====================
Standard C++ Modules
====================
.. contents::
:local:
Introduction
============
The term ``modules`` has a lot of meanings. For the users of Clang, modules may
refer to ``Objective-C Modules``, ``Clang C++ Modules`` (or ``Clang Header Modules``,
etc.) or ``Standard C++ Modules``. The implementation of all these kinds of modules in Clang
has a lot of shared code, but from the perspective of users, their semantics and
command line interfaces are very different. This document focuses on
an introduction of how to use standard C++ modules in Clang.
There is already a detailed document about `Clang modules <Modules.html>`_, it
should be helpful to read `Clang modules <Modules.html>`_ if you want to know
more about the general idea of modules. Since standard C++ modules have different semantics
(and work flows) from `Clang modules`, this page describes the background and use of
Clang with standard C++ modules.
Modules exist in two forms in the C++ Language Specification. They can refer to
either "Named Modules" or to "Header Units". This document covers both forms.
Standard C++ Named modules
==========================
This document was intended to be a manual first and foremost, however, we consider it helpful to
introduce some language background here for readers who are not familiar with
the new language feature. This document is not intended to be a language
tutorial; it will only introduce necessary concepts about the
structure and building of the project.
Background and terminology
--------------------------
Modules
~~~~~~~
In this document, the term ``Modules``/``modules`` refers to standard C++ modules
feature if it is not decorated by ``Clang``.
Clang Modules
~~~~~~~~~~~~~
In this document, the term ``Clang Modules``/``Clang modules`` refer to Clang
c++ modules extension. These are also known as ``Clang header modules``,
``Clang module map modules`` or ``Clang c++ modules``.
Module and module unit
~~~~~~~~~~~~~~~~~~~~~~
A module consists of one or more module units. A module unit is a special
translation unit. Every module unit must have a module declaration. The syntax
of the module declaration is:
.. code-block:: c++
[export] module module_name[:partition_name];
Terms enclosed in ``[]`` are optional. The syntax of ``module_name`` and ``partition_name``
in regex form corresponds to ``[a-zA-Z_][a-zA-Z_0-9\.]*``. In particular, a literal dot ``.``
in the name has no semantic meaning (e.g. implying a hierarchy).
In this document, module units are classified into:
* Primary module interface unit.
* Module implementation unit.
* Module interface partition unit.
* Internal module partition unit.
A primary module interface unit is a module unit whose module declaration is
``export module module_name;``. The ``module_name`` here denotes the name of the
module. A module should have one and only one primary module interface unit.
A module implementation unit is a module unit whose module declaration is
``module module_name;``. A module could have multiple module implementation
units with the same declaration.
A module interface partition unit is a module unit whose module declaration is
``export module module_name:partition_name;``. The ``partition_name`` should be
unique within any given module.
An internal module partition unit is a module unit whose module declaration
is ``module module_name:partition_name;``. The ``partition_name`` should be
unique within any given module.
In this document, we use the following umbrella terms:
* A ``module interface unit`` refers to either a ``primary module interface unit``
or a ``module interface partition unit``.
* An ``importable module unit`` refers to either a ``module interface unit``
or a ``internal module partition unit``.
* A ``module partition unit`` refers to either a ``module interface partition unit``
or a ``internal module partition unit``.
Built Module Interface file
~~~~~~~~~~~~~~~~~~~~~~~~~~~
A ``Built Module Interface file`` stands for the precompiled result of an importable module unit.
It is also called the acronym ``BMI`` genrally.
Global module fragment
~~~~~~~~~~~~~~~~~~~~~~
In a module unit, the section from ``module;`` to the module declaration is called the global module fragment.
How to build projects using modules
-----------------------------------
Quick Start
~~~~~~~~~~~
Let's see a "hello world" example that uses modules.
