#include "RegisterCoalescer.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/LiveRangeEdit.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/LaneBitmask.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <iterator>
#include <limits>
#include <tuple>
#include <utility>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "regalloc"
STATISTIC(numJoins , "Number of interval joins performed");
STATISTIC(numCrossRCs , "Number of cross class joins performed");
STATISTIC(numCommutes , "Number of instruction commuting performed");
STATISTIC(numExtends , "Number of copies extended");
STATISTIC(NumReMats , "Number of instructions re-materialized");
STATISTIC(NumInflated , "Number of register classes inflated");
STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested");
STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved");
STATISTIC(NumShrinkToUses, "Number of shrinkToUses called");
static cl::opt<bool> EnableJoining("join-liveintervals",
cl::desc("Coalesce copies (default=true)"),
cl::init(true), cl::Hidden);
static cl::opt<bool> UseTerminalRule("terminal-rule",
cl::desc("Apply the terminal rule"),
cl::init(false), cl::Hidden);
static cl::opt<bool>
EnableJoinSplits("join-splitedges",
cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden);
static cl::opt<cl::boolOrDefault>
EnableGlobalCopies("join-globalcopies",
cl::desc("Coalesce copies that span blocks (default=subtarget)"),
cl::init(cl::BOU_UNSET), cl::Hidden);
static cl::opt<bool>
VerifyCoalescing("verify-coalescing",
cl::desc("Verify machine instrs before and after register coalescing"),
cl::Hidden);
static cl::opt<unsigned> LateRematUpdateThreshold(
"late-remat-update-threshold", cl::Hidden,
cl::desc("During rematerialization for a copy, if the def instruction has "
"many other copy uses to be rematerialized, delay the multiple "
"separate live interval update work and do them all at once after "
"all those rematerialization are done. It will save a lot of "
"repeated work. "),
cl::init(100));
static cl::opt<unsigned> LargeIntervalSizeThreshold(
"large-interval-size-threshold", cl::Hidden,
cl::desc("If the valnos size of an interval is larger than the threshold, "
"it is regarded as a large interval. "),
cl::init(100));
static cl::opt<unsigned> LargeIntervalFreqThreshold(
"large-interval-freq-threshold", cl::Hidden,
cl::desc("For a large interval, if it is coalesed with other live "
"intervals many times more than the threshold, stop its "
"coalescing to control the compile time. "),
cl::init(100));
namespace {
class JoinVals;
class RegisterCoalescer : public MachineFunctionPass,
private LiveRangeEdit::Delegate {
MachineFunction* MF = nullptr;
MachineRegisterInfo* MRI = nullptr;
const TargetRegisterInfo* TRI = nullptr;
const TargetInstrInfo* TII = nullptr;
LiveIntervals *LIS = nullptr;
const MachineLoopInfo* Loops = nullptr;
AliasAnalysis *AA = nullptr;
RegisterClassInfo RegClassInfo;
struct PHIValPos {
SlotIndex SI; Register Reg; unsigned SubReg; };
DenseMap<unsigned, PHIValPos> PHIValToPos;
DenseMap<Register, SmallVector<unsigned, 2>> RegToPHIIdx;
using DbgValueLoc = std::pair<SlotIndex, MachineInstr*>;
DenseMap<Register, std::vector<DbgValueLoc>> DbgVRegToValues;
DenseMap<Register, SmallVector<Register, 4>> DbgMergedVRegNums;
LaneBitmask ShrinkMask;
bool ShrinkMainRange = false;
bool JoinGlobalCopies = false;
bool JoinSplitEdges = false;
SmallVector<MachineInstr*, 8> WorkList;
SmallVector<MachineInstr*, 8> LocalWorkList;
SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
SmallVector<MachineInstr*, 8> DeadDefs;
SmallVector<Register, 8> InflateRegs;
DenseSet<Register> ToBeUpdated;
DenseMap<Register, unsigned long> LargeLIVisitCounter;
void eliminateDeadDefs();
bool allUsesAvailableAt(const MachineInstr *OrigMI, SlotIndex OrigIdx,
SlotIndex UseIdx);
void LRE_WillEraseInstruction(MachineInstr *MI) override;
void coalesceLocals();
void joinAllIntervals();
void copyCoalesceInMBB(MachineBasicBlock *MBB);
bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList);
void lateLiveIntervalUpdate();
bool copyValueUndefInPredecessors(LiveRange &S,
const MachineBasicBlock *MBB,
LiveQueryResult SLRQ);
void setUndefOnPrunedSubRegUses(LiveInterval &LI, Register Reg,
LaneBitmask PrunedLanes);
bool joinCopy(MachineInstr *CopyMI, bool &Again);
bool joinIntervals(CoalescerPair &CP);
bool joinVirtRegs(CoalescerPair &CP);
bool isHighCostLiveInterval(LiveInterval &LI);
bool joinReservedPhysReg(CoalescerPair &CP);
void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge,
LaneBitmask LaneMask, CoalescerPair &CP,
unsigned DstIdx);
void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
LaneBitmask LaneMask, const CoalescerPair &CP);
bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
VNInfo *AValNo, VNInfo *BValNo);
std::pair<bool,bool> removeCopyByCommutingDef(const CoalescerPair &CP,
MachineInstr *CopyMI);
bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI);
bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI,
bool &IsDefCopy);
bool canJoinPhys(const CoalescerPair &CP);
void updateRegDefsUses(Register SrcReg, Register DstReg, unsigned SubIdx);
void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
MachineOperand &MO, unsigned SubRegIdx);
MachineInstr *eliminateUndefCopy(MachineInstr *CopyMI);
bool applyTerminalRule(const MachineInstr &Copy) const;
void shrinkToUses(LiveInterval *LI,
SmallVectorImpl<MachineInstr * > *Dead = nullptr) {
NumShrinkToUses++;
if (LIS->shrinkToUses(LI, Dead)) {
SmallVector<LiveInterval*, 8> SplitLIs;
LIS->splitSeparateComponents(*LI, SplitLIs);
}
}
void deleteInstr(MachineInstr* MI) {
ErasedInstrs.insert(MI);
LIS->RemoveMachineInstrFromMaps(*MI);
MI->eraseFromParent();
}
void buildVRegToDbgValueMap(MachineFunction &MF);
void checkMergingChangesDbgValues(CoalescerPair &CP, LiveRange &LHS,
JoinVals &LHSVals, LiveRange &RHS,
JoinVals &RHSVals);
void checkMergingChangesDbgValuesImpl(Register Reg, LiveRange &OtherRange,
LiveRange &RegRange, JoinVals &Vals2);
public:
static char ID;
RegisterCoalescer() : MachineFunctionPass(ID) {
initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override;
void releaseMemory() override;
bool runOnMachineFunction(MachineFunction&) override;
void print(raw_ostream &O, const Module* = nullptr) const override;
};
}
char RegisterCoalescer::ID = 0;
char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
"Simple Register Coalescing", false, false)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
"Simple Register Coalescing", false, false)
LLVM_NODISCARD static bool isMoveInstr(const TargetRegisterInfo &tri,
const MachineInstr *MI, Register &Src,
Register &Dst, unsigned &SrcSub,
unsigned &DstSub) {
if (MI->isCopy()) {
Dst = MI->getOperand(0).getReg();
DstSub = MI->getOperand(0).getSubReg();
Src = MI->getOperand(1).getReg();
SrcSub = MI->getOperand(1).getSubReg();
} else if (MI->isSubregToReg()) {
Dst = MI->getOperand(0).getReg();
DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(),
MI->getOperand(3).getImm());
Src = MI->getOperand(2).getReg();
SrcSub = MI->getOperand(2).getSubReg();
} else
return false;
return true;
}
static bool isSplitEdge(const MachineBasicBlock *MBB) {
if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
return false;
for (const auto &MI : *MBB) {
if (!MI.isCopyLike() && !MI.isUnconditionalBranch())
return false;
}
return true;
}
bool CoalescerPair::setRegisters(const MachineInstr *MI) {
SrcReg = DstReg = Register();
SrcIdx = DstIdx = 0;
NewRC = nullptr;
Flipped = CrossClass = false;
Register Src, Dst;
unsigned SrcSub = 0, DstSub = 0;
if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
return false;
Partial = SrcSub || DstSub;
if (Register::isPhysicalRegister(Src)) {
if (Register::isPhysicalRegister(Dst))
return false;
std::swap(Src, Dst);
std::swap(SrcSub, DstSub);
Flipped = true;
}
const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
if (Register::isPhysicalRegister(Dst)) {
if (DstSub) {
Dst = TRI.getSubReg(Dst, DstSub);
if (!Dst) return false;
DstSub = 0;
}
if (SrcSub) {
Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
if (!Dst) return false;
} else if (!MRI.getRegClass(Src)->contains(Dst)) {
return false;
}
} else {
const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
if (SrcSub && DstSub) {
if (Src == Dst && SrcSub != DstSub)
return false;
NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
SrcIdx, DstIdx);
if (!NewRC)
return false;
} else if (DstSub) {
SrcIdx = DstSub;
NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
} else if (SrcSub) {
DstIdx = SrcSub;
NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
} else {
NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
}
if (!NewRC)
return false;
if (DstIdx && !SrcIdx) {
std::swap(Src, Dst);
std::swap(SrcIdx, DstIdx);
Flipped = !Flipped;
}
CrossClass = NewRC != DstRC || NewRC != SrcRC;
}
assert(Register::isVirtualRegister(Src) && "Src must be virtual");
assert(!(Register::isPhysicalRegister(Dst) && DstSub) &&
"Cannot have a physical SubIdx");
SrcReg = Src;
DstReg = Dst;
return true;
}
bool CoalescerPair::flip() {
if (Register::isPhysicalRegister(DstReg))
return false;
std::swap(SrcReg, DstReg);
std::swap(SrcIdx, DstIdx);
Flipped = !Flipped;
return true;
}
bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
if (!MI)
return false;
Register Src, Dst;
unsigned SrcSub = 0, DstSub = 0;
if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
return false;
if (Dst == SrcReg) {
std::swap(Src, Dst);
std::swap(SrcSub, DstSub);
} else if (Src != SrcReg) {
return false;
}
if (DstReg.isPhysical()) {
if (!Dst.isPhysical())
return false;
assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
if (DstSub)
Dst = TRI.getSubReg(Dst, DstSub);
if (!SrcSub)
return DstReg == Dst;
