; ; Here we have 5-way unswitchable switch with each successor also having an unswitchable ; exiting branch in it. If we start unswitching those branches we start duplicating the ; whole switch. This can easily lead to exponential behavior w/o proper control. ; On a real-life testcase there was 16-way switch and that took forever to compile w/o ; a cost control. ; ; ; When we use the stricted multiplier candidates formula (unscaled candidates == 0) ; we should be getting just a single loop. ; ; RUN: opt < %s -enable-unswitch-cost-multiplier=true \ ; RUN: -unswitch-num-initial-unscaled-candidates=0 -unswitch-siblings-toplevel-div=1 \ ; RUN: -passes='loop(simple-loop-unswitch<nontrivial>),print<loops>' -disable-output 2>&1 | FileCheck %s --check-prefixes=LOOP1 ; ; RUN: opt < %s -enable-unswitch-cost-multiplier=true \ ; RUN: -unswitch-num-initial-unscaled-candidates=0 -unswitch-siblings-toplevel-div=16 \ ; RUN: -passes='loop(simple-loop-unswitch<nontrivial>),print<loops>' -disable-output 2>&1 | FileCheck %s --check-prefixes=LOOP1 ; ; RUN: opt < %s -enable-unswitch-cost-multiplier=true \ ; RUN: -unswitch-num-initial-unscaled-candidates=0 -unswitch-siblings-toplevel-div=1 \ ; RUN: -passes='loop-mssa(simple-loop-unswitch<nontrivial>),print<loops>' -disable-output 2>&1 | FileCheck %s --check-prefixes=LOOP1 ; ; RUN: opt < %s -enable-unswitch-cost-multiplier=true \ ; RUN: -unswitch-num-initial-unscaled-candidates=0 -unswitch-siblings-toplevel-div=16 \ ; RUN: -passes='loop-mssa(simple-loop-unswitch<nontrivial>),print<loops>' -disable-output 2>&1 | FileCheck %s --check-prefixes=LOOP1 ; ; With relaxed candidates multiplier (unscaled candidates == 8) we should allow ; some unswitches to happen until siblings multiplier starts kicking in: ; ; The tests below also run licm, because it is needed to hoist out ; loop-invariant freeze instructions, which otherwise may block further ; unswitching. ; ; RUN: opt < %s -enable-unswitch-cost-multiplier=true \ ; RUN: -unswitch-num-initial-unscaled-candidates=8 -unswitch-siblings-toplevel-div=1 \ ; RUN: -passes='loop-mssa(licm,simple-loop-unswitch<nontrivial>),print<loops>' -disable-output 2>&1 | \ ; RUN: sort -b -k 1 | FileCheck %s --check-prefixes=LOOP-RELAX ; ; With relaxed candidates multiplier (unscaled candidates == 8) and with relaxed ; siblings multiplier for top-level loops (toplevel-div == 8) we should get ; considerably more copies of the loop (especially top-level ones). ; ; RUN: opt < %s -enable-unswitch-cost-multiplier=true \ ; RUN: -unswitch-num-initial-unscaled-candidates=8 -unswitch-siblings-toplevel-div=8 \ ; RUN: -passes='loop-mssa(licm,simple-loop-unswitch<nontrivial>),print<loops>' -disable-output 2>&1 | \ ; RUN: sort -b -k 1 | FileCheck %s --check-prefixes=LOOP-RELAX2 ; ; We get hundreds of copies of the loop when cost multiplier is disabled: ; ; RUN: opt < %s -enable-unswitch-cost-multiplier=false \ ; RUN: -passes='loop-mssa(licm,simple-loop-unswitch<nontrivial>),print<loops>' -disable-output 2>&1 | \ ; RUN: sort -b -k 1 | FileCheck %s --check-prefixes=LOOP-MAX ; Single loop nest, not unswitched ; LOOP1: Loop at depth 1 containing: ; LOOP1-NOT: Loop at depth 1 containing: ; LOOP1: Loop at depth 2 containing: ; LOOP1-NOT: Loop at depth 2 containing: ; ; Somewhat relaxed restrictions on candidates: ; LOOP-RELAX-COUNT-5: Loop at depth 1 containing: ; LOOP-RELAX-NOT: Loop at depth 1 containing: ; LOOP-RELAX-COUNT-32: Loop at depth 2 containing: ; LOOP-RELAX-NOT: Loop at depth 2 containing: ; ; Even more relaxed restrictions on candidates and siblings. ; LOOP-RELAX2-COUNT-11: Loop at depth 1 containing: ; LOOP-RELAX2-NOT: Loop at depth 1 containing: ; LOOP-RELAX2-COUNT-40: Loop at depth 2 containing: ; LOOP-RELAX-NOT: Loop at depth 2 containing: ; ; Unswitched as much as it could (with multiplier disabled). ; LOOP-MAX-COUNT-56: Loop at depth 1 containing: ; LOOP-MAX-NOT: Loop at depth 1 containing: ; LOOP-MAX-COUNT-111: Loop at depth 2 containing: ; LOOP-MAX-NOT: Loop at depth 2 containing: define i32 @loop_switch(i32* %addr, i32 %c1, i32 %c2) { entry: %addr1 = getelementptr i32, i32* %addr, i64 0 %addr2 = getelementptr i32, i32* %addr, i64 1 %check0 = icmp eq i32 %c2, 0 %check1 = icmp eq i32 %c2, 31 %check2 = icmp eq i32 %c2, 32 %check3 = icmp eq i32 %c2, 33 %check4 = icmp eq i32 %c2, 34 br label %outer_loop outer_loop: %iv1 = phi i32 [0, %entry], [%iv1.next, %outer_latch] %iv1.next = add i32 %iv1, 1 br label %inner_loop inner_loop: %iv2 = phi i32 [0, %outer_loop], [%iv2.next, %inner_latch] %iv2.next = add i32 %iv2, 1 switch i32 %c1, label %inner_latch [ i32 0, label %case0 i32 1, label %case1 i32 2, label %case2 i32 3, label %case3 i32 4, label %case4 ] case4: br i1 %check4, label %exit, label %inner_latch case3: br i1 %check3, label %exit, label %inner_latch case2: br i1 %check2, label %exit, label %inner_latch case1: br i1 %check1, label %exit, label %inner_latch case0: br i1 %check0, label %exit, label %inner_latch inner_latch: store volatile i32 0, i32* %addr1 %test_inner = icmp slt i32 %iv2, 50 br i1 %test_inner, label %inner_loop, label %outer_latch outer_latch: store volatile i32 0, i32* %addr2 %test_outer = icmp slt i32 %iv1, 50 br i1 %test_outer, label %outer_loop, label %exit exit: ; preds = %bci_0 ret i32 1 }