#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetSchedule.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instruction.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/ScaledNumber.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Utils/SizeOpts.h"
#include <algorithm>
#include <memory>
#include <queue>
#include <stack>
#include <string>
using namespace llvm;
#define DEBUG_TYPE "select-optimize"
STATISTIC(NumSelectOptAnalyzed,
"Number of select groups considered for conversion to branch");
STATISTIC(NumSelectConvertedExpColdOperand,
"Number of select groups converted due to expensive cold operand");
STATISTIC(NumSelectConvertedHighPred,
"Number of select groups converted due to high-predictability");
STATISTIC(NumSelectUnPred,
"Number of select groups not converted due to unpredictability");
STATISTIC(NumSelectColdBB,
"Number of select groups not converted due to cold basic block");
STATISTIC(NumSelectConvertedLoop,
"Number of select groups converted due to loop-level analysis");
STATISTIC(NumSelectsConverted, "Number of selects converted");
static cl::opt<unsigned> ColdOperandThreshold(
"cold-operand-threshold",
cl::desc("Maximum frequency of path for an operand to be considered cold."),
cl::init(20), cl::Hidden);
static cl::opt<unsigned> ColdOperandMaxCostMultiplier(
"cold-operand-max-cost-multiplier",
cl::desc("Maximum cost multiplier of TCC_expensive for the dependence "
"slice of a cold operand to be considered inexpensive."),
cl::init(1), cl::Hidden);
static cl::opt<unsigned>
GainGradientThreshold("select-opti-loop-gradient-gain-threshold",
cl::desc("Gradient gain threshold (%)."),
cl::init(25), cl::Hidden);
static cl::opt<unsigned>
GainCycleThreshold("select-opti-loop-cycle-gain-threshold",
cl::desc("Minimum gain per loop (in cycles) threshold."),
cl::init(4), cl::Hidden);
static cl::opt<unsigned> GainRelativeThreshold(
"select-opti-loop-relative-gain-threshold",
cl::desc(
"Minimum relative gain per loop threshold (1/X). Defaults to 12.5%"),
cl::init(8), cl::Hidden);
static cl::opt<unsigned> MispredictDefaultRate(
"mispredict-default-rate", cl::Hidden, cl::init(25),
cl::desc("Default mispredict rate (initialized to 25%)."));
static cl::opt<bool>
DisableLoopLevelHeuristics("disable-loop-level-heuristics", cl::Hidden,
cl::init(false),
cl::desc("Disable loop-level heuristics."));
namespace {
class SelectOptimize : public FunctionPass {
const TargetMachine *TM = nullptr;
const TargetSubtargetInfo *TSI;
const TargetLowering *TLI = nullptr;
const TargetTransformInfo *TTI = nullptr;
const LoopInfo *LI;
DominatorTree *DT;
std::unique_ptr<BlockFrequencyInfo> BFI;
std::unique_ptr<BranchProbabilityInfo> BPI;
ProfileSummaryInfo *PSI;
OptimizationRemarkEmitter *ORE;
TargetSchedModel TSchedModel;
public:
static char ID;
SelectOptimize() : FunctionPass(ID) {
initializeSelectOptimizePass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<ProfileSummaryInfoWrapperPass>();
AU.addRequired<TargetPassConfig>();
AU.addRequired<TargetTransformInfoWrapperPass>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<LoopInfoWrapperPass>();
AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
}
private:
