//===- ASTMatchers.h - Structural query framework ---------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements matchers to be used together with the MatchFinder to
// match AST nodes.
//
// Matchers are created by generator functions, which can be combined in
// a functional in-language DSL to express queries over the C++ AST.
//
// For example, to match a class with a certain name, one would call:
// cxxRecordDecl(hasName("MyClass"))
// which returns a matcher that can be used to find all AST nodes that declare
// a class named 'MyClass'.
//
// For more complicated match expressions we're often interested in accessing
// multiple parts of the matched AST nodes once a match is found. In that case,
// call `.bind("name")` on match expressions that match the nodes you want to
// access.
//
// For example, when we're interested in child classes of a certain class, we
// would write:
// cxxRecordDecl(hasName("MyClass"), has(recordDecl().bind("child")))
// When the match is found via the MatchFinder, a user provided callback will
// be called with a BoundNodes instance that contains a mapping from the
// strings that we provided for the `.bind()` calls to the nodes that were
// matched.
// In the given example, each time our matcher finds a match we get a callback
// where "child" is bound to the RecordDecl node of the matching child
// class declaration.
//
// See ASTMatchersInternal.h for a more in-depth explanation of the
// implementation details of the matcher framework.
//
// See ASTMatchFinder.h for how to use the generated matchers to run over
// an AST.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_ASTMATCHERS_ASTMATCHERS_H
#define LLVM_CLANG_ASTMATCHERS_ASTMATCHERS_H
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTTypeTraits.h"
#include "clang/AST/Attr.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclFriend.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/LambdaCapture.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/OpenMPClause.h"
#include "clang/AST/OperationKinds.h"
#include "clang/AST/ParentMapContext.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/StmtCXX.h"
#include "clang/AST/StmtObjC.h"
#include "clang/AST/StmtOpenMP.h"
#include "clang/AST/TemplateBase.h"
#include "clang/AST/TemplateName.h"
#include "clang/AST/Type.h"
#include "clang/AST/TypeLoc.h"
#include "clang/ASTMatchers/ASTMatchersInternal.h"
#include "clang/ASTMatchers/ASTMatchersMacros.h"
#include "clang/Basic/AttrKinds.h"
#include "clang/Basic/ExceptionSpecificationType.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Basic/TypeTraits.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Regex.h"
#include <cassert>
#include <cstddef>
#include <iterator>
#include <limits>
#include <string>
#include <utility>
#include <vector>
namespace clang {
namespace ast_matchers {
/// Maps string IDs to AST nodes matched by parts of a matcher.
///
/// The bound nodes are generated by calling \c bind("id") on the node matchers
/// of the nodes we want to access later.
///
/// The instances of BoundNodes are created by \c MatchFinder when the user's
/// callbacks are executed every time a match is found.
class BoundNodes {
public:
/// Returns the AST node bound to \c ID.
///
/// Returns NULL if there was no node bound to \c ID or if there is a node but
/// it cannot be converted to the specified type.
template <typename T>
const T *getNodeAs(StringRef ID) const {
return MyBoundNodes.getNodeAs<T>(ID);
}
/// Type of mapping from binding identifiers to bound nodes. This type
/// is an associative container with a key type of \c std::string and a value
/// type of \c clang::DynTypedNode
using IDToNodeMap = internal::BoundNodesMap::IDToNodeMap;
/// Retrieve mapping from binding identifiers to bound nodes.
const IDToNodeMap &getMap() const {
return MyBoundNodes.getMap();
}
private:
friend class internal::BoundNodesTreeBuilder;
/// Create BoundNodes from a pre-filled map of bindings.
BoundNodes(internal::BoundNodesMap &MyBoundNodes)
: MyBoundNodes(MyBoundNodes) {}
internal::BoundNodesMap MyBoundNodes;
};
/// Types of matchers for the top-level classes in the AST class
/// hierarchy.
/// @{
using DeclarationMatcher = internal::Matcher<Decl>;
using StatementMatcher = internal::Matcher<Stmt>;
using TypeMatcher = internal::Matcher<QualType>;
using TypeLocMatcher = internal::Matcher<TypeLoc>;
using NestedNameSpecifierMatcher = internal::Matcher<NestedNameSpecifier>;
using NestedNameSpecifierLocMatcher = internal::Matcher<NestedNameSpecifierLoc>;
using CXXBaseSpecifierMatcher = internal::Matcher<CXXBaseSpecifier>;
using CXXCtorInitializerMatcher = internal::Matcher<CXXCtorInitializer>;
using TemplateArgumentMatcher = internal::Matcher<TemplateArgument>;
using TemplateArgumentLocMatcher = internal::Matcher<TemplateArgumentLoc>;
using LambdaCaptureMatcher = internal::Matcher<LambdaCapture>;
using AttrMatcher = internal::Matcher<Attr>;
/// @}
/// Matches any node.
///
/// Useful when another matcher requires a child matcher, but there's no
/// additional constraint. This will often be used with an explicit conversion
/// to an \c internal::Matcher<> type such as \c TypeMatcher.
///
/// Example: \c DeclarationMatcher(anything()) matches all declarations, e.g.,
/// \code
/// "int* p" and "void f()" in
/// int* p;
/// void f();
/// \endcode
///
/// Usable as: Any Matcher
inline internal::TrueMatcher anything() { return internal::TrueMatcher(); }
/// Matches the top declaration context.
///
/// Given
/// \code
/// int X;
/// namespace NS {
/// int Y;
/// } // namespace NS
/// \endcode
/// decl(hasDeclContext(translationUnitDecl()))
/// matches "int X", but not "int Y".
extern const internal::VariadicDynCastAllOfMatcher<Decl, TranslationUnitDecl>
translationUnitDecl;
/// Matches typedef declarations.
///
/// Given
/// \code
/// typedef int X;
/// using Y = int;
/// \endcode
/// typedefDecl()
/// matches "typedef int X", but not "using Y = int"
extern const internal::VariadicDynCastAllOfMatcher<Decl, TypedefDecl>
typedefDecl;
/// Matches typedef name declarations.
///
/// Given
/// \code
/// typedef int X;
/// using Y = int;
/// \endcode
/// typedefNameDecl()
/// matches "typedef int X" and "using Y = int"
extern const internal::VariadicDynCastAllOfMatcher<Decl, TypedefNameDecl>
typedefNameDecl;
/// Matches type alias declarations.
///
/// Given
/// \code
/// typedef int X;
/// using Y = int;
/// \endcode
/// typeAliasDecl()
/// matches "using Y = int", but not "typedef int X"
extern const internal::VariadicDynCastAllOfMatcher<Decl, TypeAliasDecl>
typeAliasDecl;
/// Matches type alias template declarations.
///
/// typeAliasTemplateDecl() matches
/// \code
/// template <typename T>
/// using Y = X<T>;
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Decl, TypeAliasTemplateDecl>
typeAliasTemplateDecl;
/// Matches AST nodes that were expanded within the main-file.
///
/// Example matches X but not Y
/// (matcher = cxxRecordDecl(isExpansionInMainFile())
/// \code
/// #include <Y.h>
/// class X {};
/// \endcode
/// Y.h:
/// \code
/// class Y {};
/// \endcode
///
/// Usable as: Matcher<Decl>, Matcher<Stmt>, Matcher<TypeLoc>
AST_POLYMORPHIC_MATCHER(isExpansionInMainFile,
AST_POLYMORPHIC_SUPPORTED_TYPES(Decl, Stmt, TypeLoc)) {
auto &SourceManager = Finder->getASTContext().getSourceManager();
return SourceManager.isInMainFile(
SourceManager.getExpansionLoc(Node.getBeginLoc()));
}
/// Matches AST nodes that were expanded within system-header-files.
///
/// Example matches Y but not X
/// (matcher = cxxRecordDecl(isExpansionInSystemHeader())
/// \code
/// #include <SystemHeader.h>
/// class X {};
/// \endcode
/// SystemHeader.h:
/// \code
/// class Y {};
/// \endcode
///
/// Usable as: Matcher<Decl>, Matcher<Stmt>, Matcher<TypeLoc>
AST_POLYMORPHIC_MATCHER(isExpansionInSystemHeader,
AST_POLYMORPHIC_SUPPORTED_TYPES(Decl, Stmt, TypeLoc)) {
auto &SourceManager = Finder->getASTContext().getSourceManager();
auto ExpansionLoc = SourceManager.getExpansionLoc(Node.getBeginLoc());
if (ExpansionLoc.isInvalid()) {
return false;
}
return SourceManager.isInSystemHeader(ExpansionLoc);
}
/// Matches AST nodes that were expanded within files whose name is
/// partially matching a given regex.
