ImmOpnd)) {
Offset += C->getSExtValue();
if (RequiresMod4Offset && (Offset % 4) != 0)
continue;
if (!isInt<16>(Offset))
continue;
ImmOpnd = CurDAG->getTargetConstant(Offset, SDLoc(ImmOpnd),
ImmOpnd.getValueType());
} else if (Offset != 0) {
continue;
}
}
LLVM_DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase: ");
LLVM_DEBUG(Base->dump(CurDAG));
LLVM_DEBUG(dbgs() << "\nN: ");
LLVM_DEBUG(N->dump(CurDAG));
LLVM_DEBUG(dbgs() << "\n");
if (ReplaceFlags) {
if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
SDLoc dl(GA);
const GlobalValue *GV = GA->getGlobal();
Align Alignment = GV->getPointerAlignment(CurDAG->getDataLayout());
if (Alignment < 4 && (RequiresMod4Offset || (Offset % 4) != 0)) {
LLVM_DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n");
continue;
}
ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, Offset, Flags);
} else if (ConstantPoolSDNode *CP =
dyn_cast<ConstantPoolSDNode>(ImmOpnd)) {
const Constant *C = CP->getConstVal();
ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64, CP->getAlign(),
Offset, Flags);
}
}
if (FirstOp == 1) (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd,
Base.getOperand(0), N->getOperand(3));
else (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0),
N->getOperand(2));
if (UpdateHBase)
(void)CurDAG->UpdateNodeOperands(HBase.getNode(), HBase.getOperand(0),
ImmOpnd);
if (Base.getNode()->use_empty())
CurDAG->RemoveDeadNode(Base.getNode());
}
}
FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM,
CodeGenOpt::Level OptLevel) {
return new PPCDAGToDAGISel(TM, OptLevel);
}