using SelectGroup = SmallVector<SelectInst *, 2>;
using SelectGroups = SmallVector<SelectGroup, 2>;
using Scaled64 = ScaledNumber<uint64_t>;
struct CostInfo {
Scaled64 PredCost;
Scaled64 NonPredCost;
};
bool optimizeSelects(Function &F);
void optimizeSelectsBase(Function &F, SelectGroups &ProfSIGroups);
void optimizeSelectsInnerLoops(Function &F, SelectGroups &ProfSIGroups);
void convertProfitableSIGroups(SelectGroups &ProfSIGroups);
void collectSelectGroups(BasicBlock &BB, SelectGroups &SIGroups);
void findProfitableSIGroupsBase(SelectGroups &SIGroups,
SelectGroups &ProfSIGroups);
void findProfitableSIGroupsInnerLoops(const Loop *L, SelectGroups &SIGroups,
SelectGroups &ProfSIGroups);
bool isConvertToBranchProfitableBase(const SmallVector<SelectInst *, 2> &ASI);
bool hasExpensiveColdOperand(const SmallVector<SelectInst *, 2> &ASI);
void getExclBackwardsSlice(Instruction *I, std::stack<Instruction *> &Slice,
bool ForSinking = false);
bool isSelectHighlyPredictable(const SelectInst *SI);
bool checkLoopHeuristics(const Loop *L, const CostInfo LoopDepth[2]);
bool computeLoopCosts(const Loop *L, const SelectGroups &SIGroups,
DenseMap<const Instruction *, CostInfo> &InstCostMap,
CostInfo *LoopCost);
SmallPtrSet<const Instruction *, 2> getSIset(const SelectGroups &SIGroups);
Optional<uint64_t> computeInstCost(const Instruction *I);
Scaled64 getMispredictionCost(const SelectInst *SI, const Scaled64 CondCost);
Scaled64 getPredictedPathCost(Scaled64 TrueCost, Scaled64 FalseCost,
const SelectInst *SI);
bool isSelectKindSupported(SelectInst *SI);
};
}
char SelectOptimize::ID = 0;
INITIALIZE_PASS_BEGIN(SelectOptimize, DEBUG_TYPE, "Optimize selects", false,
false)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
INITIALIZE_PASS_END(SelectOptimize, DEBUG_TYPE, "Optimize selects", false,
false)
FunctionPass *llvm::createSelectOptimizePass() { return new SelectOptimize(); }
bool SelectOptimize::runOnFunction(Function &F) {
TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
TSI = TM->getSubtargetImpl(F);
TLI = TSI->getTargetLowering();
if (!TLI->isSelectSupported(TargetLowering::ScalarValSelect) &&
!TLI->isSelectSupported(TargetLowering::ScalarCondVectorVal) &&
!TLI->isSelectSupported(TargetLowering::VectorMaskSelect))
return false;
TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
BPI.reset(new BranchProbabilityInfo(F, *LI));
BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
TSchedModel.init(TSI);
if (F.hasOptSize() || llvm::shouldOptimizeForSize(&F, PSI, BFI.get()))
return false;
return optimizeSelects(F);
}
bool SelectOptimize::optimizeSelects(Function &F) {
SelectGroups ProfSIGroups;
optimizeSelectsBase(F, ProfSIGroups);
optimizeSelectsInnerLoops(F, ProfSIGroups);
convertProfitableSIGroups(ProfSIGroups);
return !ProfSIGroups.empty();
}
void SelectOptimize::optimizeSelectsBase(Function &F,
SelectGroups &ProfSIGroups) {
SelectGroups SIGroups;
for (BasicBlock &BB : F) {
Loop *L = LI->getLoopFor(&BB);
if (L && L->isInnermost())
continue;
collectSelectGroups(BB, SIGroups);
}
findProfitableSIGroupsBase(SIGroups, ProfSIGroups);
}
void SelectOptimize::optimizeSelectsInnerLoops(Function &F,
SelectGroups &ProfSIGroups) {