return Register(TRI.getSubReg(DstReg, SrcSub)) == Dst;
} else {
if (DstReg != Dst)
return false;
return TRI.composeSubRegIndices(SrcIdx, SrcSub) ==
TRI.composeSubRegIndices(DstIdx, DstSub);
}
}
void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequired<AAResultsWrapperPass>();
AU.addRequired<LiveIntervals>();
AU.addPreserved<LiveIntervals>();
AU.addPreserved<SlotIndexes>();
AU.addRequired<MachineLoopInfo>();
AU.addPreserved<MachineLoopInfo>();
AU.addPreservedID(MachineDominatorsID);
MachineFunctionPass::getAnalysisUsage(AU);
}
void RegisterCoalescer::eliminateDeadDefs() {
SmallVector<Register, 8> NewRegs;
LiveRangeEdit(nullptr, NewRegs, *MF, *LIS,
nullptr, this).eliminateDeadDefs(DeadDefs);
}
bool RegisterCoalescer::allUsesAvailableAt(const MachineInstr *OrigMI,
SlotIndex OrigIdx,
SlotIndex UseIdx) {
SmallVector<Register, 8> NewRegs;
return LiveRangeEdit(nullptr, NewRegs, *MF, *LIS, nullptr, this)
.allUsesAvailableAt(OrigMI, OrigIdx, UseIdx);
}
void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
ErasedInstrs.insert(MI);
}
bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
MachineInstr *CopyMI) {
assert(!CP.isPartial() && "This doesn't work for partial copies.");
assert(!CP.isPhys() && "This doesn't work for physreg copies.");
LiveInterval &IntA =
LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
LiveInterval &IntB =
LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx);
if (BS == IntB.end()) return false;
VNInfo *BValNo = BS->valno;
if (BValNo->def != CopyIdx) return false;
SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx);
if (AS == IntA.end()) return false;
VNInfo *AValNo = AS->valno;
MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy())
return false;
LiveInterval::iterator ValS =
IntB.FindSegmentContaining(AValNo->def.getPrevSlot());
if (ValS == IntB.end())
return false;
MachineInstr *ValSEndInst =
LIS->getInstructionFromIndex(ValS->end.getPrevSlot());
if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent())
return false;
if (ValS+1 != BS) return false;
LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB.reg(), TRI));
SlotIndex FillerStart = ValS->end, FillerEnd = BS->start;
BValNo->def = FillerStart;
IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo));
if (BValNo != ValS->valno)
IntB.MergeValueNumberInto(BValNo, ValS->valno);
for (LiveInterval::SubRange &S : IntB.subranges()) {
LiveInterval::iterator SS = S.FindSegmentContaining(CopyIdx);
if (SS != S.end() && SlotIndex::isSameInstr(SS->start, SS->end)) {
S.removeSegment(*SS, true);
continue;
}
if (!S.getVNInfoAt(FillerStart)) {
SlotIndex BBStart =
LIS->getMBBStartIdx(LIS->getMBBFromIndex(FillerStart));
S.extendInBlock(BBStart, FillerStart);
}
VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo));
VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot());
if (SubBValNo != SubValSNo)
S.MergeValueNumberInto(SubBValNo, SubValSNo);
}
LLVM_DEBUG(dbgs() << " result = " << IntB << '\n');
int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg(), true);
if (UIdx != -1) {
ValSEndInst->getOperand(UIdx).setIsKill(false);
}
CopyMI->substituteRegister(IntA.reg(), IntB.reg(), 0, *TRI);
bool RecomputeLiveRange = AS->end == CopyIdx;
if (!RecomputeLiveRange) {
for (LiveInterval::SubRange &S : IntA.subranges()) {
LiveInterval::iterator SS = S.FindSegmentContaining(CopyUseIdx);
if (SS != S.end() && SS->end == CopyIdx) {
RecomputeLiveRange = true;
break;
}
}
}
if (RecomputeLiveRange)
shrinkToUses(&IntA);
++numExtends;
return true;
}
bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
LiveInterval &IntB,
VNInfo *AValNo,
VNInfo *BValNo) {
if (LIS->hasPHIKill(IntA, AValNo))
return true;
for (LiveRange::Segment &ASeg : IntA.segments) {
if (ASeg.valno != AValNo) continue;
LiveInterval::iterator BI = llvm::upper_bound(IntB, ASeg.start);
if (BI != IntB.begin())
--BI;
for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) {
if (BI->valno == BValNo)
continue;
if (BI->start <= ASeg.start && BI->end > ASeg.start)
return true;
if (BI->start > ASeg.start && BI->start < ASeg.end)
return true;
}
}
return false;
}
static std::pair<bool,bool>
addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, const LiveRange &Src,
const VNInfo *SrcValNo) {
bool Changed = false;
bool MergedWithDead = false;
for (const LiveRange::Segment &S : Src.segments) {
if (S.valno != SrcValNo)
continue;
LiveRange::Segment Added = LiveRange::Segment(S.start, S.end, DstValNo);
LiveRange::Segment &Merged = *Dst.addSegment(Added);
if (Merged.end.isDead())
MergedWithDead = true;
Changed = true;
}
return std::make_pair(Changed, MergedWithDead);
}
std::pair<bool,bool>
RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
MachineInstr *CopyMI) {
assert(!CP.isPhys());
LiveInterval &IntA =
LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
LiveInterval &IntB =
LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
assert(BValNo != nullptr && BValNo->def == CopyIdx);
VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
assert(AValNo && !AValNo->isUnused() && "COPY source not live");
if (AValNo->isPHIDef())
return { false, false };
MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
if (!DefMI)
return { false, false };
if (!DefMI->isCommutable())
return { false, false };
int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg());
assert(DefIdx != -1);
unsigned UseOpIdx;
if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
return { false, false };
unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex;
if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx))
return { false, false };
MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
Register NewReg = NewDstMO.getReg();
if (NewReg != IntB.reg() || !IntB.Query(AValNo->def).isKill())
return { false, false };
if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
return { false, false };
for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg())) {
MachineInstr *UseMI = MO.getParent();
unsigned OpNo = &MO - &UseMI->getOperand(0);
SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI);
LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
if (US == IntA.end() || US->valno != AValNo)
continue;
if (UseMI->isRegTiedToDefOperand(OpNo))
return { false, false };
}
LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
<< *DefMI);
MachineBasicBlock *MBB = DefMI->getParent();
MachineInstr *NewMI =
TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx);
if (!NewMI)
return { false, false };
if (Register::isVirtualRegister(IntA.reg()) &&
Register::isVirtualRegister(IntB.reg()) &&
!MRI->constrainRegClass(IntB.reg(), MRI->getRegClass(IntA.reg())))
return { false, false };
if (NewMI != DefMI) {
LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI);
MachineBasicBlock::iterator Pos = DefMI;
MBB->insert(Pos, NewMI);
MBB->erase(DefMI);
}
for (MachineOperand &UseMO :
llvm::make_early_inc_range(MRI->use_operands(IntA.reg()))) {
if (UseMO.isUndef())
continue;
MachineInstr *UseMI = UseMO.getParent();
if (UseMI->isDebugInstr()) {
UseMO.setReg(NewReg);
continue;
}
SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true);
LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
assert(US != IntA.end() && "Use must be live");
if (US->valno != AValNo)
continue;
UseMO.setIsKill(false);
if (Register::isPhysicalRegister(NewReg))
UseMO.substPhysReg(NewReg, *TRI);
else
UseMO.setReg(NewReg);
if (UseMI == CopyMI)
continue;
if (!UseMI->isCopy())
continue;
if (UseMI->getOperand(0).getReg() != IntB.reg() ||
UseMI->getOperand(0).getSubReg())
continue;
SlotIndex DefIdx = UseIdx.getRegSlot();
VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
if (!DVNI)
continue;
LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
assert(DVNI->def == DefIdx);
BValNo = IntB.MergeValueNumberInto(DVNI, BValNo);
for (LiveInterval::SubRange &S : IntB.subranges()) {
VNInfo *SubDVNI = S.getVNInfoAt(DefIdx);
if (!SubDVNI)
continue;
VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
assert(SubBValNo->def == CopyIdx);
S.MergeValueNumberInto(SubDVNI, SubBValNo);
}
deleteInstr(UseMI);
}
bool ShrinkB = false;
BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
if (IntA.hasSubRanges() || IntB.hasSubRanges()) {
if (!IntA.hasSubRanges()) {
LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg());
IntA.createSubRangeFrom(Allocator, Mask, IntA);
} else if (!IntB.hasSubRanges()) {
LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntB.reg());
IntB.createSubRangeFrom(Allocator, Mask, IntB);
}
SlotIndex AIdx = CopyIdx.getRegSlot(true);
LaneBitmask MaskA;
const SlotIndexes &Indexes = *LIS->getSlotIndexes();
for (LiveInterval::SubRange &SA : IntA.subranges()) {
VNInfo *ASubValNo = SA.getVNInfoAt(AIdx);
if (!ASubValNo)
continue;
MaskA |= SA.LaneMask;
IntB.refineSubRanges(
Allocator, SA.LaneMask,
[&Allocator, &SA, CopyIdx, ASubValNo,
&ShrinkB](LiveInterval::SubRange &SR) {
VNInfo *BSubValNo = SR.empty() ? SR.getNextValue(CopyIdx, Allocator)
: SR.getVNInfoAt(CopyIdx);
assert(BSubValNo != nullptr);
auto P = addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo);
ShrinkB |= P.second;
if (P.first)
BSubValNo->def = ASubValNo->def;
},
Indexes, *TRI);
}
for (LiveInterval::SubRange &SB : IntB.subranges()) {
if ((SB.LaneMask & MaskA).any())
continue;
if (LiveRange::Segment *S = SB.getSegmentContaining(CopyIdx))
if (S->start.getBaseIndex() == CopyIdx.getBaseIndex())
SB.removeSegment(*S, true);
}
}
BValNo->def = AValNo->def;
auto P = addSegmentsWithValNo(IntB, BValNo, IntA, AValNo);
ShrinkB |= P.second;
LLVM_DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
LIS->removeVRegDefAt(IntA, AValNo->def);
LLVM_DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n');
++numCommutes;
return { true, ShrinkB };
}
bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP,
MachineInstr &CopyMI) {
assert(!CP.isPhys());