///
/// Example matches Y but not X
/// (matcher = cxxRecordDecl(isExpansionInFileMatching("AST.*"))
/// \code
/// #include "ASTMatcher.h"
/// class X {};
/// \endcode
/// ASTMatcher.h:
/// \code
/// class Y {};
/// \endcode
///
/// Usable as: Matcher<Decl>, Matcher<Stmt>, Matcher<TypeLoc>
AST_POLYMORPHIC_MATCHER_REGEX(isExpansionInFileMatching,
AST_POLYMORPHIC_SUPPORTED_TYPES(Decl, Stmt,
TypeLoc),
RegExp) {
auto &SourceManager = Finder->getASTContext().getSourceManager();
auto ExpansionLoc = SourceManager.getExpansionLoc(Node.getBeginLoc());
if (ExpansionLoc.isInvalid()) {
return false;
}
auto FileEntry =
SourceManager.getFileEntryForID(SourceManager.getFileID(ExpansionLoc));
if (!FileEntry) {
return false;
}
auto Filename = FileEntry->getName();
return RegExp->match(Filename);
}
/// Matches statements that are (transitively) expanded from the named macro.
/// Does not match if only part of the statement is expanded from that macro or
/// if different parts of the statement are expanded from different
/// appearances of the macro.
AST_POLYMORPHIC_MATCHER_P(isExpandedFromMacro,
AST_POLYMORPHIC_SUPPORTED_TYPES(Decl, Stmt, TypeLoc),
std::string, MacroName) {
// Verifies that the statement' beginning and ending are both expanded from
// the same instance of the given macro.
auto& Context = Finder->getASTContext();
llvm::Optional<SourceLocation> B =
internal::getExpansionLocOfMacro(MacroName, Node.getBeginLoc(), Context);
if (!B) return false;
llvm::Optional<SourceLocation> E =
internal::getExpansionLocOfMacro(MacroName, Node.getEndLoc(), Context);
if (!E) return false;
return *B == *E;
}
/// Matches declarations.
///
/// Examples matches \c X, \c C, and the friend declaration inside \c C;
/// \code
/// void X();
/// class C {
/// friend X;
/// };
/// \endcode
extern const internal::VariadicAllOfMatcher<Decl> decl;
/// Matches decomposition-declarations.
///
/// Examples matches the declaration node with \c foo and \c bar, but not
/// \c number.
/// (matcher = declStmt(has(decompositionDecl())))
///
/// \code
/// int number = 42;
/// auto [foo, bar] = std::make_pair{42, 42};
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Decl, DecompositionDecl>
decompositionDecl;
/// Matches binding declarations
/// Example matches \c foo and \c bar
/// (matcher = bindingDecl()
///
/// \code
/// auto [foo, bar] = std::make_pair{42, 42};
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Decl, BindingDecl>
bindingDecl;
/// Matches a declaration of a linkage specification.
///
/// Given
/// \code
/// extern "C" {}
/// \endcode
/// linkageSpecDecl()
/// matches "extern "C" {}"
extern const internal::VariadicDynCastAllOfMatcher<Decl, LinkageSpecDecl>
linkageSpecDecl;
/// Matches a declaration of anything that could have a name.
///
/// Example matches \c X, \c S, the anonymous union type, \c i, and \c U;
/// \code
/// typedef int X;
/// struct S {
/// union {
/// int i;
/// } U;
/// };
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Decl, NamedDecl> namedDecl;
/// Matches a declaration of label.
///
/// Given
/// \code
/// goto FOO;
/// FOO: bar();
/// \endcode
/// labelDecl()
/// matches 'FOO:'
extern const internal::VariadicDynCastAllOfMatcher<Decl, LabelDecl> labelDecl;
/// Matches a declaration of a namespace.
///
/// Given
/// \code
/// namespace {}
/// namespace test {}
/// \endcode
/// namespaceDecl()
/// matches "namespace {}" and "namespace test {}"
extern const internal::VariadicDynCastAllOfMatcher<Decl, NamespaceDecl>
namespaceDecl;
/// Matches a declaration of a namespace alias.
///
/// Given
/// \code
/// namespace test {}
/// namespace alias = ::test;
/// \endcode
/// namespaceAliasDecl()
/// matches "namespace alias" but not "namespace test"
extern const internal::VariadicDynCastAllOfMatcher<Decl, NamespaceAliasDecl>
namespaceAliasDecl;
/// Matches class, struct, and union declarations.
///
/// Example matches \c X, \c Z, \c U, and \c S
/// \code
/// class X;
/// template<class T> class Z {};
/// struct S {};
/// union U {};
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Decl, RecordDecl> recordDecl;
/// Matches C++ class declarations.
///
/// Example matches \c X, \c Z
/// \code
/// class X;
/// template<class T> class Z {};
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Decl, CXXRecordDecl>
cxxRecordDecl;
/// Matches C++ class template declarations.
///
/// Example matches \c Z
/// \code
/// template<class T> class Z {};
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Decl, ClassTemplateDecl>
classTemplateDecl;
/// Matches C++ class template specializations.
///
/// Given
/// \code
/// template<typename T> class A {};
/// template<> class A<double> {};
/// A<int> a;
/// \endcode
/// classTemplateSpecializationDecl()
/// matches the specializations \c A<int> and \c A<double>
extern const internal::VariadicDynCastAllOfMatcher<
Decl, ClassTemplateSpecializationDecl>
classTemplateSpecializationDecl;
/// Matches C++ class template partial specializations.
///
/// Given
/// \code
/// template<class T1, class T2, int I>
/// class A {};
///
/// template<class T, int I>
/// class A<T, T*, I> {};
///
/// template<>
/// class A<int, int, 1> {};
/// \endcode
/// classTemplatePartialSpecializationDecl()
/// matches the specialization \c A<T,T*,I> but not \c A<int,int,1>
extern const internal::VariadicDynCastAllOfMatcher<
Decl, ClassTemplatePartialSpecializationDecl>
classTemplatePartialSpecializationDecl;
/// Matches declarator declarations (field, variable, function
/// and non-type template parameter declarations).
///
/// Given
/// \code
/// class X { int y; };
/// \endcode
/// declaratorDecl()
/// matches \c int y.
extern const internal::VariadicDynCastAllOfMatcher<Decl, DeclaratorDecl>
declaratorDecl;
/// Matches parameter variable declarations.
///
/// Given
/// \code
/// void f(int x);
/// \endcode
/// parmVarDecl()
/// matches \c int x.
extern const internal::VariadicDynCastAllOfMatcher<Decl, ParmVarDecl>
parmVarDecl;
/// Matches C++ access specifier declarations.
///
/// Given
/// \code
/// class C {
/// public:
/// int a;
/// };
/// \endcode
/// accessSpecDecl()
/// matches 'public:'
extern const internal::VariadicDynCastAllOfMatcher<Decl, AccessSpecDecl>
accessSpecDecl;
/// Matches class bases.
///
/// Examples matches \c public virtual B.
/// \code
/// class B {};
/// class C : public virtual B {};
/// \endcode
extern const internal::VariadicAllOfMatcher<CXXBaseSpecifier> cxxBaseSpecifier;
/// Matches constructor initializers.
///
/// Examples matches \c i(42).
/// \code
/// class C {
/// C() : i(42) {}
/// int i;
/// };
/// \endcode
extern const internal::VariadicAllOfMatcher<CXXCtorInitializer>
cxxCtorInitializer;
/// Matches template arguments.
///
/// Given
/// \code
/// template <typename T> struct C {};
/// C<int> c;
/// \endcode
/// templateArgument()
/// matches 'int' in C<int>.
extern const internal::VariadicAllOfMatcher<TemplateArgument> templateArgument;
/// Matches template arguments (with location info).
///
/// Given
/// \code
/// template <typename T> struct C {};
/// C<int> c;
/// \endcode
/// templateArgumentLoc()
/// matches 'int' in C<int>.
extern const internal::VariadicAllOfMatcher<TemplateArgumentLoc>
templateArgumentLoc;
/// Matches template name.
///
/// Given
/// \code
/// template <typename T> class X { };
/// X<int> xi;
/// \endcode
/// templateName()
/// matches 'X' in X<int>.
extern const internal::VariadicAllOfMatcher<TemplateName> templateName;
/// Matches non-type template parameter declarations.