.. code-block:: c++
// Hello.cppm
module;
#include <iostream>
export module Hello;
export void hello() {
std::cout << "Hello World!\n";
}
// use.cpp
import Hello;
int main() {
hello();
return 0;
}
Then we type:
.. code-block:: console
$ clang++ -std=c++20 Hello.cppm --precompile -o Hello.pcm
$ clang++ -std=c++20 use.cpp -fprebuilt-module-path=. Hello.pcm -o Hello.out
$ ./Hello.out
Hello World!
In this example, we make and use a simple module ``Hello`` which contains only a
primary module interface unit ``Hello.cppm``.
Then let's see a little bit more complex "hello world" example which uses the 4 kinds of module units.
.. code-block:: c++
// M.cppm
export module M;
export import :interface_part;
import :impl_part;
export void Hello();
// interface_part.cppm
export module M:interface_part;
export void World();
// impl_part.cppm
module;
#include <iostream>
#include <string>
module M:impl_part;
import :interface_part;
std::string W = "World.";
void World() {
std::cout << W << std::endl;
}
// Impl.cpp
module;
#include <iostream>
module M;
void Hello() {
std::cout << "Hello ";
}
// User.cpp
import M;
int main() {
Hello();
World();
return 0;
}
Then we are able to compile the example by the following command:
.. code-block:: console
# Precompiling the module
$ clang++ -std=c++20 interface_part.cppm --precompile -o M-interface_part.pcm
$ clang++ -std=c++20 impl_part.cppm --precompile -fprebuilt-module-path=. -o M-impl_part.pcm
$ clang++ -std=c++20 M.cppm --precompile -fprebuilt-module-path=. -o M.pcm
$ clang++ -std=c++20 Impl.cpp -fmodule-file=M.pcm -c -o Impl.o
# Compiling the user
$ clang++ -std=c++20 User.cpp -fprebuilt-module-path=. -c -o User.o
# Compiling the module and linking it together
$ clang++ -std=c++20 M-interface_part.pcm -c -o M-interface_part.o
$ clang++ -std=c++20 M-impl_part.pcm -c -o M-impl_part.o
$ clang++ -std=c++20 M.pcm -c -o M.o
$ clang++ User.o M-interface_part.o M-impl_part.o M.o Impl.o -o a.out
We explain the options in the following sections.
How to enable standard C++ modules
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Currently, standard C++ modules are enabled automatically
if the language standard is ``-std=c++20`` or newer.
The ``-fmodules-ts`` option is deprecated and is planned to be removed.
How to produce a BMI
~~~~~~~~~~~~~~~~~~~~
It is possible to generate a BMI for an importable module unit by specifying the ``--precompile`` option.
File name requirement
~~~~~~~~~~~~~~~~~~~~~
The file name of an ``importable module unit`` should end with ``.cppm``
(or ``.ccm``, ``.cxxm``, ``.c++m``). The file name of a ``module implementation unit``
should end with ``.cpp`` (or ``.cc``, ``.cxx``, ``.c++``).
The file name of BMIs should end with ``.pcm``.
The file name of the BMI of a ``primary module interface unit`` should be ``module_name.pcm``.
The file name of BMIs of ``module partition unit`` should be ``module_name-partition_name.pcm``.
If the file names use different extensions, Clang may fail to build the module.
For example, if the filename of an ``importable module unit`` ends with ``.cpp`` instead of ``.cppm``,
then we can't generate a BMI for the ``importable module unit`` by ``--precompile`` option
since ``--precompile`` option now would only run preprocessor, which is equal to `-E` now.
If we want the filename of an ``importable module unit`` ends with other suffixes instead of ``.cppm``,
we could put ``-x c++-module`` in front of the file. For example,
.. code-block:: c++
// Hello.cpp
module;
#include <iostream>
export module Hello;
export void hello() {
std::cout << "Hello World!\n";
}
// use.cpp
import Hello;
int main() {
hello();
return 0;
}
Now the filename of the ``module interface`` ends with ``.cpp`` instead of ``.cppm``,
we can't compile them by the original command lines. But we are still able to do it by:
.. code-block:: console
$ clang++ -std=c++20 -x c++-module Hello.cpp --precompile -o Hello.pcm
$ clang++ -std=c++20 use.cpp -fprebuilt-module-path=. Hello.pcm -o Hello.out
$ ./Hello.out
Hello World!
