#include "clang/Support/RISCVVIntrinsicUtils.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/raw_ostream.h"
#include <numeric>
#include <set>
#include <unordered_map>
using namespace llvm;
namespace clang {
namespace RISCV {
const PrototypeDescriptor PrototypeDescriptor::Mask = PrototypeDescriptor(
BaseTypeModifier::Vector, VectorTypeModifier::MaskVector);
const PrototypeDescriptor PrototypeDescriptor::VL =
PrototypeDescriptor(BaseTypeModifier::SizeT);
const PrototypeDescriptor PrototypeDescriptor::Vector =
PrototypeDescriptor(BaseTypeModifier::Vector);
LMULType::LMULType(int NewLog2LMUL) {
assert(NewLog2LMUL <= 3 && NewLog2LMUL >= -3 && "Bad LMUL number!");
Log2LMUL = NewLog2LMUL;
}
std::string LMULType::str() const {
if (Log2LMUL < 0)
return "mf" + utostr(1ULL << (-Log2LMUL));
return "m" + utostr(1ULL << Log2LMUL);
}
VScaleVal LMULType::getScale(unsigned ElementBitwidth) const {
int Log2ScaleResult = 0;
switch (ElementBitwidth) {
default:
break;
case 8:
Log2ScaleResult = Log2LMUL + 3;
break;
case 16:
Log2ScaleResult = Log2LMUL + 2;
break;
case 32:
Log2ScaleResult = Log2LMUL + 1;
break;
case 64:
Log2ScaleResult = Log2LMUL;
break;
}
if (Log2ScaleResult < 0)
return llvm::None;
return 1 << Log2ScaleResult;
}
void LMULType::MulLog2LMUL(int log2LMUL) { Log2LMUL += log2LMUL; }
RVVType::RVVType(BasicType BT, int Log2LMUL,
const PrototypeDescriptor &prototype)
: BT(BT), LMUL(LMULType(Log2LMUL)) {
applyBasicType();
applyModifier(prototype);
Valid = verifyType();
if (Valid) {
initBuiltinStr();
initTypeStr();
if (isVector()) {
initClangBuiltinStr();
}
}
}
bool RVVType::verifyType() const {
if (ScalarType == Invalid)
return false;
if (isScalar())
return true;
if (!Scale)
return false;
if (isFloat() && ElementBitwidth == 8)
return false;
unsigned V = Scale.value();
switch (ElementBitwidth) {
case 1:
case 8:
return (V <= 64 && isPowerOf2_32(V));
case 16:
return (V <= 32 && isPowerOf2_32(V));
case 32:
return (V <= 16 && isPowerOf2_32(V));
case 64:
return (V <= 8 && isPowerOf2_32(V));
}
return false;
}
void RVVType::initBuiltinStr() {
assert(isValid() && "RVVType is invalid");
switch (ScalarType) {
case ScalarTypeKind::Void:
BuiltinStr = "v";
return;
case ScalarTypeKind::Size_t:
BuiltinStr = "z";
if (IsImmediate)
BuiltinStr = "I" + BuiltinStr;
if (IsPointer)
BuiltinStr += "*";
return;
case ScalarTypeKind::Ptrdiff_t:
BuiltinStr = "Y";
return;
case ScalarTypeKind::UnsignedLong:
BuiltinStr = "ULi";
return;
case ScalarTypeKind::SignedLong:
BuiltinStr = "Li";
return;
case ScalarTypeKind::Boolean:
assert(ElementBitwidth == 1);
BuiltinStr += "b";
break;
case ScalarTypeKind::SignedInteger:
case ScalarTypeKind::UnsignedInteger:
switch (ElementBitwidth) {
case 8:
BuiltinStr += "c";
break;
case 16:
BuiltinStr += "s";
break;
case 32:
BuiltinStr += "i";
break;
case 64:
BuiltinStr += "Wi";
break;
default:
llvm_unreachable("Unhandled ElementBitwidth!");
}
if (isSignedInteger())
BuiltinStr = "S" + BuiltinStr;
else
BuiltinStr = "U" + BuiltinStr;
break;
case ScalarTypeKind::Float:
switch (ElementBitwidth) {
case 16:
BuiltinStr += "x";
break;
case 32:
BuiltinStr += "f";
break;
case 64:
BuiltinStr += "d";
break;