SmallVector<Loop *, 4> Loops(LI->begin(), LI->end());
for (unsigned long i = 0; i < Loops.size(); ++i)
for (Loop *ChildL : Loops[i]->getSubLoops())
Loops.push_back(ChildL);
for (Loop *L : Loops) {
if (!L->isInnermost())
continue;
SelectGroups SIGroups;
for (BasicBlock *BB : L->getBlocks())
collectSelectGroups(*BB, SIGroups);
findProfitableSIGroupsInnerLoops(L, SIGroups, ProfSIGroups);
}
}
static Value *
getTrueOrFalseValue(SelectInst *SI, bool isTrue,
const SmallPtrSet<const Instruction *, 2> &Selects) {
Value *V = nullptr;
for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
DefSI = dyn_cast<SelectInst>(V)) {
assert(DefSI->getCondition() == SI->getCondition() &&
"The condition of DefSI does not match with SI");
V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
}
assert(V && "Failed to get select true/false value");
return V;
}
void SelectOptimize::convertProfitableSIGroups(SelectGroups &ProfSIGroups) {
for (SelectGroup &ASI : ProfSIGroups) {
SmallVector<std::stack<Instruction *>, 2> TrueSlices, FalseSlices;
typedef std::stack<Instruction *>::size_type StackSizeType;
StackSizeType maxTrueSliceLen = 0, maxFalseSliceLen = 0;
for (SelectInst *SI : ASI) {
if (auto *TI = dyn_cast<Instruction>(SI->getTrueValue())) {
std::stack<Instruction *> TrueSlice;
getExclBackwardsSlice(TI, TrueSlice, true);
maxTrueSliceLen = std::max(maxTrueSliceLen, TrueSlice.size());
TrueSlices.push_back(TrueSlice);
}
if (auto *FI = dyn_cast<Instruction>(SI->getFalseValue())) {
std::stack<Instruction *> FalseSlice;
getExclBackwardsSlice(FI, FalseSlice, true);
maxFalseSliceLen = std::max(maxFalseSliceLen, FalseSlice.size());
FalseSlices.push_back(FalseSlice);
}
}
SmallVector<Instruction *, 2> TrueSlicesInterleaved, FalseSlicesInterleaved;
for (StackSizeType IS = 0; IS < maxTrueSliceLen; ++IS) {
for (auto &S : TrueSlices) {
if (!S.empty()) {
TrueSlicesInterleaved.push_back(S.top());
S.pop();
}
}
}
for (StackSizeType IS = 0; IS < maxFalseSliceLen; ++IS) {
for (auto &S : FalseSlices) {
if (!S.empty()) {
FalseSlicesInterleaved.push_back(S.top());
S.pop();
}
}
}
SelectInst *SI = ASI.front();
SelectInst *LastSI = ASI.back();
BasicBlock *StartBlock = SI->getParent();
BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency());
StartBlock->getTerminator()->eraseFromParent();
SmallVector<Instruction *, 2> DebugPseudoINS;
auto DIt = SI->getIterator();
while (&*DIt != LastSI) {
if (DIt->isDebugOrPseudoInst())
DebugPseudoINS.push_back(&*DIt);
DIt++;
}
for (auto *DI : DebugPseudoINS) {
DI->moveBefore(&*EndBlock->getFirstInsertionPt());
}
BasicBlock *TrueBlock = nullptr, *FalseBlock = nullptr;
BranchInst *TrueBranch = nullptr, *FalseBranch = nullptr;
if (!TrueSlicesInterleaved.empty()) {
TrueBlock = BasicBlock::Create(LastSI->getContext(), "select.true.sink",
EndBlock->getParent(), EndBlock);
TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
TrueBranch->setDebugLoc(LastSI->getDebugLoc());
for (Instruction *TrueInst : TrueSlicesInterleaved)
TrueInst->moveBefore(TrueBranch);
}
if (!FalseSlicesInterleaved.empty()) {
FalseBlock = BasicBlock::Create(LastSI->getContext(), "select.false.sink",
EndBlock->getParent(), EndBlock);
FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