How to specify the dependent BMIs
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The option ``-fprebuilt-module-path`` tells the compiler the path where to search for dependent BMIs.
It may be used multiple times just like ``-I`` for specifying paths for header files. The look up rule here is:
* (1) When we import module M. The compiler would look up M.pcm in the directories specified
by ``-fprebuilt-module-path``.
* (2) When we import partition module unit M:P. The compiler would look up M-P.pcm in the
directories specified by ``-fprebuilt-module-path``.
Another way to specify the dependent BMIs is to use ``-fmodule-file``. The main difference
is that ``-fprebuilt-module-path`` takes a directory, whereas ``-fmodule-file`` requires a
specific file. In case both the ``-fprebuilt-module-path`` and ``-fmodule-file`` exist, the
``-fmodule-file`` option takes higher precedence. In another word, if the compiler finds the wanted
BMI specified by ``-fmodule-file``, the compiler wouldn't look up again in the directories specified
by ``-fprebuilt-module-path``.
When we compile a ``module implementation unit``, we must pass the BMI of the corresponding
``primary module interface unit`` by ``-fmodule-file``
since the language specification says a module implementation unit implicitly imports
the primary module interface unit.
[module.unit]p8
A module-declaration that contains neither an export-keyword nor a module-partition implicitly
imports the primary module interface unit of the module as if by a module-import-declaration.
Again, the option ``-fmodule-file`` may occur multiple times.
For example, the command line to compile ``M.cppm`` in
the above example could be rewritten into:
.. code-block:: console
$ clang++ -std=c++20 M.cppm --precompile -fmodule-file=M-interface_part.pcm -fmodule-file=M-impl_part.pcm -o M.pcm
``-fprebuilt-module-path`` is more convenient and ``-fmodule-file`` is faster since
it saves time for file lookup.
Remember that module units still have an object counterpart to the BMI
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It is easy to forget to compile BMIs at first since we may envision module interfaces like headers.
However, this is not true.
Module units are translation units. We need to compile them to object files
and link the object files like the example shows.
For example, the traditional compilation processes for headers are like:
.. code-block:: text
src1.cpp -+> clang++ src1.cpp --> src1.o ---,
hdr1.h --' +-> clang++ src1.o src2.o -> executable
hdr2.h --, |
src2.cpp -+> clang++ src2.cpp --> src2.o ---'
And the compilation process for module units are like:
.. code-block:: text
src1.cpp ----------------------------------------+> clang++ src1.cpp -------> src1.o -,
(header unit) hdr1.h -> clang++ hdr1.h ... -> hdr1.pcm --' +-> clang++ src1.o mod1.o src2.o -> executable
mod1.cppm -> clang++ mod1.cppm ... -> mod1.pcm --,--> clang++ mod1.pcm ... -> mod1.o -+
src2.cpp ----------------------------------------+> clang++ src2.cpp -------> src2.o -'
As the diagrams show, we need to compile the BMI from module units to object files and link the object files.
(But we can't do this for the BMI from header units. See the later section for the definition of header units)
If we want to create a module library, we can't just ship the BMIs in an archive.
We must compile these BMIs(``*.pcm``) into object files(``*.o``) and add those object files to the archive instead.
Consistency Requirement
~~~~~~~~~~~~~~~~~~~~~~~
If we envision modules as a cache to speed up compilation, then - as with other caching techniques -
it is important to keep cache consistency.
So **currently** Clang will do very strict check for consistency.
Options consistency
^^^^^^^^^^^^^^^^^^^
The language option of module units and their non-module-unit users should be consistent.