default:
llvm_unreachable("Unhandled ElementBitwidth!");
}
break;
default:
llvm_unreachable("ScalarType is invalid!");
}
if (IsImmediate)
BuiltinStr = "I" + BuiltinStr;
if (isScalar()) {
if (IsConstant)
BuiltinStr += "C";
if (IsPointer)
BuiltinStr += "*";
return;
}
BuiltinStr = "q" + utostr(*Scale) + BuiltinStr;
if (IsPointer)
BuiltinStr += "*";
}
void RVVType::initClangBuiltinStr() {
assert(isValid() && "RVVType is invalid");
assert(isVector() && "Handle Vector type only");
ClangBuiltinStr = "__rvv_";
switch (ScalarType) {
case ScalarTypeKind::Boolean:
ClangBuiltinStr += "bool" + utostr(64 / *Scale) + "_t";
return;
case ScalarTypeKind::Float:
ClangBuiltinStr += "float";
break;
case ScalarTypeKind::SignedInteger:
ClangBuiltinStr += "int";
break;
case ScalarTypeKind::UnsignedInteger:
ClangBuiltinStr += "uint";
break;
default:
llvm_unreachable("ScalarTypeKind is invalid");
}
ClangBuiltinStr += utostr(ElementBitwidth) + LMUL.str() + "_t";
}
void RVVType::initTypeStr() {
assert(isValid() && "RVVType is invalid");
if (IsConstant)
Str += "const ";
auto getTypeString = [&](StringRef TypeStr) {
if (isScalar())
return Twine(TypeStr + Twine(ElementBitwidth) + "_t").str();
return Twine("v" + TypeStr + Twine(ElementBitwidth) + LMUL.str() + "_t")
.str();
};
switch (ScalarType) {
case ScalarTypeKind::Void:
Str = "void";
return;
case ScalarTypeKind::Size_t:
Str = "size_t";
if (IsPointer)
Str += " *";
return;
case ScalarTypeKind::Ptrdiff_t:
Str = "ptrdiff_t";
return;
case ScalarTypeKind::UnsignedLong:
Str = "unsigned long";
return;
case ScalarTypeKind::SignedLong:
Str = "long";
return;
case ScalarTypeKind::Boolean:
if (isScalar())
Str += "bool";
else
Str += "vbool" + utostr(64 / *Scale) + "_t";
break;
case ScalarTypeKind::Float:
if (isScalar()) {
if (ElementBitwidth == 64)
Str += "double";
else if (ElementBitwidth == 32)
Str += "float";
else if (ElementBitwidth == 16)
Str += "_Float16";
else
llvm_unreachable("Unhandled floating type.");
} else
Str += getTypeString("float");
break;
case ScalarTypeKind::SignedInteger:
Str += getTypeString("int");
break;
case ScalarTypeKind::UnsignedInteger:
Str += getTypeString("uint");
break;
default:
llvm_unreachable("ScalarType is invalid!");
}
if (IsPointer)
Str += " *";
}
void RVVType::initShortStr() {
switch (ScalarType) {
case ScalarTypeKind::Boolean:
assert(isVector());
ShortStr = "b" + utostr(64 / *Scale);
return;
case ScalarTypeKind::Float:
ShortStr = "f" + utostr(ElementBitwidth);
break;
case ScalarTypeKind::SignedInteger:
ShortStr = "i" + utostr(ElementBitwidth);
break;
case ScalarTypeKind::UnsignedInteger:
ShortStr = "u" + utostr(ElementBitwidth);
break;
default:
llvm_unreachable("Unhandled case!");
}
if (isVector())
ShortStr += LMUL.str();
}
void RVVType::applyBasicType() {
switch (BT) {
case BasicType::Int8:
ElementBitwidth = 8;
ScalarType = ScalarTypeKind::SignedInteger;
break;
case BasicType::Int16:
ElementBitwidth = 16;
ScalarType = ScalarTypeKind::SignedInteger;
break;
case BasicType::Int32:
ElementBitwidth = 32;
ScalarType = ScalarTypeKind::SignedInteger;
break;
case BasicType::Int64:
ElementBitwidth = 64;
ScalarType = ScalarTypeKind::SignedInteger;
break;