if (!CopyMI.isFullCopy())
return false;
MachineBasicBlock &MBB = *CopyMI.getParent();
if (MBB.isEHPad() || MBB.isInlineAsmBrIndirectTarget())
return false;
if (MBB.pred_size() != 2)
return false;
LiveInterval &IntA =
LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
LiveInterval &IntB =
LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true);
VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx);
assert(AValNo && !AValNo->isUnused() && "COPY source not live");
if (!AValNo->isPHIDef())
return false;
if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx))
return false;
bool FoundReverseCopy = false;
MachineBasicBlock *CopyLeftBB = nullptr;
for (MachineBasicBlock *Pred : MBB.predecessors()) {
VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred));
MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def);
if (!DefMI || !DefMI->isFullCopy()) {
CopyLeftBB = Pred;
continue;
}
if (DefMI->getOperand(0).getReg() != IntA.reg() ||
DefMI->getOperand(1).getReg() != IntB.reg() ||
DefMI->getParent() != Pred) {
CopyLeftBB = Pred;
continue;
}
bool ValB_Changed = false;
for (auto *VNI : IntB.valnos) {
if (VNI->isUnused())
continue;
if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) {
ValB_Changed = true;
break;
}
}
if (ValB_Changed) {
CopyLeftBB = Pred;
continue;
}
FoundReverseCopy = true;
}
if (!FoundReverseCopy)
return false;
if (CopyLeftBB && CopyLeftBB->succ_size() > 1)
return false;
if (CopyLeftBB) {
auto InsPos = CopyLeftBB->getFirstTerminator();
if (InsPos != CopyLeftBB->end()) {
SlotIndex InsPosIdx = LIS->getInstructionIndex(*InsPos).getRegSlot(true);
if (IntB.overlaps(InsPosIdx, LIS->getMBBEndIdx(CopyLeftBB)))
return false;
}
LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to "
<< printMBBReference(*CopyLeftBB) << '\t' << CopyMI);
MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(),
TII->get(TargetOpcode::COPY), IntB.reg())
.addReg(IntA.reg());
SlotIndex NewCopyIdx =
LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot();
IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
for (LiveInterval::SubRange &SR : IntB.subranges())
SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
ErasedInstrs.erase(NewCopyMI);
} else {
LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from "
<< printMBBReference(MBB) << '\t' << CopyMI);
}
deleteInstr(&CopyMI);
SmallVector<SlotIndex, 8> EndPoints;
VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead();
LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(),
&EndPoints);
BValNo->markUnused();
LIS->extendToIndices(IntB, EndPoints);
for (LiveInterval::SubRange &SR : IntB.subranges()) {
EndPoints.clear();
VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead();
assert(BValNo && "All sublanes should be live");
LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints);
BValNo->markUnused();
for (unsigned I = 0; I != EndPoints.size(); ) {
if (SlotIndex::isSameInstr(EndPoints[I], CopyIdx)) {
EndPoints[I] = EndPoints.back();
EndPoints.pop_back();
continue;
}
++I;
}
SmallVector<SlotIndex, 8> Undefs;
IntB.computeSubRangeUndefs(Undefs, SR.LaneMask, *MRI,
*LIS->getSlotIndexes());
LIS->extendToIndices(SR, EndPoints, Undefs);
}
shrinkToUses(&IntB);
shrinkToUses(&IntA);
return true;
}
static bool definesFullReg(const MachineInstr &MI, Register Reg) {
assert(!Reg.isPhysical() && "This code cannot handle physreg aliasing");
for (const MachineOperand &Op : MI.operands()) {
if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
continue;
if (Op.getSubReg() == 0 || Op.isUndef())
return true;
}
return false;
}
bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP,
MachineInstr *CopyMI,
bool &IsDefCopy) {
IsDefCopy = false;
Register SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg();
unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx();
Register DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx();
if (Register::isPhysicalRegister(SrcReg))
return false;
LiveInterval &SrcInt = LIS->getInterval(SrcReg);
SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn();
if (!ValNo)
return false;
if (ValNo->isPHIDef() || ValNo->isUnused())
return false;
MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
if (!DefMI)
return false;
if (DefMI->isCopyLike()) {
IsDefCopy = true;
return false;
}
if (!TII->isAsCheapAsAMove(*DefMI))
return false;
if (!TII->isTriviallyReMaterializable(*DefMI))
return false;
if (!definesFullReg(*DefMI, SrcReg))
return false;
bool SawStore = false;
if (!DefMI->isSafeToMove(AA, SawStore))
return false;
const MCInstrDesc &MCID = DefMI->getDesc();
if (MCID.getNumDefs() != 1)
return false;
MachineOperand &DstOperand = CopyMI->getOperand(0);
Register CopyDstReg = DstOperand.getReg();
if (DstOperand.getSubReg() && !DstOperand.isUndef())
return false;
if (SrcIdx && DstIdx)
return false;
const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF);
if (!DefMI->isImplicitDef()) {
if (DstReg.isPhysical()) {
Register NewDstReg = DstReg;
unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(),
DefMI->getOperand(0).getSubReg());
if (NewDstIdx)
NewDstReg = TRI->getSubReg(DstReg, NewDstIdx);
if (!DefRC->contains(NewDstReg))
return false;
} else {
assert(Register::isVirtualRegister(DstReg) &&
"Only expect to deal with virtual or physical registers");
}
}
if (!allUsesAvailableAt(DefMI, ValNo->def, CopyIdx))
return false;
DebugLoc DL = CopyMI->getDebugLoc();
MachineBasicBlock *MBB = CopyMI->getParent();
MachineBasicBlock::iterator MII =
std::next(MachineBasicBlock::iterator(CopyMI));
TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI);
MachineInstr &NewMI = *std::prev(MII);
NewMI.setDebugLoc(DL);
const TargetRegisterClass *NewRC = CP.getNewRC();
if (DstIdx != 0) {
MachineOperand &DefMO = NewMI.getOperand(0);
if (DefMO.getSubReg() == DstIdx) {
assert(SrcIdx == 0 && CP.isFlipped()
&& "Shouldn't have SrcIdx+DstIdx at this point");
const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
const TargetRegisterClass *CommonRC =
TRI->getCommonSubClass(DefRC, DstRC);
if (CommonRC != nullptr) {
NewRC = CommonRC;
DstIdx = 0;
DefMO.setSubReg(0);
DefMO.setIsUndef(false); }
}
}
SmallVector<MachineOperand, 4> ImplicitOps;
ImplicitOps.reserve(CopyMI->getNumOperands() -
CopyMI->getDesc().getNumOperands());
for (unsigned I = CopyMI->getDesc().getNumOperands(),
E = CopyMI->getNumOperands();
I != E; ++I) {
MachineOperand &MO = CopyMI->getOperand(I);
if (MO.isReg()) {
assert(MO.isImplicit() && "No explicit operands after implicit operands.");
if (Register::isPhysicalRegister(MO.getReg()))
ImplicitOps.push_back(MO);
}
}
LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI);
CopyMI->eraseFromParent();
ErasedInstrs.insert(CopyMI);
SmallVector<MCRegister, 4> NewMIImplDefs;
for (unsigned i = NewMI.getDesc().getNumOperands(),
e = NewMI.getNumOperands();
i != e; ++i) {
MachineOperand &MO = NewMI.getOperand(i);
if (MO.isReg() && MO.isDef()) {
assert(MO.isImplicit() && MO.isDead() &&
Register::isPhysicalRegister(MO.getReg()));
NewMIImplDefs.push_back(MO.getReg().asMCReg());
}
}
if (DstReg.isVirtual()) {
unsigned NewIdx = NewMI.getOperand(0).getSubReg();
if (DefRC != nullptr) {
if (NewIdx)
NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx);
else
NewRC = TRI->getCommonSubClass(NewRC, DefRC);
assert(NewRC && "subreg chosen for remat incompatible with instruction");
}
LiveInterval &DstInt = LIS->getInterval(DstReg);
for (LiveInterval::SubRange &SR : DstInt.subranges()) {
SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask);
}
MRI->setRegClass(DstReg, NewRC);
updateRegDefsUses(DstReg, DstReg, DstIdx);
NewMI.getOperand(0).setSubReg(NewIdx);
if (NewIdx == 0)
NewMI.getOperand(0).setIsUndef(false);
if (NewIdx == 0 && DstInt.hasSubRanges()) {
SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
SlotIndex DefIndex =
CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber());
LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg);
VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator();
for (LiveInterval::SubRange &SR : DstInt.subranges()) {
if (!SR.liveAt(DefIndex))
SR.createDeadDef(DefIndex, Alloc);
MaxMask &= ~SR.LaneMask;
}
if (MaxMask.any()) {
LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask);
SR->createDeadDef(DefIndex, Alloc);
}
}
if (NewIdx != 0 && DstInt.hasSubRanges()) {
SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(NewIdx);
bool UpdatedSubRanges = false;
SlotIndex DefIndex =
CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber());
VNInfo::Allocator &Alloc = LIS->getVNInfoAllocator();
for (LiveInterval::SubRange &SR : DstInt.subranges()) {
if ((SR.LaneMask & DstMask).none()) {
LLVM_DEBUG(dbgs()
<< "Removing undefined SubRange "
<< PrintLaneMask(SR.LaneMask) << " : " << SR << "\n");
if (VNInfo *RmValNo = SR.getVNInfoAt(CurrIdx.getRegSlot())) {
SR.removeValNo(RmValNo);
UpdatedSubRanges = true;
}
} else {
if (SR.empty())
SR.createDeadDef(DefIndex, Alloc);
}
}
if (UpdatedSubRanges)
DstInt.removeEmptySubRanges();
}
} else if (NewMI.getOperand(0).getReg() != CopyDstReg) {
assert(Register::isPhysicalRegister(DstReg) &&
"Only expect virtual or physical registers in remat");
NewMI.getOperand(0).setIsDead(true);
NewMI.addOperand(MachineOperand::CreateReg(
CopyDstReg, true , true , false ));
SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI);
Units.isValid(); ++Units)
if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
}
if (NewMI.getOperand(0).getSubReg())
NewMI.getOperand(0).setIsUndef();
for (MachineOperand &MO : ImplicitOps)
NewMI.addOperand(MO);
SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
MCRegister Reg = NewMIImplDefs[i];
for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
}
LLVM_DEBUG(dbgs() << "Remat: " << NewMI);
++NumReMats;
if (MRI->use_nodbg_empty(SrcReg)) {
for (MachineOperand &UseMO :