The following example is not allowed:
.. code-block:: c++
// M.cppm
export module M;
// Use.cpp
import M;
.. code-block:: console
$ clang++ -std=c++20 M.cppm --precompile -o M.pcm
$ clang++ -std=c++2b Use.cpp -fprebuilt-module-path=.
The compiler would reject the example due to the inconsistent language options.
Not all options are language options.
For example, the following example is allowed:
.. code-block:: console
$ clang++ -std=c++20 M.cppm --precompile -o M.pcm
# Inconsistent optimization level.
$ clang++ -std=c++20 -O3 Use.cpp -fprebuilt-module-path=.
# Inconsistent debugging level.
$ clang++ -std=c++20 -g Use.cpp -fprebuilt-module-path=.
Although the two examples have inconsistent optimization and debugging level, both of them are accepted.
Note that **currently** the compiler doesn't consider inconsistent macro definition a problem. For example:
.. code-block:: console
$ clang++ -std=c++20 M.cppm --precompile -o M.pcm
# Inconsistent optimization level.
$ clang++ -std=c++20 -O3 -DNDEBUG Use.cpp -fprebuilt-module-path=.
Currently Clang would accept the above example. But it may produce surprising results if the
debugging code depends on consistent use of ``NDEBUG`` also in other translation units.
Source content consistency
^^^^^^^^^^^^^^^^^^^^^^^^^^
When the compiler reads a BMI, the compiler will check the consistency of the corresponding
source files. For example:
.. code-block:: c++
// M.cppm
export module M;
export template <class T>
T foo(T t) {
return t;
}
// Use.cpp
import M;
void bar() {
foo(5);
}
.. code-block:: console
$ clang++ -std=c++20 M.cppm --precompile -o M.pcm
$ rm M.cppm
$ clang++ -std=c++20 Use.cpp -fmodule-file=M.pcm
The compiler would reject the example since the compiler failed to find the source file to check the consistency.
So the following example would be rejected too.
.. code-block:: console
$ clang++ -std=c++20 M.cppm --precompile -o M.pcm
$ echo "int i=0;" >> M.cppm
$ clang++ -std=c++20 Use.cpp -fmodule-file=M.pcm
The compiler would reject it too since the compiler detected the file was changed.
But it is OK to move the BMI as long as the source files remain:
.. code-block:: console
$ clang++ -std=c++20 M.cppm --precompile -o M.pcm
$ mkdir -p tmp
$ mv M.pcm tmp/M.pcm
$ clang++ -std=c++20 Use.cpp -fmodule-file=tmp/M.pcm
The above example would be accepted.
If the user doesn't want to follow the consistency requirement due to some reasons (e.g., distributing BMI),
the user could try to use ``-Xclang -fmodules-embed-all-files`` when producing BMI. For example:
.. code-block:: console
$ clang++ -std=c++20 M.cppm --precompile -Xclang -fmodules-embed-all-files -o M.pcm
$ rm M.cppm
$ clang++ -std=c++20 Use.cpp -fmodule-file=M.pcm
Now the compiler would accept the above example.
Important note: Xclang options are intended to be used by compiler internally and its semantics
are not guaranteed to be preserved in future versions.
Also the compiler will record the path to the header files included in the global module fragment and compare the
headers when imported. For example,
.. code-block:: c++
// foo.h
#include <iostream>
void Hello() {
std::cout << "Hello World.\n";
}
// foo.cppm
module;
#include "foo.h"
export module foo;
export using ::Hello;
// Use.cpp
import foo;
int main() {
Hello();
}
Then it is problematic if we remove ``foo.h`` before import `foo` module.
.. code-block:: console
clang++ -std=c++20 foo.cppm --precompile -o foo.pcm
mv foo.h foo.orig.h
# The following one is rejected
clang++ -std=c++20 Use.cpp -fmodule-file=foo.pcm -c
The above case will rejected. And we're still able to workaround it by ``-Xclang -fmodules-embed-all-files`` option:
.. code-block:: console
clang++ -std=c++20 foo.cppm --precompile -Xclang -fmodules-embed-all-files -o foo.pcm
mv foo.h foo.orig.h
clang++ -std=c++20 Use.cpp -fmodule-file=foo.pcm -c -o Use.o
clang++ Use.o foo.pcm
ABI Impacts
-----------
The declarations in a module unit which are not in the global module fragment have new linkage names.