///
/// Given
/// \code
/// template <typename T, int N> struct C {};
/// \endcode
/// nonTypeTemplateParmDecl()
/// matches 'N', but not 'T'.
extern const internal::VariadicDynCastAllOfMatcher<Decl,
NonTypeTemplateParmDecl>
nonTypeTemplateParmDecl;
/// Matches template type parameter declarations.
///
/// Given
/// \code
/// template <typename T, int N> struct C {};
/// \endcode
/// templateTypeParmDecl()
/// matches 'T', but not 'N'.
extern const internal::VariadicDynCastAllOfMatcher<Decl, TemplateTypeParmDecl>
templateTypeParmDecl;
/// Matches template template parameter declarations.
///
/// Given
/// \code
/// template <template <typename> class Z, int N> struct C {};
/// \endcode
/// templateTypeParmDecl()
/// matches 'Z', but not 'N'.
extern const internal::VariadicDynCastAllOfMatcher<Decl,
TemplateTemplateParmDecl>
templateTemplateParmDecl;
/// Matches public C++ declarations and C++ base specifers that specify public
/// inheritance.
///
/// Examples:
/// \code
/// class C {
/// public: int a; // fieldDecl(isPublic()) matches 'a'
/// protected: int b;
/// private: int c;
/// };
/// \endcode
///
/// \code
/// class Base {};
/// class Derived1 : public Base {}; // matches 'Base'
/// struct Derived2 : Base {}; // matches 'Base'
/// \endcode
AST_POLYMORPHIC_MATCHER(isPublic,
AST_POLYMORPHIC_SUPPORTED_TYPES(Decl,
CXXBaseSpecifier)) {
return getAccessSpecifier(Node) == AS_public;
}
/// Matches protected C++ declarations and C++ base specifers that specify
/// protected inheritance.
///
/// Examples:
/// \code
/// class C {
/// public: int a;
/// protected: int b; // fieldDecl(isProtected()) matches 'b'
/// private: int c;
/// };
/// \endcode
///
/// \code
/// class Base {};
/// class Derived : protected Base {}; // matches 'Base'
/// \endcode
AST_POLYMORPHIC_MATCHER(isProtected,
AST_POLYMORPHIC_SUPPORTED_TYPES(Decl,
CXXBaseSpecifier)) {
return getAccessSpecifier(Node) == AS_protected;
}
/// Matches private C++ declarations and C++ base specifers that specify private
/// inheritance.
///
/// Examples:
/// \code
/// class C {
/// public: int a;
/// protected: int b;
/// private: int c; // fieldDecl(isPrivate()) matches 'c'
/// };
/// \endcode
///
/// \code
/// struct Base {};
/// struct Derived1 : private Base {}; // matches 'Base'
/// class Derived2 : Base {}; // matches 'Base'
/// \endcode
AST_POLYMORPHIC_MATCHER(isPrivate,
AST_POLYMORPHIC_SUPPORTED_TYPES(Decl,
CXXBaseSpecifier)) {
return getAccessSpecifier(Node) == AS_private;
}
/// Matches non-static data members that are bit-fields.
///
/// Given
/// \code
/// class C {
/// int a : 2;
/// int b;
/// };
/// \endcode
/// fieldDecl(isBitField())
/// matches 'int a;' but not 'int b;'.
AST_MATCHER(FieldDecl, isBitField) {
return Node.isBitField();
}
/// Matches non-static data members that are bit-fields of the specified
/// bit width.
///
/// Given
/// \code
/// class C {
/// int a : 2;
/// int b : 4;
/// int c : 2;
/// };
/// \endcode
/// fieldDecl(hasBitWidth(2))
/// matches 'int a;' and 'int c;' but not 'int b;'.
AST_MATCHER_P(FieldDecl, hasBitWidth, unsigned, Width) {
return Node.isBitField() &&
Node.getBitWidthValue(Finder->getASTContext()) == Width;
}
/// Matches non-static data members that have an in-class initializer.
///
/// Given
/// \code
/// class C {
/// int a = 2;
/// int b = 3;
/// int c;
/// };
/// \endcode
/// fieldDecl(hasInClassInitializer(integerLiteral(equals(2))))
/// matches 'int a;' but not 'int b;'.
/// fieldDecl(hasInClassInitializer(anything()))
/// matches 'int a;' and 'int b;' but not 'int c;'.
AST_MATCHER_P(FieldDecl, hasInClassInitializer, internal::Matcher<Expr>,
InnerMatcher) {
const Expr *Initializer = Node.getInClassInitializer();
return (Initializer != nullptr &&
InnerMatcher.matches(*Initializer, Finder, Builder));
}
/// Determines whether the function is "main", which is the entry point
/// into an executable program.
AST_MATCHER(FunctionDecl, isMain) {
return Node.isMain();
}
/// Matches the specialized template of a specialization declaration.
///
/// Given
/// \code
/// template<typename T> class A {}; #1
/// template<> class A<int> {}; #2
/// \endcode
/// classTemplateSpecializationDecl(hasSpecializedTemplate(classTemplateDecl()))
/// matches '#2' with classTemplateDecl() matching the class template
/// declaration of 'A' at #1.
AST_MATCHER_P(ClassTemplateSpecializationDecl, hasSpecializedTemplate,
internal::Matcher<ClassTemplateDecl>, InnerMatcher) {
const ClassTemplateDecl* Decl = Node.getSpecializedTemplate();
return (Decl != nullptr &&
InnerMatcher.matches(*Decl, Finder, Builder));
}
/// Matches an entity that has been implicitly added by the compiler (e.g.
/// implicit default/copy constructors).
AST_POLYMORPHIC_MATCHER(isImplicit,
AST_POLYMORPHIC_SUPPORTED_TYPES(Decl, Attr,
LambdaCapture)) {
return Node.isImplicit();
}
/// Matches classTemplateSpecializations, templateSpecializationType and
/// functionDecl that have at least one TemplateArgument matching the given
/// InnerMatcher.
///
/// Given
/// \code
/// template<typename T> class A {};
/// template<> class A<double> {};
/// A<int> a;
///
/// template<typename T> f() {};
/// void func() { f<int>(); };
/// \endcode
///
/// \endcode
/// classTemplateSpecializationDecl(hasAnyTemplateArgument(
/// refersToType(asString("int"))))
/// matches the specialization \c A<int>
///
/// functionDecl(hasAnyTemplateArgument(refersToType(asString("int"))))
/// matches the specialization \c f<int>
AST_POLYMORPHIC_MATCHER_P(
hasAnyTemplateArgument,
AST_POLYMORPHIC_SUPPORTED_TYPES(ClassTemplateSpecializationDecl,
TemplateSpecializationType,
FunctionDecl),
internal::Matcher<TemplateArgument>, InnerMatcher) {
ArrayRef<TemplateArgument> List =
internal::getTemplateSpecializationArgs(Node);
return matchesFirstInRange(InnerMatcher, List.begin(), List.end(), Finder,
Builder) != List.end();
}
/// Causes all nested matchers to be matched with the specified traversal kind.
///
/// Given
/// \code
/// void foo()
/// {
/// int i = 3.0;
/// }
/// \endcode
/// The matcher
/// \code
/// traverse(TK_IgnoreUnlessSpelledInSource,
/// varDecl(hasInitializer(floatLiteral().bind("init")))
/// )
/// \endcode
/// matches the variable declaration with "init" bound to the "3.0".