llvm::make_early_inc_range(MRI->use_operands(SrcReg))) {
MachineInstr *UseMI = UseMO.getParent();
if (UseMI->isDebugInstr()) {
if (Register::isPhysicalRegister(DstReg))
UseMO.substPhysReg(DstReg, *TRI);
else
UseMO.setReg(DstReg);
MBB->splice(std::next(NewMI.getIterator()), UseMI->getParent(), UseMI);
LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI);
}
}
}
if (ToBeUpdated.count(SrcReg))
return true;
unsigned NumCopyUses = 0;
for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
if (UseMO.getParent()->isCopyLike())
NumCopyUses++;
}
if (NumCopyUses < LateRematUpdateThreshold) {
shrinkToUses(&SrcInt, &DeadDefs);
if (!DeadDefs.empty())
eliminateDeadDefs();
} else {
ToBeUpdated.insert(SrcReg);
}
return true;
}
MachineInstr *RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) {
Register SrcReg, DstReg;
unsigned SrcSubIdx = 0, DstSubIdx = 0;
if(!isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
return nullptr;
SlotIndex Idx = LIS->getInstructionIndex(*CopyMI);
const LiveInterval &SrcLI = LIS->getInterval(SrcReg);
if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) {
LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx);
for (const LiveInterval::SubRange &SR : SrcLI.subranges()) {
if ((SR.LaneMask & SrcMask).none())
continue;
if (SR.liveAt(Idx))
return nullptr;
}
} else if (SrcLI.liveAt(Idx))
return nullptr;
LiveInterval &DstLI = LIS->getInterval(DstReg);
SlotIndex RegIndex = Idx.getRegSlot();
LiveRange::Segment *Seg = DstLI.getSegmentContaining(RegIndex);
assert(Seg != nullptr && "No segment for defining instruction");
if (VNInfo *V = DstLI.getVNInfoAt(Seg->end)) {
if (V->isPHIDef()) {
CopyMI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
for (unsigned i = CopyMI->getNumOperands(); i != 0; --i) {
MachineOperand &MO = CopyMI->getOperand(i-1);
if (MO.isReg() && MO.isUse())
CopyMI->removeOperand(i-1);
}
LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an "
"implicit def\n");
return CopyMI;
}
}
LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n");
if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) {
VNInfo *VNI = DstLI.getVNInfoAt(RegIndex);
DstLI.MergeValueNumberInto(VNI, PrevVNI);
LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx);
for (LiveInterval::SubRange &SR : DstLI.subranges()) {
if ((SR.LaneMask & DstMask).none())
continue;
VNInfo *SVNI = SR.getVNInfoAt(RegIndex);
assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex));
SR.removeValNo(SVNI);
}
DstLI.removeEmptySubRanges();
} else
LIS->removeVRegDefAt(DstLI, RegIndex);
for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) {
if (MO.isDef() )
continue;
const MachineInstr &MI = *MO.getParent();
SlotIndex UseIdx = LIS->getInstructionIndex(MI);
LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
bool isLive;
if (!UseMask.all() && DstLI.hasSubRanges()) {
isLive = false;
for (const LiveInterval::SubRange &SR : DstLI.subranges()) {
if ((SR.LaneMask & UseMask).none())
continue;
if (SR.liveAt(UseIdx)) {
isLive = true;
break;
}
}
} else
isLive = DstLI.liveAt(UseIdx);
if (isLive)
continue;
MO.setIsUndef(true);
LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI);
}
for (MachineOperand &MO : CopyMI->operands())
if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg)
MO.setIsUndef(true);
LIS->shrinkToUses(&DstLI);
return CopyMI;
}
void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
MachineOperand &MO, unsigned SubRegIdx) {
LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx);
if (MO.isDef())
Mask = ~Mask;
bool IsUndef = true;
for (const LiveInterval::SubRange &S : Int.subranges()) {
if ((S.LaneMask & Mask).none())
continue;
if (S.liveAt(UseIdx)) {
IsUndef = false;
break;
}
}
if (IsUndef) {
MO.setIsUndef(true);
LiveQueryResult Q = Int.Query(UseIdx);
if (Q.valueOut() == nullptr)
ShrinkMainRange = true;
}
}
void RegisterCoalescer::updateRegDefsUses(Register SrcReg, Register DstReg,
unsigned SubIdx) {
bool DstIsPhys = Register::isPhysicalRegister(DstReg);
LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg);
if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) {
for (MachineOperand &MO : MRI->reg_operands(DstReg)) {
unsigned SubReg = MO.getSubReg();
if (SubReg == 0 || MO.isUndef())
continue;
MachineInstr &MI = *MO.getParent();
if (MI.isDebugInstr())
continue;
SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true);
addUndefFlag(*DstInt, UseIdx, MO, SubReg);
}
}
SmallPtrSet<MachineInstr*, 8> Visited;
for (MachineRegisterInfo::reg_instr_iterator
I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end();
I != E; ) {
MachineInstr *UseMI = &*(I++);
if (SrcReg == DstReg && !Visited.insert(UseMI).second)
continue;
SmallVector<unsigned,8> Ops;
bool Reads, Writes;
std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
if (DstInt && !Reads && SubIdx && !UseMI->isDebugInstr())
Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI));
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
MachineOperand &MO = UseMI->getOperand(Ops[i]);
if (SubIdx && MO.isDef())
MO.setIsUndef(!Reads);
if (MO.isUse() && !DstIsPhys) {
unsigned SubUseIdx = TRI->composeSubRegIndices(SubIdx, MO.getSubReg());
if (SubUseIdx != 0 && MRI->shouldTrackSubRegLiveness(DstReg)) {
if (!DstInt->hasSubRanges()) {
BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
LaneBitmask FullMask = MRI->getMaxLaneMaskForVReg(DstInt->reg());
LaneBitmask UsedLanes = TRI->getSubRegIndexLaneMask(SubIdx);
LaneBitmask UnusedLanes = FullMask & ~UsedLanes;
DstInt->createSubRangeFrom(Allocator, UsedLanes, *DstInt);
DstInt->createSubRange(Allocator, UnusedLanes);
}
SlotIndex MIIdx = UseMI->isDebugInstr()
? LIS->getSlotIndexes()->getIndexBefore(*UseMI)
: LIS->getInstructionIndex(*UseMI);
SlotIndex UseIdx = MIIdx.getRegSlot(true);
addUndefFlag(*DstInt, UseIdx, MO, SubUseIdx);
}
}
if (DstIsPhys)
MO.substPhysReg(DstReg, *TRI);
else
MO.substVirtReg(DstReg, SubIdx, *TRI);
}
LLVM_DEBUG({
dbgs() << "\t\tupdated: ";
if (!UseMI->isDebugInstr())
dbgs() << LIS->getInstructionIndex(*UseMI) << "\t";
dbgs() << *UseMI;
});
}
}
bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
if (!MRI->isReserved(CP.getDstReg())) {
LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
return false;
}
LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
if (JoinVInt.containsOneValue())
return true;
LLVM_DEBUG(
dbgs() << "\tCannot join complex intervals into reserved register.\n");
return false;
}
bool RegisterCoalescer::copyValueUndefInPredecessors(
LiveRange &S, const MachineBasicBlock *MBB, LiveQueryResult SLRQ) {
for (const MachineBasicBlock *Pred : MBB->predecessors()) {
SlotIndex PredEnd = LIS->getMBBEndIdx(Pred);
if (VNInfo *V = S.getVNInfoAt(PredEnd.getPrevSlot())) {
if (V->id != SLRQ.valueOutOrDead()->id)
return false;
}
}
return true;
}
void RegisterCoalescer::setUndefOnPrunedSubRegUses(LiveInterval &LI,
Register Reg,
LaneBitmask PrunedLanes) {
for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
unsigned SubRegIdx = MO.getSubReg();
if (SubRegIdx == 0 || MO.isUndef())
continue;
LaneBitmask SubRegMask = TRI->getSubRegIndexLaneMask(SubRegIdx);
SlotIndex Pos = LIS->getInstructionIndex(*MO.getParent());
for (LiveInterval::SubRange &S : LI.subranges()) {
if (!S.liveAt(Pos) && (PrunedLanes & SubRegMask).any()) {
MO.setIsUndef();
break;
}
}
}
LI.removeEmptySubRanges();
LIS->shrinkToUses(&LI);
}
bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
Again = false;
LLVM_DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI);
CoalescerPair CP(*TRI);
if (!CP.setRegisters(CopyMI)) {
LLVM_DEBUG(dbgs() << "\tNot coalescable.\n");
return false;
}
if (CP.getNewRC()) {
auto SrcRC = MRI->getRegClass(CP.getSrcReg());
auto DstRC = MRI->getRegClass(CP.getDstReg());
unsigned SrcIdx = CP.getSrcIdx();
unsigned DstIdx = CP.getDstIdx();
if (CP.isFlipped()) {
std::swap(SrcIdx, DstIdx);
std::swap(SrcRC, DstRC);
}
if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx,
CP.getNewRC(), *LIS)) {
LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n");
return false;
}
}
if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
LLVM_DEBUG(dbgs() << "\tCopy is dead.\n");
DeadDefs.push_back(CopyMI);
eliminateDeadDefs();
return true;
}
if (!CP.isPhys()) {
if (MachineInstr *UndefMI = eliminateUndefCopy(CopyMI)) {
if (UndefMI->isImplicitDef())
return false;
deleteInstr(CopyMI);
return false; }
}
if (CP.getSrcReg() == CP.getDstReg()) {
LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
LiveQueryResult LRQ = LI.Query(CopyIdx);
if (VNInfo *DefVNI = LRQ.valueDefined()) {
VNInfo *ReadVNI = LRQ.valueIn();
assert(ReadVNI && "No value before copy and no <undef> flag.");
assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
LaneBitmask PrunedLanes;
MachineBasicBlock *MBB = CopyMI->getParent();
for (LiveInterval::SubRange &S : LI.subranges()) {
LiveQueryResult SLRQ = S.Query(CopyIdx);
if (VNInfo *SDefVNI = SLRQ.valueDefined()) {
if (VNInfo *SReadVNI = SLRQ.valueIn())
SDefVNI = S.MergeValueNumberInto(SDefVNI, SReadVNI);
if (copyValueUndefInPredecessors(S, MBB, SLRQ)) {
LLVM_DEBUG(dbgs() << "Incoming sublane value is undef at copy\n");
PrunedLanes |= S.LaneMask;
S.removeValNo(SDefVNI);
}
}
}
LI.MergeValueNumberInto(DefVNI, ReadVNI);
if (PrunedLanes.any()) {
LLVM_DEBUG(dbgs() << "Pruning undef incoming lanes: "
<< PrunedLanes << '\n');
setUndefOnPrunedSubRegUses(LI, CP.getSrcReg(), PrunedLanes);
}
LLVM_DEBUG(dbgs() << "\tMerged values: " << LI << '\n');
}
deleteInstr(CopyMI);
return true;
}
if (CP.isPhys()) {
LLVM_DEBUG(dbgs() << "\tConsidering merging "
<< printReg(CP.getSrcReg(), TRI) << " with "
<< printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n');
if (!canJoinPhys(CP)) {
bool IsDefCopy = false;
if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
return true;
if (IsDefCopy)
Again = true; return false;
}
} else {