For example,
.. code-block:: c++
export module M;
namespace NS {
export int foo();
}
The linkage name of ``NS::foo()`` would be ``_ZN2NSW1M3fooEv``.
This couldn't be demangled by previous versions of the debugger or demangler.
As of LLVM 15.x, users can utilize ``llvm-cxxfilt`` to demangle this:
.. code-block:: console
$ llvm-cxxfilt _ZN2NSW1M3fooEv
The result would be ``NS::foo@M()``, which reads as ``NS::foo()`` in module ``M``.
The ABI implies that we can't declare something in a module unit and define it in a non-module unit (or vice-versa),
as this would result in linking errors.
Known Problems
--------------
The following describes issues in the current implementation of modules.
Please see https://github.com/llvm/llvm-project/labels/clang%3Amodules for more issues
or file a new issue if you don't find an existing one.
If you're going to create a new issue for standard C++ modules,
please start the title with ``[C++20] [Modules]`` (or ``[C++2b] [Modules]``, etc)
and add the label ``clang:modules`` (if you have permissions for that).
For higher level support for proposals, you could visit https://clang.llvm.org/cxx_status.html.
Support for clang-scan-deps
~~~~~~~~~~~~~~~~~~~~~~~~~~~
The support for clang-scan-deps may be the most urgent problem for modules now.
Without the support for clang-scan-deps, it's hard to involve build systems.
This means that users could only play with modules through makefiles or by writing a parser by hand.
It blocks more uses for modules, which will block more defect reports or requirements.
This is tracked in: https://github.com/llvm/llvm-project/issues/51792.
Ambiguous deduction guide
~~~~~~~~~~~~~~~~~~~~~~~~~
Currently, when we call deduction guides in global module fragment,
we may get incorrect diagnosing message like: `ambiguous deduction`.
So if we're using deduction guide from global module fragment, we probably need to write:
.. code-block:: c++
std::lock_guard<std::mutex> lk(mutex);
instead of
.. code-block:: c++
std::lock_guard lk(mutex);
This is tracked in: https://github.com/llvm/llvm-project/issues/56916
Ignored PreferredName Attribute
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Due to a tricky problem, when Clang writes BMIs, Clang will ignore the ``preferred_name`` attribute, if any.
This implies that the ``preferred_name`` wouldn't show in debugger or dumping.
This is tracked in: https://github.com/llvm/llvm-project/issues/56490
Don't emit macros about module declaration
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This is covered by P1857R3. We mention it again here since users may abuse it before we implement it.
Someone may want to write code which could be compiled both by modules or non-modules.
A direct idea would be use macros like:
.. code-block:: c++
MODULE
IMPORT header_name
EXPORT_MODULE MODULE_NAME;
IMPORT header_name
EXPORT ...
So this file could be triggered like a module unit or a non-module unit depending on the definition
of some macros.
However, this kind of usage is forbidden by P1857R3 but we haven't implemented P1857R3 yet.
This means that is possible to write illegal modules code now, and obviously this will stop working
once P1857R3 is implemented.
A simple suggestion would be "Don't play macro tricks with module declarations".
This is tracked in: https://github.com/llvm/llvm-project/issues/56917
In consistent filename suffix requirement for importable module units
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Currently, clang requires the file name of an ``importable module unit`` should end with ``.cppm``
(or ``.ccm``, ``.cxxm``, ``.c++m``). However, the behavior is inconsistent with other compilers.