template <typename T>
internal::Matcher<T> traverse(TraversalKind TK,
const internal::Matcher<T> &InnerMatcher) {
return internal::DynTypedMatcher::constructRestrictedWrapper(
new internal::TraversalMatcher<T>(TK, InnerMatcher),
InnerMatcher.getID().first)
.template unconditionalConvertTo<T>();
}
template <typename T>
internal::BindableMatcher<T>
traverse(TraversalKind TK, const internal::BindableMatcher<T> &InnerMatcher) {
return internal::BindableMatcher<T>(
internal::DynTypedMatcher::constructRestrictedWrapper(
new internal::TraversalMatcher<T>(TK, InnerMatcher),
InnerMatcher.getID().first)
.template unconditionalConvertTo<T>());
}
template <typename... T>
internal::TraversalWrapper<internal::VariadicOperatorMatcher<T...>>
traverse(TraversalKind TK,
const internal::VariadicOperatorMatcher<T...> &InnerMatcher) {
return internal::TraversalWrapper<internal::VariadicOperatorMatcher<T...>>(
TK, InnerMatcher);
}
template <template <typename ToArg, typename FromArg> class ArgumentAdapterT,
typename T, typename ToTypes>
internal::TraversalWrapper<
internal::ArgumentAdaptingMatcherFuncAdaptor<ArgumentAdapterT, T, ToTypes>>
traverse(TraversalKind TK, const internal::ArgumentAdaptingMatcherFuncAdaptor<
ArgumentAdapterT, T, ToTypes> &InnerMatcher) {
return internal::TraversalWrapper<
internal::ArgumentAdaptingMatcherFuncAdaptor<ArgumentAdapterT, T,
ToTypes>>(TK, InnerMatcher);
}
template <template <typename T, typename... P> class MatcherT, typename... P,
typename ReturnTypesF>
internal::TraversalWrapper<
internal::PolymorphicMatcher<MatcherT, ReturnTypesF, P...>>
traverse(TraversalKind TK,
const internal::PolymorphicMatcher<MatcherT, ReturnTypesF, P...>
&InnerMatcher) {
return internal::TraversalWrapper<
internal::PolymorphicMatcher<MatcherT, ReturnTypesF, P...>>(TK,
InnerMatcher);
}
template <typename... T>
internal::Matcher<typename internal::GetClade<T...>::Type>
traverse(TraversalKind TK, const internal::MapAnyOfHelper<T...> &InnerMatcher) {
return traverse(TK, InnerMatcher.with());
}
/// Matches expressions that match InnerMatcher after any implicit AST
/// nodes are stripped off.
///
/// Parentheses and explicit casts are not discarded.
/// Given
/// \code
/// class C {};
/// C a = C();
/// C b;
/// C c = b;
/// \endcode
/// The matchers
/// \code
/// varDecl(hasInitializer(ignoringImplicit(cxxConstructExpr())))
/// \endcode
/// would match the declarations for a, b, and c.
/// While
/// \code
/// varDecl(hasInitializer(cxxConstructExpr()))
/// \endcode
/// only match the declarations for b and c.
AST_MATCHER_P(Expr, ignoringImplicit, internal::Matcher<Expr>,
InnerMatcher) {
return InnerMatcher.matches(*Node.IgnoreImplicit(), Finder, Builder);
}
/// Matches expressions that match InnerMatcher after any implicit casts
/// are stripped off.
///
/// Parentheses and explicit casts are not discarded.
/// Given
/// \code
/// int arr[5];
/// int a = 0;
/// char b = 0;
/// const int c = a;
/// int *d = arr;
/// long e = (long) 0l;
/// \endcode
/// The matchers
/// \code
/// varDecl(hasInitializer(ignoringImpCasts(integerLiteral())))
/// varDecl(hasInitializer(ignoringImpCasts(declRefExpr())))
/// \endcode
/// would match the declarations for a, b, c, and d, but not e.
/// While
/// \code
/// varDecl(hasInitializer(integerLiteral()))
/// varDecl(hasInitializer(declRefExpr()))
/// \endcode
/// only match the declarations for a.
AST_MATCHER_P(Expr, ignoringImpCasts,
internal::Matcher<Expr>, InnerMatcher) {
return InnerMatcher.matches(*Node.IgnoreImpCasts(), Finder, Builder);
}
/// Matches expressions that match InnerMatcher after parentheses and
/// casts are stripped off.
///
/// Implicit and non-C Style casts are also discarded.
/// Given
/// \code
/// int a = 0;
/// char b = (0);
/// void* c = reinterpret_cast<char*>(0);
/// char d = char(0);
/// \endcode
/// The matcher
/// varDecl(hasInitializer(ignoringParenCasts(integerLiteral())))
/// would match the declarations for a, b, c, and d.
/// while
/// varDecl(hasInitializer(integerLiteral()))
/// only match the declaration for a.
AST_MATCHER_P(Expr, ignoringParenCasts, internal::Matcher<Expr>, InnerMatcher) {
return InnerMatcher.matches(*Node.IgnoreParenCasts(), Finder, Builder);
}
/// Matches expressions that match InnerMatcher after implicit casts and
/// parentheses are stripped off.
///
/// Explicit casts are not discarded.
/// Given
/// \code
/// int arr[5];
/// int a = 0;
/// char b = (0);
/// const int c = a;
/// int *d = (arr);
/// long e = ((long) 0l);
/// \endcode
/// The matchers
/// varDecl(hasInitializer(ignoringParenImpCasts(integerLiteral())))
/// varDecl(hasInitializer(ignoringParenImpCasts(declRefExpr())))
/// would match the declarations for a, b, c, and d, but not e.
/// while
/// varDecl(hasInitializer(integerLiteral()))
/// varDecl(hasInitializer(declRefExpr()))
/// would only match the declaration for a.
AST_MATCHER_P(Expr, ignoringParenImpCasts,
internal::Matcher<Expr>, InnerMatcher) {
return InnerMatcher.matches(*Node.IgnoreParenImpCasts(), Finder, Builder);
}
/// Matches types that match InnerMatcher after any parens are stripped.
///
/// Given
/// \code
/// void (*fp)(void);
/// \endcode
/// The matcher
/// \code
/// varDecl(hasType(pointerType(pointee(ignoringParens(functionType())))))
/// \endcode
/// would match the declaration for fp.
AST_MATCHER_P_OVERLOAD(QualType, ignoringParens, internal::Matcher<QualType>,
InnerMatcher, 0) {
return InnerMatcher.matches(Node.IgnoreParens(), Finder, Builder);
}
/// Overload \c ignoringParens for \c Expr.
///
/// Given
/// \code
/// const char* str = ("my-string");
/// \endcode
/// The matcher
/// \code
/// implicitCastExpr(hasSourceExpression(ignoringParens(stringLiteral())))
/// \endcode
/// would match the implicit cast resulting from the assignment.
AST_MATCHER_P_OVERLOAD(Expr, ignoringParens, internal::Matcher<Expr>,
InnerMatcher, 1) {
const Expr *E = Node.IgnoreParens();
return InnerMatcher.matches(*E, Finder, Builder);
}
/// Matches expressions that are instantiation-dependent even if it is
/// neither type- nor value-dependent.
///
/// In the following example, the expression sizeof(sizeof(T() + T()))
/// is instantiation-dependent (since it involves a template parameter T),
/// but is neither type- nor value-dependent, since the type of the inner
/// sizeof is known (std::size_t) and therefore the size of the outer
/// sizeof is known.
/// \code
/// template<typename T>
/// void f(T x, T y) { sizeof(sizeof(T() + T()); }
/// \endcode
/// expr(isInstantiationDependent()) matches sizeof(sizeof(T() + T())
AST_MATCHER(Expr, isInstantiationDependent) {
return Node.isInstantiationDependent();
}
/// Matches expressions that are type-dependent because the template type
/// is not yet instantiated.
///
/// For example, the expressions "x" and "x + y" are type-dependent in
/// the following code, but "y" is not type-dependent:
/// \code
/// template<typename T>
/// void add(T x, int y) {
/// x + y;
/// }
/// \endcode
/// expr(isTypeDependent()) matches x + y
AST_MATCHER(Expr, isTypeDependent) { return Node.isTypeDependent(); }
/// Matches expression that are value-dependent because they contain a
/// non-type template parameter.
///
/// For example, the array bound of "Chars" in the following example is
/// value-dependent.
/// \code
/// template<int Size> int f() { return Size; }
/// \endcode
/// expr(isValueDependent()) matches return Size
AST_MATCHER(Expr, isValueDependent) { return Node.isValueDependent(); }
/// Matches classTemplateSpecializations, templateSpecializationType and
/// functionDecl where the n'th TemplateArgument matches the given InnerMatcher.
///
/// Given
/// \code
/// template<typename T, typename U> class A {};
/// A<bool, int> b;
/// A<int, bool> c;
///
/// template<typename T> void f() {}
/// void func() { f<int>(); };
/// \endcode
/// classTemplateSpecializationDecl(hasTemplateArgument(
/// 1, refersToType(asString("int"))))
/// matches the specialization \c A<bool, int>
///
/// functionDecl(hasTemplateArgument(0, refersToType(asString("int"))))
/// matches the specialization \c f<int>
AST_POLYMORPHIC_MATCHER_P2(
hasTemplateArgument,
AST_POLYMORPHIC_SUPPORTED_TYPES(ClassTemplateSpecializationDecl,
TemplateSpecializationType,
FunctionDecl),
unsigned, N, internal::Matcher<TemplateArgument>, InnerMatcher) {
ArrayRef<TemplateArgument> List =
internal::getTemplateSpecializationArgs(Node);
if (List.size() <= N)
return false;
return InnerMatcher.matches(List[N], Finder, Builder);
}
/// Matches if the number of template arguments equals \p N.