if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() >
LIS->getInterval(CP.getDstReg()).size())
CP.flip();
LLVM_DEBUG({
dbgs() << "\tConsidering merging to "
<< TRI->getRegClassName(CP.getNewRC()) << " with ";
if (CP.getDstIdx() && CP.getSrcIdx())
dbgs() << printReg(CP.getDstReg()) << " in "
<< TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
<< printReg(CP.getSrcReg()) << " in "
<< TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
else
dbgs() << printReg(CP.getSrcReg(), TRI) << " in "
<< printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
});
}
ShrinkMask = LaneBitmask::getNone();
ShrinkMainRange = false;
if (!joinIntervals(CP)) {
bool IsDefCopy = false;
if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
return true;
if (!CP.isPartial() && !CP.isPhys()) {
bool Changed = adjustCopiesBackFrom(CP, CopyMI);
bool Shrink = false;
if (!Changed)
std::tie(Changed, Shrink) = removeCopyByCommutingDef(CP, CopyMI);
if (Changed) {
deleteInstr(CopyMI);
if (Shrink) {
Register DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
LiveInterval &DstLI = LIS->getInterval(DstReg);
shrinkToUses(&DstLI);
LLVM_DEBUG(dbgs() << "\t\tshrunk: " << DstLI << '\n');
}
LLVM_DEBUG(dbgs() << "\tTrivial!\n");
return true;
}
}
if (!CP.isPartial() && !CP.isPhys())
if (removePartialRedundancy(CP, *CopyMI))
return true;
LLVM_DEBUG(dbgs() << "\tInterference!\n");
Again = true; return false;
}
if (CP.isCrossClass()) {
++numCrossRCs;
MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
}
if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
InflateRegs.push_back(CP.getDstReg());
ErasedInstrs.erase(CopyMI);
if (CP.getDstIdx())
updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
if (ShrinkMask.any()) {
LiveInterval &LI = LIS->getInterval(CP.getDstReg());
for (LiveInterval::SubRange &S : LI.subranges()) {
if ((S.LaneMask & ShrinkMask).none())
continue;
LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask)
<< ")\n");
LIS->shrinkToUses(S, LI.reg());
}
LI.removeEmptySubRanges();
}
if (ToBeUpdated.count(CP.getSrcReg()))
ShrinkMainRange = true;
if (ShrinkMainRange) {
LiveInterval &LI = LIS->getInterval(CP.getDstReg());
shrinkToUses(&LI);
}
LIS->removeInterval(CP.getSrcReg());
TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
LLVM_DEBUG({
dbgs() << "\tSuccess: " << printReg(CP.getSrcReg(), TRI, CP.getSrcIdx())
<< " -> " << printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';
dbgs() << "\tResult = ";
if (CP.isPhys())
dbgs() << printReg(CP.getDstReg(), TRI);
else
dbgs() << LIS->getInterval(CP.getDstReg());
dbgs() << '\n';
});
++numJoins;
return true;
}
bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
Register DstReg = CP.getDstReg();
Register SrcReg = CP.getSrcReg();
assert(CP.isPhys() && "Must be a physreg copy");
assert(MRI->isReserved(DstReg) && "Not a reserved register");
LiveInterval &RHS = LIS->getInterval(SrcReg);
LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n');
assert(RHS.containsOneValue() && "Invalid join with reserved register");
if (!MRI->isConstantPhysReg(DstReg)) {
for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) {
if (!MRI->isReserved(*RI))
return false;
}
if (RHS.overlaps(LIS->getRegUnit(*UI))) {
LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(*UI, TRI)
<< '\n');
return false;
}
}
BitVector RegMaskUsable;
if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) &&
!RegMaskUsable.test(DstReg)) {
LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n");
return false;
}
}
MachineInstr *CopyMI;
if (CP.isFlipped()) {
CopyMI = MRI->getVRegDef(SrcReg);
} else {
if (!MRI->hasOneNonDBGUse(SrcReg)) {
LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n");
return false;
}
if (!LIS->intervalIsInOneMBB(RHS)) {
LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n");
return false;
}
MachineInstr &DestMI = *MRI->getVRegDef(SrcReg);
CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg);
SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot();
if (!MRI->isConstantPhysReg(DstReg)) {
SlotIndexes *Indexes = LIS->getSlotIndexes();
for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx);
SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) {
MachineInstr *MI = LIS->getInstructionFromIndex(SI);
if (MI->readsRegister(DstReg, TRI)) {
LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI);
return false;
}
}
}
LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of "
<< printReg(DstReg, TRI) << " at " << CopyRegIdx << "\n");
LIS->removePhysRegDefAt(DstReg.asMCReg(), CopyRegIdx);
for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
LiveRange &LR = LIS->getRegUnit(*UI);
LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator());
}
}
deleteInstr(CopyMI);
MRI->clearKillFlags(CP.getSrcReg());
return true;
}
namespace {
class JoinVals {
LiveRange &LR;
const Register Reg;
const unsigned SubIdx;
const LaneBitmask LaneMask;
const bool SubRangeJoin;
const bool TrackSubRegLiveness;
SmallVectorImpl<VNInfo*> &NewVNInfo;
const CoalescerPair &CP;
LiveIntervals *LIS;
SlotIndexes *Indexes;
const TargetRegisterInfo *TRI;
SmallVector<int, 8> Assignments;
public:
enum ConflictResolution {
CR_Keep,
CR_Erase,
CR_Merge,
CR_Replace,
CR_Unresolved,
CR_Impossible
};
private:
struct Val {
ConflictResolution Resolution = CR_Keep;
LaneBitmask WriteLanes;
LaneBitmask ValidLanes;
VNInfo *RedefVNI = nullptr;
VNInfo *OtherVNI = nullptr;
bool ErasableImplicitDef = false;
bool Pruned = false;
bool PrunedComputed = false;
bool Identical = false;
Val() = default;
bool isAnalyzed() const { return WriteLanes.any(); }
};
SmallVector<Val, 8> Vals;
LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const;
std::pair<const VNInfo *, Register> followCopyChain(const VNInfo *VNI) const;
bool valuesIdentical(VNInfo *Value0, VNInfo *Value1, const JoinVals &Other) const;
ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
void computeAssignment(unsigned ValNo, JoinVals &Other);
bool
taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent);
bool usesLanes(const MachineInstr &MI, Register, unsigned, LaneBitmask) const;
bool isPrunedValue(unsigned ValNo, JoinVals &Other);
public:
JoinVals(LiveRange &LR, Register Reg, unsigned SubIdx, LaneBitmask LaneMask,
SmallVectorImpl<VNInfo *> &newVNInfo, const CoalescerPair &cp,
LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin,
bool TrackSubRegLiveness)
: LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask),
SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness),
NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()),
TRI(TRI), Assignments(LR.getNumValNums(), -1),
Vals(LR.getNumValNums()) {}
bool mapValues(JoinVals &Other);
bool resolveConflicts(JoinVals &Other);
void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints,
bool changeInstrs);
void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask);
void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange);
void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
SmallVectorImpl<Register> &ShrinkRegs,
LiveInterval *LI = nullptr);
void removeImplicitDefs();
const int *getAssignments() const { return Assignments.data(); }
ConflictResolution getResolution(unsigned Num) const {
return Vals[Num].Resolution;
}
};
}
LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef)
const {
LaneBitmask L;
for (const MachineOperand &MO : DefMI->operands()) {
if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef())
continue;
L |= TRI->getSubRegIndexLaneMask(
TRI->composeSubRegIndices(SubIdx, MO.getSubReg()));
if (MO.readsReg())
Redef = true;
}
return L;
}
std::pair<const VNInfo *, Register>
JoinVals::followCopyChain(const VNInfo *VNI) const {
Register TrackReg = Reg;
while (!VNI->isPHIDef()) {
SlotIndex Def = VNI->def;
MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
assert(MI && "No defining instruction");
if (!MI->isFullCopy())
return std::make_pair(VNI, TrackReg);
Register SrcReg = MI->getOperand(1).getReg();
if (!SrcReg.isVirtual())
return std::make_pair(VNI, TrackReg);
const LiveInterval &LI = LIS->getInterval(SrcReg);
const VNInfo *ValueIn;
if (!SubRangeJoin || !LI.hasSubRanges()) {
LiveQueryResult LRQ = LI.Query(Def);
ValueIn = LRQ.valueIn();
} else {
ValueIn = nullptr;
for (const LiveInterval::SubRange &S : LI.subranges()) {
LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask);
if ((SMask & LaneMask).none())
continue;
LiveQueryResult LRQ = S.Query(Def);
if (!ValueIn) {
ValueIn = LRQ.valueIn();
continue;
}
if (LRQ.valueIn() && ValueIn != LRQ.valueIn())
return std::make_pair(VNI, TrackReg);
}
}
if (ValueIn == nullptr) {
return std::make_pair(nullptr, SrcReg);
}
VNI = ValueIn;
TrackReg = SrcReg;
}
return std::make_pair(VNI, TrackReg);
}
bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1,
const JoinVals &Other) const {
const VNInfo *Orig0;
Register Reg0;
std::tie(Orig0, Reg0) = followCopyChain(Value0);
if (Orig0 == Value1 && Reg0 == Other.Reg)
return true;
const VNInfo *Orig1;
Register Reg1;
std::tie(Orig1, Reg1) = Other.followCopyChain(Value1);
if (Orig0 == nullptr || Orig1 == nullptr)
return Orig0 == Orig1 && Reg0 == Reg1;
return Orig0->def == Orig1->def && Reg0 == Reg1;
}
JoinVals::ConflictResolution
JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
Val &V = Vals[ValNo];
assert(!V.isAnalyzed() && "Value has already been analyzed!");
VNInfo *VNI = LR.getValNumInfo(ValNo);
if (VNI->isUnused()) {
V.WriteLanes = LaneBitmask::getAll();
return CR_Keep;
}
const MachineInstr *DefMI = nullptr;
if (VNI->isPHIDef()) {
LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(0)
: TRI->getSubRegIndexLaneMask(SubIdx);
V.ValidLanes = V.WriteLanes = Lanes;
} else {
DefMI = Indexes->getInstructionFromIndex(VNI->def);
assert(DefMI != nullptr);
if (SubRangeJoin) {
V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(0);