This is tracked in: https://github.com/llvm/llvm-project/issues/57416
Header Units
============
How to build projects using header unit
---------------------------------------
Quick Start
~~~~~~~~~~~
For the following example,
.. code-block:: c++
import <iostream>;
int main() {
std::cout << "Hello World.\n";
}
we could compile it as
.. code-block:: console
$ clang++ -std=c++20 -xc++-system-header --precompile iostream -o iostream.pcm
$ clang++ -std=c++20 -fmodule-file=iostream.pcm main.cpp
How to produce BMIs
~~~~~~~~~~~~~~~~~~~
Similar to named modules, we could use ``--precompile`` to produce the BMI.
But we need to specify that the input file is a header by ``-xc++-system-header`` or ``-xc++-user-header``.
Also we could use `-fmodule-header={user,system}` option to produce the BMI for header units
which has suffix like `.h` or `.hh`.
The value of `-fmodule-header` means the user search path or the system search path.
The default value for `-fmodule-header` is `user`.
For example,
.. code-block:: c++
// foo.h
#include <iostream>
void Hello() {
std::cout << "Hello World.\n";
}
// use.cpp
import "foo.h";
int main() {
Hello();
}
We could compile it as:
.. code-block:: console
$ clang++ -std=c++20 -fmodule-header foo.h -o foo.pcm
$ clang++ -std=c++20 -fmodule-file=foo.pcm use.cpp
For headers which don't have a suffix, we need to pass ``-xc++-header``
(or ``-xc++-system-header`` or ``-xc++-user-header``) to mark it as a header.
For example,
.. code-block:: c++
// use.cpp
import "foo.h";
int main() {
Hello();
}
.. code-block:: console
$ clang++ -std=c++20 -fmodule-header=system -xc++-header iostream -o iostream.pcm
$ clang++ -std=c++20 -fmodule-file=iostream.pcm use.cpp
How to specify the dependent BMIs
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We could use ``-fmodule-file`` to specify the BMIs, and this option may occur multiple times as well.
With the existing implementation ``-fprebuilt-module-path`` cannot be used for header units
(since they are nominally anonymous).
For header units, use ``-fmodule-file`` to include the relevant PCM file for each header unit.
This is expect to be solved in future editions of the compiler either by the tooling finding and specifying
the -fmodule-file or by the use of a module-mapper that understands how to map the header name to their PCMs.
Don't compile the BMI
~~~~~~~~~~~~~~~~~~~~~
Another difference with modules is that we can't compile the BMI from a header unit.
For example:
.. code-block:: console
$ clang++ -std=c++20 -xc++-system-header --precompile iostream -o iostream.pcm
# This is not allowed!
$ clang++ iostream.pcm -c -o iostream.o
It makes sense due to the semantics of header units, which are just like headers.
Include translation
~~~~~~~~~~~~~~~~~~~
The C++ spec allows the vendors to convert ``#include header-name`` to ``import header-name;`` when possible.
Currently, Clang would do this translation for the ``#include`` in the global module fragment.
For example, the following two examples are the same:
.. code-block:: c++
module;
import <iostream>;
export module M;
export void Hello() {
std::cout << "Hello.\n";
}
with the following one:
.. code-block:: c++
module;
#include <iostream>
export module M;
export void Hello() {
std::cout << "Hello.\n";
}
.. code-block:: console
$ clang++ -std=c++20 -xc++-system-header --precompile iostream -o iostream.pcm
$ clang++ -std=c++20 -fmodule-file=iostream.pcm --precompile M.cppm -o M.cpp
In the latter example, the Clang could find the BMI for the ``<iostream>``
so it would try to replace the ``#include <iostream>`` to ``import <iostream>;`` automatically.
Relationships between Clang modules
-----------------------------------
Header units have pretty similar semantics with Clang modules.
The semantics of both of them are like headers.
In fact, we could even "mimic" the sytle of header units by Clang modules:
.. code-block:: c++
module "iostream" {
export *
header "/path/to/libstdcxx/iostream"
}
.. code-block:: console
$ clang++ -std=c++20 -fimplicit-modules -fmodule-map-file=.modulemap main.cpp
It would be simpler if we are using libcxx:
.. code-block:: console
$ clang++ -std=c++20 main.cpp -fimplicit-modules -fimplicit-module-maps
Since there is already one
`module map <https://github.com/llvm/llvm-project/blob/main/libcxx/include/module.modulemap.in>`_
in the source of libcxx.