FalseBranch->setDebugLoc(LastSI->getDebugLoc());
for (Instruction *FalseInst : FalseSlicesInterleaved)
FalseInst->moveBefore(FalseBranch);
}
if (TrueBlock == FalseBlock) {
assert(TrueBlock == nullptr &&
"Unexpected basic block transform while optimizing select");
FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
EndBlock->getParent(), EndBlock);
auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
FalseBranch->setDebugLoc(SI->getDebugLoc());
}
BasicBlock *TT, *FT;
if (TrueBlock == nullptr) {
TT = EndBlock;
FT = FalseBlock;
TrueBlock = StartBlock;
} else if (FalseBlock == nullptr) {
TT = TrueBlock;
FT = EndBlock;
FalseBlock = StartBlock;
} else {
TT = TrueBlock;
FT = FalseBlock;
}
IRBuilder<> IB(SI);
auto *CondFr =
IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen");
IB.CreateCondBr(CondFr, TT, FT, SI);
SmallPtrSet<const Instruction *, 2> INS;
INS.insert(ASI.begin(), ASI.end());
for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
SelectInst *SI = *It;
PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
PN->takeName(SI);
PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
PN->setDebugLoc(SI->getDebugLoc());
SI->replaceAllUsesWith(PN);
SI->eraseFromParent();
INS.erase(SI);
++NumSelectsConverted;
}
}
}
void SelectOptimize::collectSelectGroups(BasicBlock &BB,
SelectGroups &SIGroups) {
BasicBlock::iterator BBIt = BB.begin();
while (BBIt != BB.end()) {
Instruction *I = &*BBIt++;
if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
SelectGroup SIGroup;
SIGroup.push_back(SI);
while (BBIt != BB.end()) {
Instruction *NI = &*BBIt;
SelectInst *NSI = dyn_cast<SelectInst>(NI);
if (NSI && SI->getCondition() == NSI->getCondition()) {
SIGroup.push_back(NSI);
} else if (!NI->isDebugOrPseudoInst()) {
break;
}
++BBIt;
}
if (!isSelectKindSupported(SI))
continue;
SIGroups.push_back(SIGroup);
}
}
}
void SelectOptimize::findProfitableSIGroupsBase(SelectGroups &SIGroups,
SelectGroups &ProfSIGroups) {
for (SelectGroup &ASI : SIGroups) {
++NumSelectOptAnalyzed;
if (isConvertToBranchProfitableBase(ASI))
ProfSIGroups.push_back(ASI);
}
}
void SelectOptimize::findProfitableSIGroupsInnerLoops(
const Loop *L, SelectGroups &SIGroups, SelectGroups &ProfSIGroups) {
NumSelectOptAnalyzed += SIGroups.size();
DenseMap<const Instruction *, CostInfo> InstCostMap;
CostInfo LoopCost[2] = {{Scaled64::getZero(), Scaled64::getZero()},
{Scaled64::getZero(), Scaled64::getZero()}};
if (!computeLoopCosts(L, SIGroups, InstCostMap, LoopCost) ||
!checkLoopHeuristics(L, LoopCost)) {
return;
}
for (SelectGroup &ASI : SIGroups) {
Scaled64 SelectCost = Scaled64::getZero(), BranchCost = Scaled64::getZero();
for (SelectInst *SI : ASI) {
SelectCost = std::max(SelectCost, InstCostMap[SI].PredCost);
BranchCost = std::max(BranchCost, InstCostMap[SI].NonPredCost);
}
if (BranchCost < SelectCost) {
OptimizationRemark OR(DEBUG_TYPE, "SelectOpti", ASI.front());
OR << "Profitable to convert to branch (loop analysis). BranchCost="
<< BranchCost.toString() << ", SelectCost=" << SelectCost.toString()
<< ". ";
ORE->emit(OR);
++NumSelectConvertedLoop;
ProfSIGroups.push_back(ASI);
} else {
OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti", ASI.front());