case BasicType::Float16:
ElementBitwidth = 16;
ScalarType = ScalarTypeKind::Float;
break;
case BasicType::Float32:
ElementBitwidth = 32;
ScalarType = ScalarTypeKind::Float;
break;
case BasicType::Float64:
ElementBitwidth = 64;
ScalarType = ScalarTypeKind::Float;
break;
default:
llvm_unreachable("Unhandled type code!");
}
assert(ElementBitwidth != 0 && "Bad element bitwidth!");
}
Optional<PrototypeDescriptor> PrototypeDescriptor::parsePrototypeDescriptor(
llvm::StringRef PrototypeDescriptorStr) {
PrototypeDescriptor PD;
BaseTypeModifier PT = BaseTypeModifier::Invalid;
VectorTypeModifier VTM = VectorTypeModifier::NoModifier;
if (PrototypeDescriptorStr.empty())
return PD;
auto PType = PrototypeDescriptorStr.back();
switch (PType) {
case 'e':
PT = BaseTypeModifier::Scalar;
break;
case 'v':
PT = BaseTypeModifier::Vector;
break;
case 'w':
PT = BaseTypeModifier::Vector;
VTM = VectorTypeModifier::Widening2XVector;
break;
case 'q':
PT = BaseTypeModifier::Vector;
VTM = VectorTypeModifier::Widening4XVector;
break;
case 'o':
PT = BaseTypeModifier::Vector;
VTM = VectorTypeModifier::Widening8XVector;
break;
case 'm':
PT = BaseTypeModifier::Vector;
VTM = VectorTypeModifier::MaskVector;
break;
case '0':
PT = BaseTypeModifier::Void;
break;
case 'z':
PT = BaseTypeModifier::SizeT;
break;
case 't':
PT = BaseTypeModifier::Ptrdiff;
break;
case 'u':
PT = BaseTypeModifier::UnsignedLong;
break;
case 'l':
PT = BaseTypeModifier::SignedLong;
break;
default:
llvm_unreachable("Illegal primitive type transformers!");
}
PD.PT = static_cast<uint8_t>(PT);
PrototypeDescriptorStr = PrototypeDescriptorStr.drop_back();
if (PrototypeDescriptorStr.startswith("(")) {
assert(VTM == VectorTypeModifier::NoModifier &&
"VectorTypeModifier should only have one modifier");
size_t Idx = PrototypeDescriptorStr.find(')');
assert(Idx != StringRef::npos);
StringRef ComplexType = PrototypeDescriptorStr.slice(1, Idx);
PrototypeDescriptorStr = PrototypeDescriptorStr.drop_front(Idx + 1);
assert(!PrototypeDescriptorStr.contains('(') &&
"Only allow one vector type modifier");
auto ComplexTT = ComplexType.split(":");
if (ComplexTT.first == "Log2EEW") {
uint32_t Log2EEW;
if (ComplexTT.second.getAsInteger(10, Log2EEW)) {
llvm_unreachable("Invalid Log2EEW value!");
return None;
}
switch (Log2EEW) {
case 3:
VTM = VectorTypeModifier::Log2EEW3;
break;
case 4:
VTM = VectorTypeModifier::Log2EEW4;
break;
case 5:
VTM = VectorTypeModifier::Log2EEW5;
break;
case 6:
VTM = VectorTypeModifier::Log2EEW6;
break;
default:
llvm_unreachable("Invalid Log2EEW value, should be [3-6]");
return None;
}
} else if (ComplexTT.first == "FixedSEW") {
uint32_t NewSEW;
if (ComplexTT.second.getAsInteger(10, NewSEW)) {
llvm_unreachable("Invalid FixedSEW value!");
return None;
}
switch (NewSEW) {
case 8:
VTM = VectorTypeModifier::FixedSEW8;
break;
case 16:
VTM = VectorTypeModifier::FixedSEW16;
break;
case 32:
VTM = VectorTypeModifier::FixedSEW32;
break;
case 64:
VTM = VectorTypeModifier::FixedSEW64;
break;
default:
llvm_unreachable("Invalid FixedSEW value, should be 8, 16, 32 or 64");
return None;
}
} else if (ComplexTT.first == "LFixedLog2LMUL") {
int32_t Log2LMUL;