///
/// Given
/// \code
/// template<typename T> struct C {};
/// C<int> c;
/// \endcode
/// classTemplateSpecializationDecl(templateArgumentCountIs(1))
/// matches C<int>.
AST_POLYMORPHIC_MATCHER_P(
templateArgumentCountIs,
AST_POLYMORPHIC_SUPPORTED_TYPES(ClassTemplateSpecializationDecl,
TemplateSpecializationType),
unsigned, N) {
return internal::getTemplateSpecializationArgs(Node).size() == N;
}
/// Matches a TemplateArgument that refers to a certain type.
///
/// Given
/// \code
/// struct X {};
/// template<typename T> struct A {};
/// A<X> a;
/// \endcode
/// classTemplateSpecializationDecl(hasAnyTemplateArgument(
/// refersToType(class(hasName("X")))))
/// matches the specialization \c A<X>
AST_MATCHER_P(TemplateArgument, refersToType,
internal::Matcher<QualType>, InnerMatcher) {
if (Node.getKind() != TemplateArgument::Type)
return false;
return InnerMatcher.matches(Node.getAsType(), Finder, Builder);
}
/// Matches a TemplateArgument that refers to a certain template.
///
/// Given
/// \code
/// template<template <typename> class S> class X {};
/// template<typename T> class Y {};
/// X<Y> xi;
/// \endcode
/// classTemplateSpecializationDecl(hasAnyTemplateArgument(
/// refersToTemplate(templateName())))
/// matches the specialization \c X<Y>
AST_MATCHER_P(TemplateArgument, refersToTemplate,
internal::Matcher<TemplateName>, InnerMatcher) {
if (Node.getKind() != TemplateArgument::Template)
return false;
return InnerMatcher.matches(Node.getAsTemplate(), Finder, Builder);
}
/// Matches a canonical TemplateArgument that refers to a certain
/// declaration.
///
/// Given
/// \code
/// struct B { int next; };
/// template<int(B::*next_ptr)> struct A {};
/// A<&B::next> a;
/// \endcode
/// classTemplateSpecializationDecl(hasAnyTemplateArgument(
/// refersToDeclaration(fieldDecl(hasName("next")))))
/// matches the specialization \c A<&B::next> with \c fieldDecl(...) matching
/// \c B::next
AST_MATCHER_P(TemplateArgument, refersToDeclaration,
internal::Matcher<Decl>, InnerMatcher) {
if (Node.getKind() == TemplateArgument::Declaration)
return InnerMatcher.matches(*Node.getAsDecl(), Finder, Builder);
return false;
}
/// Matches a sugar TemplateArgument that refers to a certain expression.
///
/// Given
/// \code
/// struct B { int next; };
/// template<int(B::*next_ptr)> struct A {};
/// A<&B::next> a;
/// \endcode
/// templateSpecializationType(hasAnyTemplateArgument(
/// isExpr(hasDescendant(declRefExpr(to(fieldDecl(hasName("next"))))))))
/// matches the specialization \c A<&B::next> with \c fieldDecl(...) matching
/// \c B::next
AST_MATCHER_P(TemplateArgument, isExpr, internal::Matcher<Expr>, InnerMatcher) {
if (Node.getKind() == TemplateArgument::Expression)
return InnerMatcher.matches(*Node.getAsExpr(), Finder, Builder);
return false;
}
/// Matches a TemplateArgument that is an integral value.
///
/// Given
/// \code
/// template<int T> struct C {};
/// C<42> c;
/// \endcode
/// classTemplateSpecializationDecl(
/// hasAnyTemplateArgument(isIntegral()))
/// matches the implicit instantiation of C in C<42>
/// with isIntegral() matching 42.
AST_MATCHER(TemplateArgument, isIntegral) {
return Node.getKind() == TemplateArgument::Integral;
}
/// Matches a TemplateArgument that refers to an integral type.
///
/// Given
/// \code
/// template<int T> struct C {};
/// C<42> c;
/// \endcode
/// classTemplateSpecializationDecl(
/// hasAnyTemplateArgument(refersToIntegralType(asString("int"))))
/// matches the implicit instantiation of C in C<42>.
AST_MATCHER_P(TemplateArgument, refersToIntegralType,
internal::Matcher<QualType>, InnerMatcher) {
if (Node.getKind() != TemplateArgument::Integral)
return false;
return InnerMatcher.matches(Node.getIntegralType(), Finder, Builder);
}
/// Matches a TemplateArgument of integral type with a given value.
///
/// Note that 'Value' is a string as the template argument's value is
/// an arbitrary precision integer. 'Value' must be euqal to the canonical
/// representation of that integral value in base 10.
///
/// Given
/// \code
/// template<int T> struct C {};
/// C<42> c;
/// \endcode
/// classTemplateSpecializationDecl(
/// hasAnyTemplateArgument(equalsIntegralValue("42")))
/// matches the implicit instantiation of C in C<42>.
AST_MATCHER_P(TemplateArgument, equalsIntegralValue,
std::string, Value) {
if (Node.getKind() != TemplateArgument::Integral)
return false;
return toString(Node.getAsIntegral(), 10) == Value;
}
/// Matches an Objective-C autorelease pool statement.
///
/// Given
/// \code
/// @autoreleasepool {
/// int x = 0;
/// }
/// \endcode
/// autoreleasePoolStmt(stmt()) matches the declaration of "x"
/// inside the autorelease pool.
extern const internal::VariadicDynCastAllOfMatcher<Stmt,
ObjCAutoreleasePoolStmt> autoreleasePoolStmt;
/// Matches any value declaration.
///
/// Example matches A, B, C and F
/// \code
/// enum X { A, B, C };
/// void F();
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Decl, ValueDecl> valueDecl;
/// Matches C++ constructor declarations.
///
/// Example matches Foo::Foo() and Foo::Foo(int)
/// \code
/// class Foo {
/// public:
/// Foo();
/// Foo(int);
/// int DoSomething();
/// };
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Decl, CXXConstructorDecl>
cxxConstructorDecl;
/// Matches explicit C++ destructor declarations.
///
/// Example matches Foo::~Foo()
/// \code
/// class Foo {
/// public:
/// virtual ~Foo();
/// };
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Decl, CXXDestructorDecl>
cxxDestructorDecl;
/// Matches enum declarations.
///
/// Example matches X
/// \code
/// enum X {
/// A, B, C
/// };
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Decl, EnumDecl> enumDecl;
/// Matches enum constants.
///
/// Example matches A, B, C
/// \code
/// enum X {
/// A, B, C
/// };
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Decl, EnumConstantDecl>
enumConstantDecl;
/// Matches tag declarations.
///
/// Example matches X, Z, U, S, E
/// \code
/// class X;
/// template<class T> class Z {};
/// struct S {};
/// union U {};
/// enum E {
/// A, B, C
/// };
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Decl, TagDecl> tagDecl;
/// Matches method declarations.
///
/// Example matches y
/// \code
/// class X { void y(); };
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Decl, CXXMethodDecl>
cxxMethodDecl;
/// Matches conversion operator declarations.
///
/// Example matches the operator.
/// \code
/// class X { operator int() const; };
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Decl, CXXConversionDecl>
cxxConversionDecl;
/// Matches user-defined and implicitly generated deduction guide.
///
/// Example matches the deduction guide.
/// \code
/// template<typename T>
/// class X { X(int) };
/// X(int) -> X<int>;
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Decl, CXXDeductionGuideDecl>
cxxDeductionGuideDecl;
/// Matches variable declarations.
///
/// Note: this does not match declarations of member variables, which are
/// "field" declarations in Clang parlance.
///
/// Example matches a
/// \code
/// int a;
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Decl, VarDecl> varDecl;
/// Matches field declarations.
///
/// Given
/// \code
/// class X { int m; };
/// \endcode
/// fieldDecl()
/// matches 'm'.
extern const internal::VariadicDynCastAllOfMatcher<Decl, FieldDecl> fieldDecl;
/// Matches indirect field declarations.
///
/// Given
/// \code
/// struct X { struct { int a; }; };
/// \endcode
/// indirectFieldDecl()
/// matches 'a'.
extern const internal::VariadicDynCastAllOfMatcher<Decl, IndirectFieldDecl>
indirectFieldDecl;
/// Matches function declarations.
///
/// Example matches f
/// \code
/// void f();
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Decl, FunctionDecl>
functionDecl;
/// Matches C++ function template declarations.
///
/// Example matches f
/// \code
/// template<class T> void f(T t) {}
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Decl, FunctionTemplateDecl>
functionTemplateDecl;
/// Matches friend declarations.