ORmiss << "Select is more profitable (loop analysis). BranchCost="
<< BranchCost.toString()
<< ", SelectCost=" << SelectCost.toString() << ". ";
ORE->emit(ORmiss);
}
}
}
bool SelectOptimize::isConvertToBranchProfitableBase(
const SmallVector<SelectInst *, 2> &ASI) {
SelectInst *SI = ASI.front();
OptimizationRemark OR(DEBUG_TYPE, "SelectOpti", SI);
OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti", SI);
if (PSI->isColdBlock(SI->getParent(), BFI.get())) {
++NumSelectColdBB;
ORmiss << "Not converted to branch because of cold basic block. ";
ORE->emit(ORmiss);
return false;
}
if (SI->getMetadata(LLVMContext::MD_unpredictable)) {
++NumSelectUnPred;
ORmiss << "Not converted to branch because of unpredictable branch. ";
ORE->emit(ORmiss);
return false;
}
if (isSelectHighlyPredictable(SI) && TLI->isPredictableSelectExpensive()) {
++NumSelectConvertedHighPred;
OR << "Converted to branch because of highly predictable branch. ";
ORE->emit(OR);
return true;
}
if (hasExpensiveColdOperand(ASI)) {
++NumSelectConvertedExpColdOperand;
OR << "Converted to branch because of expensive cold operand.";
ORE->emit(OR);
return true;
}
ORmiss << "Not profitable to convert to branch (base heuristic).";
ORE->emit(ORmiss);
return false;
}
static InstructionCost divideNearest(InstructionCost Numerator,
uint64_t Denominator) {
return (Numerator + (Denominator / 2)) / Denominator;
}
bool SelectOptimize::hasExpensiveColdOperand(
const SmallVector<SelectInst *, 2> &ASI) {
bool ColdOperand = false;
uint64_t TrueWeight, FalseWeight, TotalWeight;
if (ASI.front()->extractProfMetadata(TrueWeight, FalseWeight)) {
uint64_t MinWeight = std::min(TrueWeight, FalseWeight);
TotalWeight = TrueWeight + FalseWeight;
ColdOperand = TotalWeight * ColdOperandThreshold > 100 * MinWeight;
} else if (PSI->hasProfileSummary()) {
OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti", ASI.front());
ORmiss << "Profile data available but missing branch-weights metadata for "
"select instruction. ";
ORE->emit(ORmiss);
}
if (!ColdOperand)
return false;
for (SelectInst *SI : ASI) {
Instruction *ColdI = nullptr;
uint64_t HotWeight;
if (TrueWeight < FalseWeight) {
ColdI = dyn_cast<Instruction>(SI->getTrueValue());
HotWeight = FalseWeight;
} else {
ColdI = dyn_cast<Instruction>(SI->getFalseValue());
HotWeight = TrueWeight;
}
if (ColdI) {
std::stack<Instruction *> ColdSlice;
getExclBackwardsSlice(ColdI, ColdSlice);
InstructionCost SliceCost = 0;
while (!ColdSlice.empty()) {
SliceCost += TTI->getInstructionCost(ColdSlice.top(),
TargetTransformInfo::TCK_Latency);
ColdSlice.pop();
}
InstructionCost AdjSliceCost =
divideNearest(SliceCost * HotWeight, TotalWeight);
if (AdjSliceCost >=
ColdOperandMaxCostMultiplier * TargetTransformInfo::TCC_Expensive)
return true;
}
}
return false;
}
void SelectOptimize::getExclBackwardsSlice(Instruction *I,
std::stack<Instruction *> &Slice,
bool ForSinking) {
SmallPtrSet<Instruction *, 2> Visited;
std::queue<Instruction *> Worklist;
Worklist.push(I);
while (!Worklist.empty()) {
Instruction *II = Worklist.front();
Worklist.pop();
if (!Visited.insert(II).second)
continue;
if (!II->hasOneUse())
continue;