if (ComplexTT.second.getAsInteger(10, Log2LMUL)) {
llvm_unreachable("Invalid LFixedLog2LMUL value!");
return None;
}
switch (Log2LMUL) {
case -3:
VTM = VectorTypeModifier::LFixedLog2LMULN3;
break;
case -2:
VTM = VectorTypeModifier::LFixedLog2LMULN2;
break;
case -1:
VTM = VectorTypeModifier::LFixedLog2LMULN1;
break;
case 0:
VTM = VectorTypeModifier::LFixedLog2LMUL0;
break;
case 1:
VTM = VectorTypeModifier::LFixedLog2LMUL1;
break;
case 2:
VTM = VectorTypeModifier::LFixedLog2LMUL2;
break;
case 3:
VTM = VectorTypeModifier::LFixedLog2LMUL3;
break;
default:
llvm_unreachable("Invalid LFixedLog2LMUL value, should be [-3, 3]");
return None;
}
} else if (ComplexTT.first == "SFixedLog2LMUL") {
int32_t Log2LMUL;
if (ComplexTT.second.getAsInteger(10, Log2LMUL)) {
llvm_unreachable("Invalid SFixedLog2LMUL value!");
return None;
}
switch (Log2LMUL) {
case -3:
VTM = VectorTypeModifier::SFixedLog2LMULN3;
break;
case -2:
VTM = VectorTypeModifier::SFixedLog2LMULN2;
break;
case -1:
VTM = VectorTypeModifier::SFixedLog2LMULN1;
break;
case 0:
VTM = VectorTypeModifier::SFixedLog2LMUL0;
break;
case 1:
VTM = VectorTypeModifier::SFixedLog2LMUL1;
break;
case 2:
VTM = VectorTypeModifier::SFixedLog2LMUL2;
break;
case 3:
VTM = VectorTypeModifier::SFixedLog2LMUL3;
break;
default:
llvm_unreachable("Invalid LFixedLog2LMUL value, should be [-3, 3]");
return None;
}
} else {
llvm_unreachable("Illegal complex type transformers!");
}
}
PD.VTM = static_cast<uint8_t>(VTM);
TypeModifier TM = TypeModifier::NoModifier;
for (char I : PrototypeDescriptorStr) {
switch (I) {
case 'P':
if ((TM & TypeModifier::Const) == TypeModifier::Const)
llvm_unreachable("'P' transformer cannot be used after 'C'");
if ((TM & TypeModifier::Pointer) == TypeModifier::Pointer)
llvm_unreachable("'P' transformer cannot be used twice");
TM |= TypeModifier::Pointer;
break;
case 'C':
TM |= TypeModifier::Const;
break;
case 'K':
TM |= TypeModifier::Immediate;
break;
case 'U':
TM |= TypeModifier::UnsignedInteger;
break;
case 'I':
TM |= TypeModifier::SignedInteger;
break;
case 'F':
TM |= TypeModifier::Float;
break;
case 'S':
TM |= TypeModifier::LMUL1;
break;
default:
llvm_unreachable("Illegal non-primitive type transformer!");
}
}
PD.TM = static_cast<uint8_t>(TM);
return PD;
}
void RVVType::applyModifier(const PrototypeDescriptor &Transformer) {
switch (static_cast<BaseTypeModifier>(Transformer.PT)) {
case BaseTypeModifier::Scalar:
Scale = 0;
break;
case BaseTypeModifier::Vector:
Scale = LMUL.getScale(ElementBitwidth);
break;
case BaseTypeModifier::Void:
ScalarType = ScalarTypeKind::Void;
break;
case BaseTypeModifier::SizeT:
ScalarType = ScalarTypeKind::Size_t;
break;
case BaseTypeModifier::Ptrdiff:
ScalarType = ScalarTypeKind::Ptrdiff_t;
break;
case BaseTypeModifier::UnsignedLong:
ScalarType = ScalarTypeKind::UnsignedLong;
break;
case BaseTypeModifier::SignedLong:
ScalarType = ScalarTypeKind::SignedLong;
break;
case BaseTypeModifier::Invalid:
ScalarType = ScalarTypeKind::Invalid;
return;
}
switch (static_cast<VectorTypeModifier>(Transformer.VTM)) {
case VectorTypeModifier::Widening2XVector:
ElementBitwidth *= 2;
LMUL.MulLog2LMUL(1);
Scale = LMUL.getScale(ElementBitwidth);