Then immediately leads to the question: why don't we implement header units through Clang header modules?
The main reason for this is that Clang modules have more semantics like hierarchy or
wrapping multiple headers together as a big module.
However, these things are not part of Standard C++ Header units,
and we want to avoid the impression that these additional semantics get interpreted as Standard C++ behavior.
Another reason is that there are proposals to introduce module mappers to the C++ standard
(for example, https://wg21.link/p1184r2).
If we decide to reuse Clang's modulemap, we may get in trouble once we need to introduce another module mapper.
So the final answer for why we don't reuse the interface of Clang modules for header units is that
there are some differences between header units and Clang modules and that ignoring those
differences now would likely become a problem in the future.
Possible Questions
==================
How modules speed up compilation
--------------------------------
A classic theory for the reason why modules speed up the compilation is:
if there are ``n`` headers and ``m`` source files and each header is included by each source file,
then the complexity of the compilation is ``O(n*m)``;
But if there are ``n`` module interfaces and ``m`` source files, the complexity of the compilation is
``O(n+m)``. So, using modules would be a big win when scaling.
In a simpler word, we could get rid of many redundant compilations by using modules.
Roughly, this theory is correct. But the problem is that it is too rough.
The behavior depends on the optimization level, as we will illustrate below.
First is ``O0``. The compilation process is described in the following graph.
.. code-block:: none
├-------------frontend----------┼-------------middle end----------------┼----backend----┤
│ │ │ │
└---parsing----sema----codegen--┴----- transformations ---- codegen ----┴---- codegen --┘
┌---------------------------------------------------------------------------------------┐
| │
| source file │
| │
└---------------------------------------------------------------------------------------┘
┌--------┐
│ │
│imported│
│ │
│ code │
│ │
└--------┘
Here we can see that the source file (could be a non-module unit or a module unit) would get processed by the
whole pipeline.
But the imported code would only get involved in semantic analysis, which is mainly about name lookup,
overload resolution and template instantiation.
All of these processes are fast relative to the whole compilation process.
More importantly, the imported code only needs to be processed once in frontend code generation,
as well as the whole middle end and backend.
So we could get a big win for the compilation time in O0.
But with optimizations, things are different:
(we omit ``code generation`` part for each end due to the limited space)
.. code-block:: none
├-------- frontend ---------┼--------------- middle end --------------------┼------ backend ----┤
│ │ │ │
└--- parsing ---- sema -----┴--- optimizations --- IPO ---- optimizations---┴--- optimizations -┘
┌-----------------------------------------------------------------------------------------------┐
│ │
│ source file │
│ │
└-----------------------------------------------------------------------------------------------┘
┌---------------------------------------┐
│ │
│ │
│ imported code │
│ │
│ │
└---------------------------------------┘
It would be very unfortunate if we end up with worse performance after using modules.
The main concern is that when we compile a source file, the compiler needs to see the function body
of imported module units so that it can perform IPO (InterProcedural Optimization, primarily inlining
in practice) to optimize functions in current source file with the help of the information provided by
the imported module units.
In other words, the imported code would be processed again and again in importee units
by optimizations (including IPO itself).
The optimizations before IPO and the IPO itself are the most time-consuming part in whole compilation process.
So from this perspective, we might not be able to get the improvements described in the theory.
But we could still save the time for optimizations after IPO and the whole backend.
Overall, at ``O0`` the implementations of functions defined in a module will not impact module users,
but at higher optimization levels the definitions of such functions are provided to user compilations for the
purposes of optimization (but definitions of these functions are still not included in the use's object file)-
this means the build speedup at higher optimization levels may be lower than expected given ``O0`` experience,
but does provide by more optimization opportunities.