if (ForSinking && (II->isTerminator() || II->mayHaveSideEffects() ||
isa<SelectInst>(II) || isa<PHINode>(II)))
continue;
if (BFI->getBlockFreq(II->getParent()) < BFI->getBlockFreq(I->getParent()))
continue;
Slice.push(II);
for (unsigned k = 0; k < II->getNumOperands(); ++k)
if (auto *OpI = dyn_cast<Instruction>(II->getOperand(k)))
Worklist.push(OpI);
}
}
bool SelectOptimize::isSelectHighlyPredictable(const SelectInst *SI) {
uint64_t TrueWeight, FalseWeight;
if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
uint64_t Max = std::max(TrueWeight, FalseWeight);
uint64_t Sum = TrueWeight + FalseWeight;
if (Sum != 0) {
auto Probability = BranchProbability::getBranchProbability(Max, Sum);
if (Probability > TTI->getPredictableBranchThreshold())
return true;
}
}
return false;
}
bool SelectOptimize::checkLoopHeuristics(const Loop *L,
const CostInfo LoopCost[2]) {
if (DisableLoopLevelHeuristics)
return true;
OptimizationRemarkMissed ORmissL(DEBUG_TYPE, "SelectOpti",
L->getHeader()->getFirstNonPHI());
if (LoopCost[0].NonPredCost > LoopCost[0].PredCost ||
LoopCost[1].NonPredCost >= LoopCost[1].PredCost) {
ORmissL << "No select conversion in the loop due to no reduction of loop's "
"critical path. ";
ORE->emit(ORmissL);
return false;
}
Scaled64 Gain[2] = {LoopCost[0].PredCost - LoopCost[0].NonPredCost,
LoopCost[1].PredCost - LoopCost[1].NonPredCost};
if (Gain[1] < Scaled64::get(GainCycleThreshold) ||
Gain[1] * Scaled64::get(GainRelativeThreshold) < LoopCost[1].PredCost) {
Scaled64 RelativeGain = Scaled64::get(100) * Gain[1] / LoopCost[1].PredCost;
ORmissL << "No select conversion in the loop due to small reduction of "
"loop's critical path. Gain="
<< Gain[1].toString()
<< ", RelativeGain=" << RelativeGain.toString() << "%. ";
ORE->emit(ORmissL);
return false;
}
if (Gain[1] > Gain[0]) {
Scaled64 GradientGain = Scaled64::get(100) * (Gain[1] - Gain[0]) /
(LoopCost[1].PredCost - LoopCost[0].PredCost);
if (GradientGain < Scaled64::get(GainGradientThreshold)) {
ORmissL << "No select conversion in the loop due to small gradient gain. "
"GradientGain="
<< GradientGain.toString() << "%. ";
ORE->emit(ORmissL);
return false;
}
}
else if (Gain[1] < Gain[0]) {
ORmissL
<< "No select conversion in the loop due to negative gradient gain. ";
ORE->emit(ORmissL);
return false;
}
return true;
}
bool SelectOptimize::computeLoopCosts(
const Loop *L, const SelectGroups &SIGroups,
DenseMap<const Instruction *, CostInfo> &InstCostMap, CostInfo *LoopCost) {
const auto &SIset = getSIset(SIGroups);
const unsigned Iterations = 2;
for (unsigned Iter = 0; Iter < Iterations; ++Iter) {
CostInfo &MaxCost = LoopCost[Iter];
for (BasicBlock *BB : L->getBlocks()) {
for (const Instruction &I : *BB) {
if (I.isDebugOrPseudoInst())
continue;
Scaled64 IPredCost = Scaled64::getZero(),
INonPredCost = Scaled64::getZero();
for (const Use &U : I.operands()) {
auto UI = dyn_cast<Instruction>(U.get());
if (!UI)
continue;
if (InstCostMap.count(UI)) {
IPredCost = std::max(IPredCost, InstCostMap[UI].PredCost);
INonPredCost = std::max(INonPredCost, InstCostMap[UI].NonPredCost);
}
}
auto ILatency = computeInstCost(&I);
if (!ILatency) {
OptimizationRemarkMissed ORmissL(DEBUG_TYPE, "SelectOpti", &I);