break;
case VectorTypeModifier::Widening4XVector:
ElementBitwidth *= 4;
LMUL.MulLog2LMUL(2);
Scale = LMUL.getScale(ElementBitwidth);
break;
case VectorTypeModifier::Widening8XVector:
ElementBitwidth *= 8;
LMUL.MulLog2LMUL(3);
Scale = LMUL.getScale(ElementBitwidth);
break;
case VectorTypeModifier::MaskVector:
ScalarType = ScalarTypeKind::Boolean;
Scale = LMUL.getScale(ElementBitwidth);
ElementBitwidth = 1;
break;
case VectorTypeModifier::Log2EEW3:
applyLog2EEW(3);
break;
case VectorTypeModifier::Log2EEW4:
applyLog2EEW(4);
break;
case VectorTypeModifier::Log2EEW5:
applyLog2EEW(5);
break;
case VectorTypeModifier::Log2EEW6:
applyLog2EEW(6);
break;
case VectorTypeModifier::FixedSEW8:
applyFixedSEW(8);
break;
case VectorTypeModifier::FixedSEW16:
applyFixedSEW(16);
break;
case VectorTypeModifier::FixedSEW32:
applyFixedSEW(32);
break;
case VectorTypeModifier::FixedSEW64:
applyFixedSEW(64);
break;
case VectorTypeModifier::LFixedLog2LMULN3:
applyFixedLog2LMUL(-3, FixedLMULType::LargerThan);
break;
case VectorTypeModifier::LFixedLog2LMULN2:
applyFixedLog2LMUL(-2, FixedLMULType::LargerThan);
break;
case VectorTypeModifier::LFixedLog2LMULN1:
applyFixedLog2LMUL(-1, FixedLMULType::LargerThan);
break;
case VectorTypeModifier::LFixedLog2LMUL0:
applyFixedLog2LMUL(0, FixedLMULType::LargerThan);
break;
case VectorTypeModifier::LFixedLog2LMUL1:
applyFixedLog2LMUL(1, FixedLMULType::LargerThan);
break;
case VectorTypeModifier::LFixedLog2LMUL2:
applyFixedLog2LMUL(2, FixedLMULType::LargerThan);
break;
case VectorTypeModifier::LFixedLog2LMUL3:
applyFixedLog2LMUL(3, FixedLMULType::LargerThan);
break;
case VectorTypeModifier::SFixedLog2LMULN3:
applyFixedLog2LMUL(-3, FixedLMULType::SmallerThan);
break;
case VectorTypeModifier::SFixedLog2LMULN2:
applyFixedLog2LMUL(-2, FixedLMULType::SmallerThan);
break;
case VectorTypeModifier::SFixedLog2LMULN1:
applyFixedLog2LMUL(-1, FixedLMULType::SmallerThan);
break;
case VectorTypeModifier::SFixedLog2LMUL0:
applyFixedLog2LMUL(0, FixedLMULType::SmallerThan);
break;
case VectorTypeModifier::SFixedLog2LMUL1:
applyFixedLog2LMUL(1, FixedLMULType::SmallerThan);
break;
case VectorTypeModifier::SFixedLog2LMUL2:
applyFixedLog2LMUL(2, FixedLMULType::SmallerThan);
break;
case VectorTypeModifier::SFixedLog2LMUL3:
applyFixedLog2LMUL(3, FixedLMULType::SmallerThan);
break;
case VectorTypeModifier::NoModifier:
break;
}
for (unsigned TypeModifierMaskShift = 0;
TypeModifierMaskShift <= static_cast<unsigned>(TypeModifier::MaxOffset);
++TypeModifierMaskShift) {
unsigned TypeModifierMask = 1 << TypeModifierMaskShift;
if ((static_cast<unsigned>(Transformer.TM) & TypeModifierMask) !=
TypeModifierMask)
continue;
switch (static_cast<TypeModifier>(TypeModifierMask)) {
case TypeModifier::Pointer:
IsPointer = true;
break;
case TypeModifier::Const:
IsConstant = true;
break;
case TypeModifier::Immediate:
IsImmediate = true;
IsConstant = true;
break;
case TypeModifier::UnsignedInteger:
ScalarType = ScalarTypeKind::UnsignedInteger;
break;
case TypeModifier::SignedInteger:
ScalarType = ScalarTypeKind::SignedInteger;
break;
case TypeModifier::Float:
ScalarType = ScalarTypeKind::Float;
break;
case TypeModifier::LMUL1:
LMUL = LMULType(0);
Scale = LMUL.getScale(ElementBitwidth);
break;
default:
llvm_unreachable("Unknown type modifier mask!");
}
}
}
void RVVType::applyLog2EEW(unsigned Log2EEW) {
LMUL.MulLog2LMUL(Log2EEW - Log2_32(ElementBitwidth));
ElementBitwidth = 1 << Log2EEW;
ScalarType = ScalarTypeKind::SignedInteger;
Scale = LMUL.getScale(ElementBitwidth);
}
void RVVType::applyFixedSEW(unsigned NewSEW) {
if (ElementBitwidth == NewSEW) {
ScalarType = ScalarTypeKind::Invalid;
return;
}
ElementBitwidth = NewSEW;
Scale = LMUL.getScale(ElementBitwidth);
}
void RVVType::applyFixedLog2LMUL(int Log2LMUL, enum FixedLMULType Type) {
switch (Type) {
case FixedLMULType::LargerThan:
if (Log2LMUL < LMUL.Log2LMUL) {
ScalarType = ScalarTypeKind::Invalid;
return;
}
break;
case FixedLMULType::SmallerThan:
if (Log2LMUL > LMUL.Log2LMUL) {
ScalarType = ScalarTypeKind::Invalid;
return;
}
break;
}
LMUL = LMULType(Log2LMUL);
Scale = LMUL.getScale(ElementBitwidth);
}
Optional<RVVTypes>
RVVType::computeTypes(BasicType BT, int Log2LMUL, unsigned NF,
ArrayRef<PrototypeDescriptor> Prototype) {
if ((Log2LMUL >= 1) && (1 << Log2LMUL) * NF > 8)
return llvm::None;
RVVTypes Types;
for (const PrototypeDescriptor &Proto : Prototype) {
auto T = computeType(BT, Log2LMUL, Proto);
if (!T)
return llvm::None;
Types.push_back(T.value());
}
return Types;
}
static uint64_t computeRVVTypeHashValue(BasicType BT, int Log2LMUL,
PrototypeDescriptor Proto) {
assert(Log2LMUL >= -3 && Log2LMUL <= 3);
return (Log2LMUL + 3) | (static_cast<uint64_t>(BT) & 0xff) << 8 |
((uint64_t)(Proto.PT & 0xff) << 16) |
((uint64_t)(Proto.TM & 0xff) << 24) |
((uint64_t)(Proto.VTM & 0xff) << 32);
}
Optional<RVVTypePtr> RVVType::computeType(BasicType BT, int Log2LMUL,
PrototypeDescriptor Proto) {
static std::unordered_map<uint64_t, RVVType> LegalTypes;
static std::set<uint64_t> IllegalTypes;
uint64_t Idx = computeRVVTypeHashValue(BT, Log2LMUL, Proto);
auto It = LegalTypes.find(Idx);
if (It != LegalTypes.end())
return &(It->second);
if (IllegalTypes.count(Idx))
return llvm::None;
RVVType T(BT, Log2LMUL, Proto);
if (T.isValid()) {
LegalTypes.insert({Idx, T});
return &(LegalTypes[Idx]);
}
IllegalTypes.insert(Idx);
return llvm::None;
}
RVVIntrinsic::RVVIntrinsic(
StringRef NewName, StringRef Suffix, StringRef NewOverloadedName,
StringRef OverloadedSuffix, StringRef IRName, bool IsMasked,
bool HasMaskedOffOperand, bool HasVL, PolicyScheme Scheme,
bool HasUnMaskedOverloaded, bool HasBuiltinAlias, StringRef ManualCodegen,
const RVVTypes &OutInTypes, const std::vector<int64_t> &NewIntrinsicTypes,
const std::vector<StringRef> &RequiredFeatures, unsigned NF)
: IRName(IRName), IsMasked(IsMasked), HasVL(HasVL), Scheme(Scheme),
HasUnMaskedOverloaded(HasUnMaskedOverloaded),
HasBuiltinAlias(HasBuiltinAlias), ManualCodegen(ManualCodegen.str()),
NF(NF) {
BuiltinName = NewName.str();
Name = BuiltinName;
if (NewOverloadedName.empty())
OverloadedName = NewName.split("_").first.str();
else
OverloadedName = NewOverloadedName.str();
if (!Suffix.empty())
Name += "_" + Suffix.str();
if (!OverloadedSuffix.empty())
OverloadedName += "_" + OverloadedSuffix.str();
if (IsMasked) {
BuiltinName += "_m";