if (DefMI->isImplicitDef()) {
V.ValidLanes = LaneBitmask::getNone();
V.ErasableImplicitDef = true;
}
} else {
bool Redef = false;
V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
if (Redef) {
V.RedefVNI = LR.Query(VNI->def).valueIn();
assert((TrackSubRegLiveness || V.RedefVNI) &&
"Instruction is reading nonexistent value");
if (V.RedefVNI != nullptr) {
computeAssignment(V.RedefVNI->id, Other);
V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
}
}
if (DefMI->isImplicitDef()) {
V.ErasableImplicitDef = true;
}
}
}
LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def);
if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ");
if (OtherVNI->def < VNI->def)
Other.computeAssignment(OtherVNI->id, *this);
else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
V.OtherVNI = OtherLRQ.valueIn();
return CR_Impossible;
}
V.OtherVNI = OtherVNI;
Val &OtherV = Other.Vals[OtherVNI->id];
if (!OtherV.isAnalyzed())
return CR_Keep;
if (VNI->isPHIDef())
return CR_Merge;
if ((V.ValidLanes & OtherV.ValidLanes).any())
return CR_Impossible;
else
return CR_Merge;
}
V.OtherVNI = OtherLRQ.valueIn();
if (!V.OtherVNI)
return CR_Keep;
assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ");
Other.computeAssignment(V.OtherVNI->id, *this);
Val &OtherV = Other.Vals[V.OtherVNI->id];
if (OtherV.ErasableImplicitDef) {
if (DefMI &&
DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) {
LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
<< " extends into "
<< printMBBReference(*DefMI->getParent())
<< ", keeping it.\n");
OtherV.ErasableImplicitDef = false;
} else {
OtherV.ValidLanes &= ~OtherV.WriteLanes;
}
}
if (VNI->isPHIDef())
return CR_Replace;
if (DefMI->isImplicitDef())
return CR_Erase;
if (CP.isCoalescable(DefMI)) {
V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
return CR_Erase;
}
if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
return CR_Keep;
if (DefMI->isFullCopy() && !CP.isPartial() &&
valuesIdentical(VNI, V.OtherVNI, Other)) {
V.Identical = true;
return CR_Erase;
}
if (SubRangeJoin)
return CR_Replace;
if ((V.WriteLanes & OtherV.ValidLanes).none())
return CR_Replace;
if (OtherLRQ.isKill()) {
assert(VNI->def.isEarlyClobber() &&
"Only early clobber defs can overlap a kill");
return CR_Impossible;
}
if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none())
return CR_Impossible;
if (TrackSubRegLiveness) {
auto &OtherLI = LIS->getInterval(Other.Reg);
if (!OtherLI.hasSubRanges()) {
LaneBitmask OtherMask = TRI->getSubRegIndexLaneMask(Other.SubIdx);
return (OtherMask & V.WriteLanes).none() ? CR_Replace : CR_Impossible;
}
for (LiveInterval::SubRange &OtherSR : OtherLI.subranges()) {
LaneBitmask OtherMask =
TRI->composeSubRegIndexLaneMask(Other.SubIdx, OtherSR.LaneMask);
if ((OtherMask & V.WriteLanes).none())
continue;
auto OtherSRQ = OtherSR.Query(VNI->def);
if (OtherSRQ.valueIn() && OtherSRQ.endPoint() > VNI->def) {
return CR_Impossible;
}
}
return CR_Replace;
}
MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB))
return CR_Impossible;
return CR_Unresolved;
}
void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
Val &V = Vals[ValNo];
if (V.isAnalyzed()) {
assert(Assignments[ValNo] != -1 && "Bad recursion?");
return;
}
switch ((V.Resolution = analyzeValue(ValNo, Other))) {
case CR_Erase:
case CR_Merge:
assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg) << ':' << ValNo << '@'
<< LR.getValNumInfo(ValNo)->def << " into "
<< printReg(Other.Reg) << ':' << V.OtherVNI->id << '@'
<< V.OtherVNI->def << " --> @"
<< NewVNInfo[Assignments[ValNo]]->def << '\n');
break;
case CR_Replace:
case CR_Unresolved: {
assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
Val &OtherV = Other.Vals[V.OtherVNI->id];
if (OtherV.ErasableImplicitDef &&
TrackSubRegLiveness &&
(OtherV.WriteLanes & ~V.ValidLanes).any()) {
LLVM_DEBUG(dbgs() << "Cannot erase implicit_def with missing values\n");
OtherV.ErasableImplicitDef = false;
OtherV.ValidLanes = LaneBitmask::getAll();
}
OtherV.Pruned = true;
LLVM_FALLTHROUGH;
}
default:
Assignments[ValNo] = NewVNInfo.size();
NewVNInfo.push_back(LR.getValNumInfo(ValNo));
break;
}
}
bool JoinVals::mapValues(JoinVals &Other) {
for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
computeAssignment(i, Other);
if (Vals[i].Resolution == CR_Impossible) {
LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg) << ':' << i
<< '@' << LR.getValNumInfo(i)->def << '\n');
return false;
}
}
return true;
}
bool JoinVals::
taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent) {
VNInfo *VNI = LR.getValNumInfo(ValNo);
MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
LiveInterval::iterator OtherI = Other.LR.find(VNI->def);
assert(OtherI != Other.LR.end() && "No conflict?");
do {
SlotIndex End = OtherI->end;
if (End >= MBBEnd) {
LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other.Reg) << ':'
<< OtherI->valno->id << '@' << OtherI->start << '\n');
return false;
}
LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other.Reg) << ':'
<< OtherI->valno->id << '@' << OtherI->start << " to "
<< End << '\n');
if (End.isDead())
break;
TaintExtent.push_back(std::make_pair(End, TaintedLanes));
if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd)
break;
const Val &OV = Other.Vals[OtherI->valno->id];
TaintedLanes &= ~OV.WriteLanes;
if (!OV.RedefVNI)
break;
} while (TaintedLanes.any());
return true;
}
bool JoinVals::usesLanes(const MachineInstr &MI, Register Reg, unsigned SubIdx,
LaneBitmask Lanes) const {
if (MI.isDebugOrPseudoInstr())
return false;
for (const MachineOperand &MO : MI.operands()) {
if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg)
continue;
if (!MO.readsReg())
continue;
unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg());
if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any())
return true;
}
return false;
}
bool JoinVals::resolveConflicts(JoinVals &Other) {
for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
Val &V = Vals[i];
assert(V.Resolution != CR_Impossible && "Unresolvable conflict");
if (V.Resolution != CR_Unresolved)
continue;
LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg) << ':' << i << '@'
<< LR.getValNumInfo(i)->def
<< ' ' << PrintLaneMask(LaneMask) << '\n');
if (SubRangeJoin)
return false;
++NumLaneConflicts;
assert(V.OtherVNI && "Inconsistent conflict resolution.");
VNInfo *VNI = LR.getValNumInfo(i);
const Val &OtherV = Other.Vals[V.OtherVNI->id];
LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent;
if (!taintExtent(i, TaintedLanes, Other, TaintExtent))
return false;
assert(!TaintExtent.empty() && "There should be at least one conflict.");
MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
MachineBasicBlock::iterator MI = MBB->begin();
if (!VNI->isPHIDef()) {
MI = Indexes->getInstructionFromIndex(VNI->def);
if (!VNI->def.isEarlyClobber()) {
++MI;
}
}
assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&
"Interference ends on VNI->def. Should have been handled earlier");
MachineInstr *LastMI =
Indexes->getInstructionFromIndex(TaintExtent.front().first);
assert(LastMI && "Range must end at a proper instruction");
unsigned TaintNum = 0;
while (true) {
assert(MI != MBB->end() && "Bad LastMI");
if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) {
LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
return false;
}
if (&*MI == LastMI) {
if (++TaintNum == TaintExtent.size())
break;
LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first);
assert(LastMI && "Range must end at a proper instruction");
TaintedLanes = TaintExtent[TaintNum].second;
}
++MI;
}
V.Resolution = CR_Replace;
++NumLaneResolves;
}
return true;
}
bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
Val &V = Vals[ValNo];
if (V.Pruned || V.PrunedComputed)
return V.Pruned;
if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
return V.Pruned;
V.PrunedComputed = true;
V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this);
return V.Pruned;
}
void JoinVals::pruneValues(JoinVals &Other,
SmallVectorImpl<SlotIndex> &EndPoints,
bool changeInstrs) {
for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
SlotIndex Def = LR.getValNumInfo(i)->def;
switch (Vals[i].Resolution) {
case CR_Keep:
break;
case CR_Replace: {
LIS->pruneValue(Other.LR, Def, &EndPoints);
Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
bool EraseImpDef = OtherV.ErasableImplicitDef &&
OtherV.Resolution == CR_Keep;
if (!Def.isBlock()) {
if (changeInstrs) {
for (MachineOperand &MO :
Indexes->getInstructionFromIndex(Def)->operands()) {
if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) {
if (MO.getSubReg() != 0 && MO.isUndef() && !EraseImpDef)
MO.setIsUndef(false);
MO.setIsDead(false);
}
}
}
if (!EraseImpDef)
EndPoints.push_back(Def);
}
LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other.Reg) << " at " << Def
<< ": " << Other.LR << '\n');
break;
}
case CR_Erase:
case CR_Merge:
if (isPrunedValue(i, Other)) {
LIS->pruneValue(LR, Def, &EndPoints);
LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg) << " at "
<< Def << ": " << LR << '\n');
}
break;
case CR_Unresolved:
case CR_Impossible:
llvm_unreachable("Unresolved conflicts");
}
}
}
static bool isLiveThrough(const LiveQueryResult Q) {
return Q.valueIn() && Q.valueIn()->isPHIDef() && Q.valueIn() == Q.valueOut();
}
void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) {
bool DidPrune = false;
for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
Val &V = Vals[i];
if (V.Resolution != CR_Erase &&
(V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned))
continue;
SlotIndex Def = LR.getValNumInfo(i)->def;
SlotIndex OtherDef;
if (V.Identical)
OtherDef = V.OtherVNI->def;
LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def
<< '\n');
for (LiveInterval::SubRange &S : LI.subranges()) {