///
/// Given
/// \code
/// class X { friend void foo(); };
/// \endcode
/// friendDecl()
/// matches 'friend void foo()'.
extern const internal::VariadicDynCastAllOfMatcher<Decl, FriendDecl> friendDecl;
/// Matches statements.
///
/// Given
/// \code
/// { ++a; }
/// \endcode
/// stmt()
/// matches both the compound statement '{ ++a; }' and '++a'.
extern const internal::VariadicAllOfMatcher<Stmt> stmt;
/// Matches declaration statements.
///
/// Given
/// \code
/// int a;
/// \endcode
/// declStmt()
/// matches 'int a'.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, DeclStmt> declStmt;
/// Matches member expressions.
///
/// Given
/// \code
/// class Y {
/// void x() { this->x(); x(); Y y; y.x(); a; this->b; Y::b; }
/// int a; static int b;
/// };
/// \endcode
/// memberExpr()
/// matches this->x, x, y.x, a, this->b
extern const internal::VariadicDynCastAllOfMatcher<Stmt, MemberExpr> memberExpr;
/// Matches unresolved member expressions.
///
/// Given
/// \code
/// struct X {
/// template <class T> void f();
/// void g();
/// };
/// template <class T> void h() { X x; x.f<T>(); x.g(); }
/// \endcode
/// unresolvedMemberExpr()
/// matches x.f<T>
extern const internal::VariadicDynCastAllOfMatcher<Stmt, UnresolvedMemberExpr>
unresolvedMemberExpr;
/// Matches member expressions where the actual member referenced could not be
/// resolved because the base expression or the member name was dependent.
///
/// Given
/// \code
/// template <class T> void f() { T t; t.g(); }
/// \endcode
/// cxxDependentScopeMemberExpr()
/// matches t.g
extern const internal::VariadicDynCastAllOfMatcher<Stmt,
CXXDependentScopeMemberExpr>
cxxDependentScopeMemberExpr;
/// Matches call expressions.
///
/// Example matches x.y() and y()
/// \code
/// X x;
/// x.y();
/// y();
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CallExpr> callExpr;
/// Matches call expressions which were resolved using ADL.
///
/// Example matches y(x) but not y(42) or NS::y(x).
/// \code
/// namespace NS {
/// struct X {};
/// void y(X);
/// }
///
/// void y(...);
///
/// void test() {
/// NS::X x;
/// y(x); // Matches
/// NS::y(x); // Doesn't match
/// y(42); // Doesn't match
/// using NS::y;
/// y(x); // Found by both unqualified lookup and ADL, doesn't match
// }
/// \endcode
AST_MATCHER(CallExpr, usesADL) { return Node.usesADL(); }
/// Matches lambda expressions.
///
/// Example matches [&](){return 5;}
/// \code
/// [&](){return 5;}
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt, LambdaExpr> lambdaExpr;
/// Matches member call expressions.
///
/// Example matches x.y()
/// \code
/// X x;
/// x.y();
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXMemberCallExpr>
cxxMemberCallExpr;
/// Matches ObjectiveC Message invocation expressions.
///
/// The innermost message send invokes the "alloc" class method on the
/// NSString class, while the outermost message send invokes the
/// "initWithString" instance method on the object returned from
/// NSString's "alloc". This matcher should match both message sends.
/// \code
/// [[NSString alloc] initWithString:@"Hello"]
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ObjCMessageExpr>
objcMessageExpr;
/// Matches ObjectiveC String literal expressions.
///
/// Example matches @"abcd"
/// \code
/// NSString *s = @"abcd";
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ObjCStringLiteral>
objcStringLiteral;
/// Matches Objective-C interface declarations.
///
/// Example matches Foo
/// \code
/// @interface Foo
/// @end
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Decl, ObjCInterfaceDecl>
objcInterfaceDecl;
/// Matches Objective-C implementation declarations.
///
/// Example matches Foo
/// \code
/// @implementation Foo
/// @end
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Decl, ObjCImplementationDecl>
objcImplementationDecl;
/// Matches Objective-C protocol declarations.
///
/// Example matches FooDelegate
/// \code
/// @protocol FooDelegate
/// @end
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Decl, ObjCProtocolDecl>
objcProtocolDecl;
/// Matches Objective-C category declarations.
///
/// Example matches Foo (Additions)
/// \code
/// @interface Foo (Additions)
/// @end
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Decl, ObjCCategoryDecl>
objcCategoryDecl;
/// Matches Objective-C category definitions.
///
/// Example matches Foo (Additions)
/// \code
/// @implementation Foo (Additions)
/// @end
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Decl, ObjCCategoryImplDecl>
objcCategoryImplDecl;
/// Matches Objective-C method declarations.
///
/// Example matches both declaration and definition of -[Foo method]
/// \code
/// @interface Foo
/// - (void)method;
/// @end
///
/// @implementation Foo
/// - (void)method {}
/// @end
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Decl, ObjCMethodDecl>
objcMethodDecl;
/// Matches block declarations.
///
/// Example matches the declaration of the nameless block printing an input
/// integer.
///
/// \code
/// myFunc(^(int p) {
/// printf("%d", p);
/// })
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Decl, BlockDecl>
blockDecl;
/// Matches Objective-C instance variable declarations.
///
/// Example matches _enabled
/// \code
/// @implementation Foo {
/// BOOL _enabled;
/// }
/// @end
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Decl, ObjCIvarDecl>
objcIvarDecl;
/// Matches Objective-C property declarations.
///
/// Example matches enabled
/// \code
/// @interface Foo
/// @property BOOL enabled;
/// @end
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Decl, ObjCPropertyDecl>
objcPropertyDecl;
/// Matches Objective-C \@throw statements.
///
/// Example matches \@throw
/// \code
/// @throw obj;
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ObjCAtThrowStmt>
objcThrowStmt;
/// Matches Objective-C @try statements.
///
/// Example matches @try
/// \code
/// @try {}
/// @catch (...) {}
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ObjCAtTryStmt>
objcTryStmt;
/// Matches Objective-C @catch statements.
///
/// Example matches @catch
/// \code
/// @try {}
/// @catch (...) {}
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ObjCAtCatchStmt>
objcCatchStmt;
/// Matches Objective-C @finally statements.
///
/// Example matches @finally
/// \code
/// @try {}
/// @finally {}
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ObjCAtFinallyStmt>
objcFinallyStmt;
/// Matches expressions that introduce cleanups to be run at the end
/// of the sub-expression's evaluation.
///
/// Example matches std::string()
/// \code
/// const std::string str = std::string();
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ExprWithCleanups>
exprWithCleanups;
/// Matches init list expressions.
///
/// Given
/// \code
/// int a[] = { 1, 2 };
/// struct B { int x, y; };
/// B b = { 5, 6 };
/// \endcode
/// initListExpr()
/// matches "{ 1, 2 }" and "{ 5, 6 }"
extern const internal::VariadicDynCastAllOfMatcher<Stmt, InitListExpr>
initListExpr;
/// Matches the syntactic form of init list expressions
/// (if expression have it).
AST_MATCHER_P(InitListExpr, hasSyntacticForm,
internal::Matcher<Expr>, InnerMatcher) {
const Expr *SyntForm = Node.getSyntacticForm();
return (SyntForm != nullptr &&
InnerMatcher.matches(*SyntForm, Finder, Builder));
}
/// Matches C++ initializer list expressions.
///
/// Given
/// \code
/// std::vector<int> a({ 1, 2, 3 });
/// std::vector<int> b = { 4, 5 };
/// int c[] = { 6, 7 };
/// std::pair<int, int> d = { 8, 9 };
/// \endcode
/// cxxStdInitializerListExpr()
/// matches "{ 1, 2, 3 }" and "{ 4, 5 }"
extern const internal::VariadicDynCastAllOfMatcher<Stmt,
CXXStdInitializerListExpr>
cxxStdInitializerListExpr;
/// Matches implicit initializers of init list expressions.
///
/// Given
/// \code
/// point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
/// \endcode
/// implicitValueInitExpr()
/// matches "[0].y" (implicitly)
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ImplicitValueInitExpr>
implicitValueInitExpr;
/// Matches paren list expressions.
/// ParenListExprs don't have a predefined type and are used for late parsing.
/// In the final AST, they can be met in template declarations.