ORmissL << "Invalid instruction cost preventing analysis and "
"optimization of the inner-most loop containing this "
"instruction. ";
ORE->emit(ORmissL);
return false;
}
IPredCost += Scaled64::get(ILatency.value());
INonPredCost += Scaled64::get(ILatency.value());
if (SIset.contains(&I)) {
auto SI = dyn_cast<SelectInst>(&I);
Scaled64 TrueOpCost = Scaled64::getZero(),
FalseOpCost = Scaled64::getZero();
if (auto *TI = dyn_cast<Instruction>(SI->getTrueValue()))
if (InstCostMap.count(TI))
TrueOpCost = InstCostMap[TI].NonPredCost;
if (auto *FI = dyn_cast<Instruction>(SI->getFalseValue()))
if (InstCostMap.count(FI))
FalseOpCost = InstCostMap[FI].NonPredCost;
Scaled64 PredictedPathCost =
getPredictedPathCost(TrueOpCost, FalseOpCost, SI);
Scaled64 CondCost = Scaled64::getZero();
if (auto *CI = dyn_cast<Instruction>(SI->getCondition()))
if (InstCostMap.count(CI))
CondCost = InstCostMap[CI].NonPredCost;
Scaled64 MispredictCost = getMispredictionCost(SI, CondCost);
INonPredCost = PredictedPathCost + MispredictCost;
}
InstCostMap[&I] = {IPredCost, INonPredCost};
MaxCost.PredCost = std::max(MaxCost.PredCost, IPredCost);
MaxCost.NonPredCost = std::max(MaxCost.NonPredCost, INonPredCost);
}
}
}
return true;
}
SmallPtrSet<const Instruction *, 2>
SelectOptimize::getSIset(const SelectGroups &SIGroups) {
SmallPtrSet<const Instruction *, 2> SIset;
for (const SelectGroup &ASI : SIGroups)
for (const SelectInst *SI : ASI)
SIset.insert(SI);
return SIset;
}
Optional<uint64_t> SelectOptimize::computeInstCost(const Instruction *I) {
InstructionCost ICost =
TTI->getInstructionCost(I, TargetTransformInfo::TCK_Latency);
if (auto OC = ICost.getValue())
return Optional<uint64_t>(*OC);
return Optional<uint64_t>(None);
}
ScaledNumber<uint64_t>
SelectOptimize::getMispredictionCost(const SelectInst *SI,
const Scaled64 CondCost) {
uint64_t MispredictPenalty = TSchedModel.getMCSchedModel()->MispredictPenalty;
uint64_t MispredictRate = MispredictDefaultRate;
if (isSelectHighlyPredictable(SI))
MispredictRate = 0;
Scaled64 MispredictCost =
std::max(Scaled64::get(MispredictPenalty), CondCost) *
Scaled64::get(MispredictRate);
MispredictCost /= Scaled64::get(100);
return MispredictCost;
}
ScaledNumber<uint64_t>
SelectOptimize::getPredictedPathCost(Scaled64 TrueCost, Scaled64 FalseCost,
const SelectInst *SI) {
Scaled64 PredPathCost;
uint64_t TrueWeight, FalseWeight;
if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
uint64_t SumWeight = TrueWeight + FalseWeight;
if (SumWeight != 0) {
PredPathCost = TrueCost * Scaled64::get(TrueWeight) +
FalseCost * Scaled64::get(FalseWeight);
PredPathCost /= Scaled64::get(SumWeight);
return PredPathCost;
}
}
PredPathCost = std::max(TrueCost * Scaled64::get(3) + FalseCost,
FalseCost * Scaled64::get(3) + TrueCost);
PredPathCost /= Scaled64::get(4);
return PredPathCost;
}
bool SelectOptimize::isSelectKindSupported(SelectInst *SI) {
bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
if (VectorCond)
return false;
TargetLowering::SelectSupportKind SelectKind;
if (SI->getType()->isVectorTy())
SelectKind = TargetLowering::ScalarCondVectorVal;
else
SelectKind = TargetLowering::ScalarValSelect;
return TLI->isSelectSupported(SelectKind);
}