LiveQueryResult Q = S.Query(Def);
VNInfo *ValueOut = Q.valueOutOrDead();
if (ValueOut != nullptr && (Q.valueIn() == nullptr ||
(V.Identical && V.Resolution == CR_Erase &&
ValueOut->def == Def))) {
LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask)
<< " at " << Def << "\n");
SmallVector<SlotIndex,8> EndPoints;
LIS->pruneValue(S, Def, &EndPoints);
DidPrune = true;
ValueOut->markUnused();
if (V.Identical && S.Query(OtherDef).valueOutOrDead()) {
LIS->extendToIndices(S, EndPoints);
}
if (ValueOut->isPHIDef())
ShrinkMask |= S.LaneMask;
continue;
}
if ((Q.valueIn() != nullptr && Q.valueOut() == nullptr) ||
(V.Resolution == CR_Erase && isLiveThrough(Q))) {
LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane "
<< PrintLaneMask(S.LaneMask) << " at " << Def
<< "\n");
ShrinkMask |= S.LaneMask;
}
}
}
if (DidPrune)
LI.removeEmptySubRanges();
}
static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) {
for (LiveInterval::SubRange &SR : LI.subranges()) {
if (VNInfo *VNI = SR.Query(Def).valueOutOrDead())
if (VNI->def == Def)
return true;
}
return false;
}
void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) {
assert(&static_cast<LiveRange&>(LI) == &LR);
for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
if (Vals[i].Resolution != CR_Keep)
continue;
VNInfo *VNI = LR.getValNumInfo(i);
if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def))
continue;
Vals[i].Pruned = true;
ShrinkMainRange = true;
}
}
void JoinVals::removeImplicitDefs() {
for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
Val &V = Vals[i];
if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)
continue;
VNInfo *VNI = LR.getValNumInfo(i);
VNI->markUnused();
LR.removeValNo(VNI);
}
}
void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
SmallVectorImpl<Register> &ShrinkRegs,
LiveInterval *LI) {
for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
VNInfo *VNI = LR.getValNumInfo(i);
SlotIndex Def = VNI->def;
switch (Vals[i].Resolution) {
case CR_Keep: {
if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
break;
SlotIndex NewEnd;
if (LI != nullptr) {
LiveRange::iterator I = LR.FindSegmentContaining(Def);
assert(I != LR.end());
NewEnd = I->end;
}
LR.removeValNo(VNI);
VNI->markUnused();
if (LI != nullptr && LI->hasSubRanges()) {
assert(static_cast<LiveRange*>(LI) == &LR);
SlotIndex ED, LE;
for (LiveInterval::SubRange &SR : LI->subranges()) {
LiveRange::iterator I = SR.find(Def);
if (I == SR.end())
continue;
if (I->start > Def)
ED = ED.isValid() ? std::min(ED, I->start) : I->start;
else
LE = LE.isValid() ? std::max(LE, I->end) : I->end;
}
if (LE.isValid())
NewEnd = std::min(NewEnd, LE);
if (ED.isValid())
NewEnd = std::min(NewEnd, ED);
if (LE.isValid()) {
LiveRange::iterator S = LR.find(Def);
if (S != LR.begin())
std::prev(S)->end = NewEnd;
}
}
LLVM_DEBUG({
dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n';
if (LI != nullptr)
dbgs() << "\t\t LHS = " << *LI << '\n';
});
LLVM_FALLTHROUGH;
}
case CR_Erase: {
MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
assert(MI && "No instruction to erase");
if (MI->isCopy()) {
Register Reg = MI->getOperand(1).getReg();
if (Register::isVirtualRegister(Reg) && Reg != CP.getSrcReg() &&
Reg != CP.getDstReg())
ShrinkRegs.push_back(Reg);
}
ErasedInstrs.insert(MI);
LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI);
LIS->RemoveMachineInstrFromMaps(*MI);
MI->eraseFromParent();
break;
}
default:
break;
}
}
}
void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
LaneBitmask LaneMask,
const CoalescerPair &CP) {
SmallVector<VNInfo*, 16> NewVNInfo;
JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask,
NewVNInfo, CP, LIS, TRI, true, true);
JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask,
NewVNInfo, CP, LIS, TRI, true, true);
if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) {
llvm_unreachable("*** Couldn't join subrange!\n");
}
if (!LHSVals.resolveConflicts(RHSVals) ||
!RHSVals.resolveConflicts(LHSVals)) {
llvm_unreachable("*** Couldn't join subrange!\n");
}
SmallVector<SlotIndex, 8> EndPoints;
LHSVals.pruneValues(RHSVals, EndPoints, false);
RHSVals.pruneValues(LHSVals, EndPoints, false);
LHSVals.removeImplicitDefs();
RHSVals.removeImplicitDefs();
LRange.verify();
RRange.verify();
LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(),
NewVNInfo);
LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask)
<< ' ' << LRange << "\n");
if (EndPoints.empty())
return;
LLVM_DEBUG({
dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
dbgs() << EndPoints[i];
if (i != n-1)
dbgs() << ',';
}
dbgs() << ": " << LRange << '\n';
});
LIS->extendToIndices(LRange, EndPoints);
}
void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI,
const LiveRange &ToMerge,
LaneBitmask LaneMask,
CoalescerPair &CP,
unsigned ComposeSubRegIdx) {
BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
LI.refineSubRanges(
Allocator, LaneMask,
[this, &Allocator, &ToMerge, &CP](LiveInterval::SubRange &SR) {
if (SR.empty()) {
SR.assign(ToMerge, Allocator);
} else {
LiveRange RangeCopy(ToMerge, Allocator);
joinSubRegRanges(SR, RangeCopy, SR.LaneMask, CP);
}
},
*LIS->getSlotIndexes(), *TRI, ComposeSubRegIdx);
}
bool RegisterCoalescer::isHighCostLiveInterval(LiveInterval &LI) {
if (LI.valnos.size() < LargeIntervalSizeThreshold)
return false;
auto &Counter = LargeLIVisitCounter[LI.reg()];
if (Counter < LargeIntervalFreqThreshold) {
Counter++;
return false;
}
return true;
}
bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
SmallVector<VNInfo*, 16> NewVNInfo;
LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC());
JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(),
NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(),
NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << "\n\t\tLHS = " << LHS << '\n');
if (isHighCostLiveInterval(LHS) || isHighCostLiveInterval(RHS))
return false;
if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
return false;
if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
return false;
if (RHS.hasSubRanges() || LHS.hasSubRanges()) {
BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
unsigned DstIdx = CP.getDstIdx();
if (!LHS.hasSubRanges()) {
LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask()
: TRI->getSubRegIndexLaneMask(DstIdx);
assert(Mask.any());
LHS.createSubRangeFrom(Allocator, Mask, LHS);
} else if (DstIdx != 0) {
for (LiveInterval::SubRange &R : LHS.subranges()) {
LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask);
R.LaneMask = Mask;
}
}
LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP.getDstReg()) << ' ' << LHS
<< '\n');
unsigned SrcIdx = CP.getSrcIdx();
if (!RHS.hasSubRanges()) {
LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask()
: TRI->getSubRegIndexLaneMask(SrcIdx);
mergeSubRangeInto(LHS, RHS, Mask, CP, DstIdx);
} else {
for (LiveInterval::SubRange &R : RHS.subranges()) {
LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask);
mergeSubRangeInto(LHS, R, Mask, CP, DstIdx);
}
}
LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n");
LHSVals.pruneMainSegments(LHS, ShrinkMainRange);
LHSVals.pruneSubRegValues(LHS, ShrinkMask);
RHSVals.pruneSubRegValues(LHS, ShrinkMask);
}
SmallVector<SlotIndex, 8> EndPoints;
LHSVals.pruneValues(RHSVals, EndPoints, true);
RHSVals.pruneValues(LHSVals, EndPoints, true);
SmallVector<Register, 8> ShrinkRegs;
LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS);
RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
while (!ShrinkRegs.empty())
shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
checkMergingChangesDbgValues(CP, LHS, LHSVals, RHS, RHSVals);
auto RegIt = RegToPHIIdx.find(CP.getSrcReg());
if (RegIt != RegToPHIIdx.end()) {
for (unsigned InstID : RegIt->second) {
auto PHIIt = PHIValToPos.find(InstID);
assert(PHIIt != PHIValToPos.end());
const SlotIndex &SI = PHIIt->second.SI;
auto LII = RHS.find(SI);
if (LII == RHS.end() || LII->start > SI)
continue;
if (CP.getSrcIdx() != 0 || CP.getDstIdx() != 0)
if (PHIIt->second.SubReg && PHIIt->second.SubReg != CP.getSrcIdx())
continue;
PHIIt->second.Reg = CP.getDstReg();
if (CP.getSrcIdx() != 0)
PHIIt->second.SubReg = CP.getSrcIdx();
}
auto InstrNums = RegIt->second;
RegToPHIIdx.erase(RegIt);
RegIt = RegToPHIIdx.find(CP.getDstReg());
if (RegIt != RegToPHIIdx.end())
RegIt->second.insert(RegIt->second.end(), InstrNums.begin(),
InstrNums.end());
else
RegToPHIIdx.insert({CP.getDstReg(), InstrNums});
}
LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo);
MRI->clearKillFlags(LHS.reg());
MRI->clearKillFlags(RHS.reg());
if (!EndPoints.empty()) {
LLVM_DEBUG({
dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
dbgs() << EndPoints[i];
if (i != n-1)
dbgs() << ',';
}
dbgs() << ": " << LHS << '\n';
});
LIS->extendToIndices((LiveRange&)LHS, EndPoints);
}
return true;
}
bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
}
void RegisterCoalescer::buildVRegToDbgValueMap(MachineFunction &MF)
{
const SlotIndexes &Slots = *LIS->getSlotIndexes();
SmallVector<MachineInstr *, 8> ToInsert;
auto CloseNewDVRange = [this, &ToInsert](SlotIndex Slot) {
for (auto *X : ToInsert) {
for (const auto &Op : X->debug_operands()) {
if (Op.isReg() && Op.getReg().isVirtual())
DbgVRegToValues[Op.getReg()].push_back({Slot, X});
}
}
ToInsert.clear();
};
for (auto &MBB : MF) {
SlotIndex CurrentSlot = Slots.getMBBStartIdx(&MBB);
for (auto &MI : MBB) {
if (MI.isDebugValue()) {
if (any_of(MI.debug_operands(), [](const MachineOperand &MO) {
return MO.isReg() && MO.getReg().isVirtual();
}))
ToInsert.push_back(&MI);
} else if (!MI.isDebugOrPseudoInstr()) {
CurrentSlot = Slots.getInstructionIndex(MI);
CloseNewDVRange(CurrentSlot);
}
}
CloseNewDVRange(Slots.getMBBEndIdx(&MBB));
}
for (auto &Pair : DbgVRegToValues)
llvm::sort(Pair.second);
}
void RegisterCoalescer::checkMergingChangesDbgValues(CoalescerPair &CP,