///
/// Given
/// \code
/// template<typename T> class X {
/// void f() {
/// X x(*this);
/// int a = 0, b = 1; int i = (a, b);
/// }
/// };
/// \endcode
/// parenListExpr() matches "*this" but NOT matches (a, b) because (a, b)
/// has a predefined type and is a ParenExpr, not a ParenListExpr.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ParenListExpr>
parenListExpr;
/// Matches substitutions of non-type template parameters.
///
/// Given
/// \code
/// template <int N>
/// struct A { static const int n = N; };
/// struct B : public A<42> {};
/// \endcode
/// substNonTypeTemplateParmExpr()
/// matches "N" in the right-hand side of "static const int n = N;"
extern const internal::VariadicDynCastAllOfMatcher<Stmt,
SubstNonTypeTemplateParmExpr>
substNonTypeTemplateParmExpr;
/// Matches using declarations.
///
/// Given
/// \code
/// namespace X { int x; }
/// using X::x;
/// \endcode
/// usingDecl()
/// matches \code using X::x \endcode
extern const internal::VariadicDynCastAllOfMatcher<Decl, UsingDecl> usingDecl;
/// Matches using-enum declarations.
///
/// Given
/// \code
/// namespace X { enum x {...}; }
/// using enum X::x;
/// \endcode
/// usingEnumDecl()
/// matches \code using enum X::x \endcode
extern const internal::VariadicDynCastAllOfMatcher<Decl, UsingEnumDecl>
usingEnumDecl;
/// Matches using namespace declarations.
///
/// Given
/// \code
/// namespace X { int x; }
/// using namespace X;
/// \endcode
/// usingDirectiveDecl()
/// matches \code using namespace X \endcode
extern const internal::VariadicDynCastAllOfMatcher<Decl, UsingDirectiveDecl>
usingDirectiveDecl;
/// Matches reference to a name that can be looked up during parsing
/// but could not be resolved to a specific declaration.
///
/// Given
/// \code
/// template<typename T>
/// T foo() { T a; return a; }
/// template<typename T>
/// void bar() {
/// foo<T>();
/// }
/// \endcode
/// unresolvedLookupExpr()
/// matches \code foo<T>() \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt, UnresolvedLookupExpr>
unresolvedLookupExpr;
/// Matches unresolved using value declarations.
///
/// Given
/// \code
/// template<typename X>
/// class C : private X {
/// using X::x;
/// };
/// \endcode
/// unresolvedUsingValueDecl()
/// matches \code using X::x \endcode
extern const internal::VariadicDynCastAllOfMatcher<Decl,
UnresolvedUsingValueDecl>
unresolvedUsingValueDecl;
/// Matches unresolved using value declarations that involve the
/// typename.
///
/// Given
/// \code
/// template <typename T>
/// struct Base { typedef T Foo; };
///
/// template<typename T>
/// struct S : private Base<T> {
/// using typename Base<T>::Foo;
/// };
/// \endcode
/// unresolvedUsingTypenameDecl()
/// matches \code using Base<T>::Foo \endcode
extern const internal::VariadicDynCastAllOfMatcher<Decl,
UnresolvedUsingTypenameDecl>
unresolvedUsingTypenameDecl;
/// Matches a constant expression wrapper.
///
/// Example matches the constant in the case statement:
/// (matcher = constantExpr())
/// \code
/// switch (a) {
/// case 37: break;
/// }
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ConstantExpr>
constantExpr;
/// Matches parentheses used in expressions.
///
/// Example matches (foo() + 1)
/// \code
/// int foo() { return 1; }
/// int a = (foo() + 1);
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ParenExpr> parenExpr;
/// Matches constructor call expressions (including implicit ones).
///
/// Example matches string(ptr, n) and ptr within arguments of f
/// (matcher = cxxConstructExpr())
/// \code
/// void f(const string &a, const string &b);
/// char *ptr;
/// int n;
/// f(string(ptr, n), ptr);
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXConstructExpr>
cxxConstructExpr;
/// Matches unresolved constructor call expressions.
///
/// Example matches T(t) in return statement of f
/// (matcher = cxxUnresolvedConstructExpr())
/// \code
/// template <typename T>
/// void f(const T& t) { return T(t); }
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt,
CXXUnresolvedConstructExpr>
cxxUnresolvedConstructExpr;
/// Matches implicit and explicit this expressions.
///
/// Example matches the implicit this expression in "return i".
/// (matcher = cxxThisExpr())
/// \code
/// struct foo {
/// int i;
/// int f() { return i; }
/// };
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXThisExpr>
cxxThisExpr;
/// Matches nodes where temporaries are created.
///
/// Example matches FunctionTakesString(GetStringByValue())
/// (matcher = cxxBindTemporaryExpr())
/// \code
/// FunctionTakesString(GetStringByValue());
/// FunctionTakesStringByPointer(GetStringPointer());
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXBindTemporaryExpr>
cxxBindTemporaryExpr;
/// Matches nodes where temporaries are materialized.
///
/// Example: Given
/// \code
/// struct T {void func();};
/// T f();
/// void g(T);
/// \endcode
/// materializeTemporaryExpr() matches 'f()' in these statements
/// \code
/// T u(f());
/// g(f());
/// f().func();
/// \endcode
/// but does not match
/// \code
/// f();
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt,
MaterializeTemporaryExpr>
materializeTemporaryExpr;
/// Matches new expressions.
///
/// Given
/// \code
/// new X;
/// \endcode
/// cxxNewExpr()
/// matches 'new X'.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXNewExpr> cxxNewExpr;
/// Matches delete expressions.
///
/// Given
/// \code
/// delete X;
/// \endcode
/// cxxDeleteExpr()
/// matches 'delete X'.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXDeleteExpr>
cxxDeleteExpr;
/// Matches noexcept expressions.
///
/// Given
/// \code
/// bool a() noexcept;
/// bool b() noexcept(true);
/// bool c() noexcept(false);
/// bool d() noexcept(noexcept(a()));
/// bool e = noexcept(b()) || noexcept(c());
/// \endcode
/// cxxNoexceptExpr()
/// matches `noexcept(a())`, `noexcept(b())` and `noexcept(c())`.
/// doesn't match the noexcept specifier in the declarations a, b, c or d.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXNoexceptExpr>
cxxNoexceptExpr;
/// Matches array subscript expressions.
///
/// Given
/// \code
/// int i = a[1];
/// \endcode
/// arraySubscriptExpr()
/// matches "a[1]"
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ArraySubscriptExpr>
arraySubscriptExpr;
/// Matches the value of a default argument at the call site.
///
/// Example matches the CXXDefaultArgExpr placeholder inserted for the
/// default value of the second parameter in the call expression f(42)
/// (matcher = cxxDefaultArgExpr())
/// \code
/// void f(int x, int y = 0);
/// f(42);
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXDefaultArgExpr>
cxxDefaultArgExpr;
/// Matches overloaded operator calls.
///
/// Note that if an operator isn't overloaded, it won't match. Instead, use
/// binaryOperator matcher.
/// Currently it does not match operators such as new delete.
/// FIXME: figure out why these do not match?
///
/// Example matches both operator<<((o << b), c) and operator<<(o, b)
/// (matcher = cxxOperatorCallExpr())
/// \code
/// ostream &operator<< (ostream &out, int i) { };
/// ostream &o; int b = 1, c = 1;
/// o << b << c;
/// \endcode
/// See also the binaryOperation() matcher for more-general matching of binary
/// uses of this AST node.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXOperatorCallExpr>
cxxOperatorCallExpr;
/// Matches rewritten binary operators
///
/// Example matches use of "<":
/// \code
/// #include <compare>
/// struct HasSpaceshipMem {
/// int a;
/// constexpr auto operator<=>(const HasSpaceshipMem&) const = default;
/// };
/// void compare() {
/// HasSpaceshipMem hs1, hs2;
/// if (hs1 < hs2)
/// return;
/// }
/// \endcode
/// See also the binaryOperation() matcher for more-general matching
/// of this AST node.
extern const internal::VariadicDynCastAllOfMatcher<Stmt,
CXXRewrittenBinaryOperator>
cxxRewrittenBinaryOperator;
/// Matches expressions.
///
/// Example matches x()
/// \code
/// void f() { x(); }
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt, Expr> expr;
/// Matches expressions that refer to declarations.
///
/// Example matches x in if (x)
/// \code
/// bool x;
/// if (x) {}
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt, DeclRefExpr>
declRefExpr;
/// Matches a reference to an ObjCIvar.
///
/// Example: matches "a" in "init" method:
/// \code
/// @implementation A {
/// NSString *a;
/// }
/// - (void) init {
/// a = @"hello";
/// }
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ObjCIvarRefExpr>
objcIvarRefExpr;
/// Matches a reference to a block.