Name += "_m";
}
OutputType = OutInTypes[0];
InputTypes.assign(OutInTypes.begin() + 1, OutInTypes.end());
IntrinsicTypes = NewIntrinsicTypes;
if ((IsMasked && HasMaskedOffOperand) ||
(!IsMasked && hasPassthruOperand())) {
for (auto &I : IntrinsicTypes) {
if (I >= 0)
I += NF;
}
}
}
std::string RVVIntrinsic::getBuiltinTypeStr() const {
std::string S;
S += OutputType->getBuiltinStr();
for (const auto &T : InputTypes) {
S += T->getBuiltinStr();
}
return S;
}
std::string RVVIntrinsic::getSuffixStr(
BasicType Type, int Log2LMUL,
llvm::ArrayRef<PrototypeDescriptor> PrototypeDescriptors) {
SmallVector<std::string> SuffixStrs;
for (auto PD : PrototypeDescriptors) {
auto T = RVVType::computeType(Type, Log2LMUL, PD);
SuffixStrs.push_back((*T)->getShortStr());
}
return join(SuffixStrs, "_");
}
llvm::SmallVector<PrototypeDescriptor>
RVVIntrinsic::computeBuiltinTypes(llvm::ArrayRef<PrototypeDescriptor> Prototype,
bool IsMasked, bool HasMaskedOffOperand,
bool HasVL, unsigned NF) {
SmallVector<PrototypeDescriptor> NewPrototype(Prototype.begin(),
Prototype.end());
if (IsMasked) {
if (HasMaskedOffOperand) {
if (NF == 1) {
NewPrototype.insert(NewPrototype.begin() + 1, NewPrototype[0]);
} else {
PrototypeDescriptor MaskoffType = NewPrototype[1];
MaskoffType.TM &= ~static_cast<uint8_t>(TypeModifier::Pointer);
for (unsigned I = 0; I < NF; ++I)
NewPrototype.insert(NewPrototype.begin() + NF + 1, MaskoffType);
}
}
if (HasMaskedOffOperand && NF > 1) {
NewPrototype.insert(NewPrototype.begin() + NF + 1,
PrototypeDescriptor::Mask);
} else {
NewPrototype.insert(NewPrototype.begin() + 1, PrototypeDescriptor::Mask);
}
}
if (HasVL)
NewPrototype.push_back(PrototypeDescriptor::VL);
return NewPrototype;
}
SmallVector<PrototypeDescriptor> parsePrototypes(StringRef Prototypes) {
SmallVector<PrototypeDescriptor> PrototypeDescriptors;
const StringRef Primaries("evwqom0ztul");
while (!Prototypes.empty()) {
size_t Idx = 0;
if (Prototypes[0] == '(')
Idx = Prototypes.find_first_of(')');
Idx = Prototypes.find_first_of(Primaries, Idx);
assert(Idx != StringRef::npos);
auto PD = PrototypeDescriptor::parsePrototypeDescriptor(
Prototypes.slice(0, Idx + 1));
if (!PD)
llvm_unreachable("Error during parsing prototype.");
PrototypeDescriptors.push_back(*PD);
Prototypes = Prototypes.drop_front(Idx + 1);
}
return PrototypeDescriptors;
}
raw_ostream &operator<<(raw_ostream &OS, const RVVIntrinsicRecord &Record) {
OS << "{";
OS << "\"" << Record.Name << "\",";
if (Record.OverloadedName == nullptr ||
StringRef(Record.OverloadedName).empty())
OS << "nullptr,";
else
OS << "\"" << Record.OverloadedName << "\",";
OS << Record.PrototypeIndex << ",";
OS << Record.SuffixIndex << ",";
OS << Record.OverloadedSuffixIndex << ",";
OS << (int)Record.PrototypeLength << ",";
OS << (int)Record.SuffixLength << ",";
OS << (int)Record.OverloadedSuffixSize << ",";
OS << (int)Record.RequiredExtensions << ",";
OS << (int)Record.TypeRangeMask << ",";
OS << (int)Record.Log2LMULMask << ",";
OS << (int)Record.NF << ",";
OS << (int)Record.HasMasked << ",";
OS << (int)Record.HasVL << ",";
OS << (int)Record.HasMaskedOffOperand << ",";
OS << "},\n";
return OS;
}
} }