LiveRange &LHS,
JoinVals &LHSVals,
LiveRange &RHS,
JoinVals &RHSVals) {
auto ScanForDstReg = [&](Register Reg) {
checkMergingChangesDbgValuesImpl(Reg, RHS, LHS, LHSVals);
};
auto ScanForSrcReg = [&](Register Reg) {
checkMergingChangesDbgValuesImpl(Reg, LHS, RHS, RHSVals);
};
auto PerformScan = [this](Register Reg, std::function<void(Register)> Func) {
Func(Reg);
if (DbgMergedVRegNums.count(Reg))
for (Register X : DbgMergedVRegNums[Reg])
Func(X);
};
PerformScan(CP.getSrcReg(), ScanForSrcReg);
PerformScan(CP.getDstReg(), ScanForDstReg);
}
void RegisterCoalescer::checkMergingChangesDbgValuesImpl(Register Reg,
LiveRange &OtherLR,
LiveRange &RegLR,
JoinVals &RegVals) {
auto VRegMapIt = DbgVRegToValues.find(Reg);
if (VRegMapIt == DbgVRegToValues.end())
return;
auto &DbgValueSet = VRegMapIt->second;
auto DbgValueSetIt = DbgValueSet.begin();
auto SegmentIt = OtherLR.begin();
bool LastUndefResult = false;
SlotIndex LastUndefIdx;
auto ShouldUndef = [&RegVals, &RegLR, &LastUndefResult,
&LastUndefIdx](SlotIndex Idx) -> bool {
if (LastUndefIdx == Idx)
return LastUndefResult;
auto OtherIt = RegLR.find(Idx);
if (OtherIt == RegLR.end())
return true;
auto Resolution = RegVals.getResolution(OtherIt->valno->id);
LastUndefResult = Resolution != JoinVals::CR_Keep &&
Resolution != JoinVals::CR_Erase;
LastUndefIdx = Idx;
return LastUndefResult;
};
while (DbgValueSetIt != DbgValueSet.end() && SegmentIt != OtherLR.end()) {
if (DbgValueSetIt->first < SegmentIt->end) {
if (DbgValueSetIt->first >= SegmentIt->start) {
bool HasReg = DbgValueSetIt->second->hasDebugOperandForReg(Reg);
bool ShouldUndefReg = ShouldUndef(DbgValueSetIt->first);
if (HasReg && ShouldUndefReg) {
DbgValueSetIt->second->setDebugValueUndef();
continue;
}
}
++DbgValueSetIt;
} else {
++SegmentIt;
}
}
}
namespace {
struct MBBPriorityInfo {
MachineBasicBlock *MBB;
unsigned Depth;
bool IsSplit;
MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit)
: MBB(mbb), Depth(depth), IsSplit(issplit) {}
};
}
static int compareMBBPriority(const MBBPriorityInfo *LHS,
const MBBPriorityInfo *RHS) {
if (LHS->Depth != RHS->Depth)
return LHS->Depth > RHS->Depth ? -1 : 1;
if (LHS->IsSplit != RHS->IsSplit)
return LHS->IsSplit ? -1 : 1;
unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size();
unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size();
if (cl != cr)
return cl > cr ? -1 : 1;
return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1;
}
static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) {
if (!Copy->isCopy())
return false;
if (Copy->getOperand(1).isUndef())
return false;
Register SrcReg = Copy->getOperand(1).getReg();
Register DstReg = Copy->getOperand(0).getReg();
if (Register::isPhysicalRegister(SrcReg) ||
Register::isPhysicalRegister(DstReg))
return false;
return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg))
|| LIS->intervalIsInOneMBB(LIS->getInterval(DstReg));
}
void RegisterCoalescer::lateLiveIntervalUpdate() {
for (Register reg : ToBeUpdated) {
if (!LIS->hasInterval(reg))
continue;
LiveInterval &LI = LIS->getInterval(reg);
shrinkToUses(&LI, &DeadDefs);
if (!DeadDefs.empty())
eliminateDeadDefs();
}
ToBeUpdated.clear();
}
bool RegisterCoalescer::
copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) {
bool Progress = false;
for (MachineInstr *&MI : CurrList) {
if (!MI)
continue;
if (ErasedInstrs.count(MI)) {
MI = nullptr;
continue;
}
bool Again = false;
bool Success = joinCopy(MI, Again);
Progress |= Success;
if (Success || !Again)
MI = nullptr;
}
return Progress;
}
static bool isTerminalReg(Register DstReg, const MachineInstr &Copy,
const MachineRegisterInfo *MRI) {
assert(Copy.isCopyLike());
for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg))
if (&MI != &Copy && MI.isCopyLike())
return false;
return true;
}
bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const {
assert(Copy.isCopyLike());
if (!UseTerminalRule)
return false;
Register SrcReg, DstReg;
unsigned SrcSubReg = 0, DstSubReg = 0;
if (!isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg))
return false;
if (DstReg.isPhysical() ||
SrcReg.isPhysical() || !isTerminalReg(DstReg, Copy, MRI))
return false;
const MachineBasicBlock *OrigBB = Copy.getParent();
const LiveInterval &DstLI = LIS->getInterval(DstReg);
for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) {
if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB)
continue;
Register OtherSrcReg, OtherReg;
unsigned OtherSrcSubReg = 0, OtherSubReg = 0;
if (!isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg,
OtherSubReg))
return false;
if (OtherReg == SrcReg)
OtherReg = OtherSrcReg;
if (Register::isPhysicalRegister(OtherReg) ||
isTerminalReg(OtherReg, MI, MRI))
continue;
if (LIS->getInterval(OtherReg).overlaps(DstLI)) {
LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg)
<< '\n');
return true;
}
}
return false;
}
void
RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
LLVM_DEBUG(dbgs() << MBB->getName() << ":\n");
const unsigned PrevSize = WorkList.size();
if (JoinGlobalCopies) {
SmallVector<MachineInstr*, 2> LocalTerminals;
SmallVector<MachineInstr*, 2> GlobalTerminals;
for (MachineInstr &MI : *MBB) {
if (!MI.isCopyLike())
continue;
bool ApplyTerminalRule = applyTerminalRule(MI);
if (isLocalCopy(&MI, LIS)) {
if (ApplyTerminalRule)
LocalTerminals.push_back(&MI);
else
LocalWorkList.push_back(&MI);
} else {
if (ApplyTerminalRule)
GlobalTerminals.push_back(&MI);
else
WorkList.push_back(&MI);
}
}
LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end());
WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end());
}
else {
SmallVector<MachineInstr*, 2> Terminals;
for (MachineInstr &MII : *MBB)
if (MII.isCopyLike()) {
if (applyTerminalRule(MII))
Terminals.push_back(&MII);
else
WorkList.push_back(&MII);
}
WorkList.append(Terminals.begin(), Terminals.end());
}
MutableArrayRef<MachineInstr*>
CurrList(WorkList.begin() + PrevSize, WorkList.end());
if (copyCoalesceWorkList(CurrList))
WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
nullptr), WorkList.end());
}
void RegisterCoalescer::coalesceLocals() {
copyCoalesceWorkList(LocalWorkList);
for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) {
if (LocalWorkList[j])
WorkList.push_back(LocalWorkList[j]);
}
LocalWorkList.clear();
}
void RegisterCoalescer::joinAllIntervals() {
LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around.");
std::vector<MBBPriorityInfo> MBBs;
MBBs.reserve(MF->size());
for (MachineBasicBlock &MBB : *MF) {
MBBs.push_back(MBBPriorityInfo(&MBB, Loops->getLoopDepth(&MBB),
JoinSplitEdges && isSplitEdge(&MBB)));
}
array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority);
unsigned CurrDepth = std::numeric_limits<unsigned>::max();
for (MBBPriorityInfo &MBB : MBBs) {
if (JoinGlobalCopies && MBB.Depth < CurrDepth) {
coalesceLocals();
CurrDepth = MBB.Depth;
}
copyCoalesceInMBB(MBB.MBB);
}
lateLiveIntervalUpdate();
coalesceLocals();
while (copyCoalesceWorkList(WorkList))
;
lateLiveIntervalUpdate();
}
void RegisterCoalescer::releaseMemory() {
ErasedInstrs.clear();
WorkList.clear();
DeadDefs.clear();
InflateRegs.clear();
LargeLIVisitCounter.clear();
}
bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
LLVM_DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
<< "********** Function: " << fn.getName() << '\n');
if (fn.exposesReturnsTwice()) {
LLVM_DEBUG(
dbgs() << "* Skipped as it exposes funcions that returns twice.\n");
return false;
}
MF = &fn;
MRI = &fn.getRegInfo();
const TargetSubtargetInfo &STI = fn.getSubtarget();
TRI = STI.getRegisterInfo();
TII = STI.getInstrInfo();
LIS = &getAnalysis<LiveIntervals>();
AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
Loops = &getAnalysis<MachineLoopInfo>();
if (EnableGlobalCopies == cl::BOU_UNSET)
JoinGlobalCopies = STI.enableJoinGlobalCopies();
else
JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
SlotIndexes *Slots = LIS->getSlotIndexes();
for (const auto &DebugPHI : MF->DebugPHIPositions) {
MachineBasicBlock *MBB = DebugPHI.second.MBB;
Register Reg = DebugPHI.second.Reg;
unsigned SubReg = DebugPHI.second.SubReg;
SlotIndex SI = Slots->getMBBStartIdx(MBB);
PHIValPos P = {SI, Reg, SubReg};
PHIValToPos.insert(std::make_pair(DebugPHI.first, P));
RegToPHIIdx[Reg].push_back(DebugPHI.first);
}
JoinSplitEdges = EnableJoinSplits;
if (VerifyCoalescing)
MF->verify(this, "Before register coalescing");
DbgVRegToValues.clear();
DbgMergedVRegNums.clear();
buildVRegToDbgValueMap(fn);
RegClassInfo.runOnMachineFunction(fn);
if (EnableJoining)
joinAllIntervals();
array_pod_sort(InflateRegs.begin(), InflateRegs.end());
InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
InflateRegs.end());
LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size()
<< " regs.\n");
for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
Register Reg = InflateRegs[i];
if (MRI->reg_nodbg_empty(Reg))
continue;
if (MRI->recomputeRegClass(Reg)) {
LLVM_DEBUG(dbgs() << printReg(Reg) << " inflated to "
<< TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n');
++NumInflated;
LiveInterval &LI = LIS->getInterval(Reg);
if (LI.hasSubRanges()) {
if (!MRI->shouldTrackSubRegLiveness(Reg)) {
LI.clearSubRanges();
} else {
#ifndef NDEBUG
LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
for (LiveInterval::SubRange &S : LI.subranges()) {
assert((S.LaneMask & ~MaxMask).none());
}
#endif
}
}
}
}
for (auto &p : MF->DebugPHIPositions) {
auto it = PHIValToPos.find(p.first);
assert(it != PHIValToPos.end());
p.second.Reg = it->second.Reg;
p.second.SubReg = it->second.SubReg;
}
PHIValToPos.clear();
RegToPHIIdx.clear();
LLVM_DEBUG(dump());
if (VerifyCoalescing)
MF->verify(this, "After register coalescing");
return true;
}
void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
LIS->print(O, m);
}