///
/// Example: matches "^{}":
/// \code
/// void f() { ^{}(); }
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt, BlockExpr> blockExpr;
/// Matches if statements.
///
/// Example matches 'if (x) {}'
/// \code
/// if (x) {}
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt, IfStmt> ifStmt;
/// Matches for statements.
///
/// Example matches 'for (;;) {}'
/// \code
/// for (;;) {}
/// int i[] = {1, 2, 3}; for (auto a : i);
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ForStmt> forStmt;
/// Matches the increment statement of a for loop.
///
/// Example:
/// forStmt(hasIncrement(unaryOperator(hasOperatorName("++"))))
/// matches '++x' in
/// \code
/// for (x; x < N; ++x) { }
/// \endcode
AST_MATCHER_P(ForStmt, hasIncrement, internal::Matcher<Stmt>,
InnerMatcher) {
const Stmt *const Increment = Node.getInc();
return (Increment != nullptr &&
InnerMatcher.matches(*Increment, Finder, Builder));
}
/// Matches the initialization statement of a for loop.
///
/// Example:
/// forStmt(hasLoopInit(declStmt()))
/// matches 'int x = 0' in
/// \code
/// for (int x = 0; x < N; ++x) { }
/// \endcode
AST_MATCHER_P(ForStmt, hasLoopInit, internal::Matcher<Stmt>,
InnerMatcher) {
const Stmt *const Init = Node.getInit();
return (Init != nullptr && InnerMatcher.matches(*Init, Finder, Builder));
}
/// Matches range-based for statements.
///
/// cxxForRangeStmt() matches 'for (auto a : i)'
/// \code
/// int i[] = {1, 2, 3}; for (auto a : i);
/// for(int j = 0; j < 5; ++j);
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXForRangeStmt>
cxxForRangeStmt;
/// Matches the initialization statement of a for loop.
///
/// Example:
/// forStmt(hasLoopVariable(anything()))
/// matches 'int x' in
/// \code
/// for (int x : a) { }
/// \endcode
AST_MATCHER_P(CXXForRangeStmt, hasLoopVariable, internal::Matcher<VarDecl>,
InnerMatcher) {
const VarDecl *const Var = Node.getLoopVariable();
return (Var != nullptr && InnerMatcher.matches(*Var, Finder, Builder));
}
/// Matches the range initialization statement of a for loop.
///
/// Example:
/// forStmt(hasRangeInit(anything()))
/// matches 'a' in
/// \code
/// for (int x : a) { }
/// \endcode
AST_MATCHER_P(CXXForRangeStmt, hasRangeInit, internal::Matcher<Expr>,
InnerMatcher) {
const Expr *const Init = Node.getRangeInit();
return (Init != nullptr && InnerMatcher.matches(*Init, Finder, Builder));
}
/// Matches while statements.
///
/// Given
/// \code
/// while (true) {}
/// \endcode
/// whileStmt()
/// matches 'while (true) {}'.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, WhileStmt> whileStmt;
/// Matches do statements.
///
/// Given
/// \code
/// do {} while (true);
/// \endcode
/// doStmt()
/// matches 'do {} while(true)'
extern const internal::VariadicDynCastAllOfMatcher<Stmt, DoStmt> doStmt;
/// Matches break statements.
///
/// Given
/// \code
/// while (true) { break; }
/// \endcode
/// breakStmt()
/// matches 'break'
extern const internal::VariadicDynCastAllOfMatcher<Stmt, BreakStmt> breakStmt;
/// Matches continue statements.
///
/// Given
/// \code
/// while (true) { continue; }
/// \endcode
/// continueStmt()
/// matches 'continue'
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ContinueStmt>
continueStmt;
/// Matches co_return statements.
///
/// Given
/// \code
/// while (true) { co_return; }
/// \endcode
/// coreturnStmt()
/// matches 'co_return'
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CoreturnStmt>
coreturnStmt;
/// Matches return statements.
///
/// Given
/// \code
/// return 1;
/// \endcode
/// returnStmt()
/// matches 'return 1'
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ReturnStmt> returnStmt;
/// Matches goto statements.
///
/// Given
/// \code
/// goto FOO;
/// FOO: bar();
/// \endcode
/// gotoStmt()
/// matches 'goto FOO'
extern const internal::VariadicDynCastAllOfMatcher<Stmt, GotoStmt> gotoStmt;
/// Matches label statements.
///
/// Given
/// \code
/// goto FOO;
/// FOO: bar();
/// \endcode
/// labelStmt()
/// matches 'FOO:'
extern const internal::VariadicDynCastAllOfMatcher<Stmt, LabelStmt> labelStmt;
/// Matches address of label statements (GNU extension).
///
/// Given
/// \code
/// FOO: bar();
/// void *ptr = &&FOO;
/// goto *bar;
/// \endcode
/// addrLabelExpr()
/// matches '&&FOO'
extern const internal::VariadicDynCastAllOfMatcher<Stmt, AddrLabelExpr>
addrLabelExpr;
/// Matches switch statements.
///
/// Given
/// \code
/// switch(a) { case 42: break; default: break; }
/// \endcode
/// switchStmt()
/// matches 'switch(a)'.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, SwitchStmt> switchStmt;
/// Matches case and default statements inside switch statements.
///
/// Given
/// \code
/// switch(a) { case 42: break; default: break; }
/// \endcode
/// switchCase()
/// matches 'case 42:' and 'default:'.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, SwitchCase> switchCase;
/// Matches case statements inside switch statements.
///
/// Given
/// \code
/// switch(a) { case 42: break; default: break; }
/// \endcode
/// caseStmt()
/// matches 'case 42:'.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CaseStmt> caseStmt;
/// Matches default statements inside switch statements.
///
/// Given
/// \code
/// switch(a) { case 42: break; default: break; }
/// \endcode
/// defaultStmt()
/// matches 'default:'.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, DefaultStmt>
defaultStmt;
/// Matches compound statements.
///
/// Example matches '{}' and '{{}}' in 'for (;;) {{}}'
/// \code
/// for (;;) {{}}
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CompoundStmt>
compoundStmt;
/// Matches catch statements.
///
/// \code
/// try {} catch(int i) {}
/// \endcode
/// cxxCatchStmt()
/// matches 'catch(int i)'
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXCatchStmt>
cxxCatchStmt;
/// Matches try statements.
///
/// \code
/// try {} catch(int i) {}
/// \endcode
/// cxxTryStmt()
/// matches 'try {}'
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXTryStmt> cxxTryStmt;
/// Matches throw expressions.
///
/// \code
/// try { throw 5; } catch(int i) {}
/// \endcode
/// cxxThrowExpr()
/// matches 'throw 5'
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXThrowExpr>
cxxThrowExpr;
/// Matches null statements.
///
/// \code
/// foo();;
/// \endcode
/// nullStmt()
/// matches the second ';'
extern const internal::VariadicDynCastAllOfMatcher<Stmt, NullStmt> nullStmt;
/// Matches asm statements.
///
/// \code
/// int i = 100;
/// __asm("mov al, 2");
/// \endcode
/// asmStmt()
/// matches '__asm("mov al, 2")'
extern const internal::VariadicDynCastAllOfMatcher<Stmt, AsmStmt> asmStmt;
/// Matches bool literals.
///
/// Example matches true
/// \code
/// true
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXBoolLiteralExpr>
cxxBoolLiteral;
/// Matches string literals (also matches wide string literals).
///
/// Example matches "abcd", L"abcd"
/// \code
/// char *s = "abcd";
/// wchar_t *ws = L"abcd";
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt, StringLiteral>
stringLiteral;
/// Matches character literals (also matches wchar_t).
///
/// Not matching Hex-encoded chars (e.g. 0x1234, which is a IntegerLiteral),
/// though.
///
/// Example matches 'a', L'a'
/// \code
/// char ch = 'a';
/// wchar_t chw = L'a';
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CharacterLiteral>
characterLiteral;
/// Matches integer literals of all sizes / encodings, e.g.
/// 1, 1L, 0x1 and 1U.
///
/// Does not match character-encoded integers such as L'a'.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, IntegerLiteral>
integerLiteral;
/// Matches float literals of all sizes / encodings, e.g.
/// 1.0, 1.0f, 1.0L and 1e10.
///
/// Does not match implicit conversions such as
/// \code
/// float a = 10;
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt, FloatingLiteral>
floatLiteral;
/// Matches imaginary literals, which are based on integer and floating
/// point literals e.g.: 1i, 1.0i
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ImaginaryLiteral>
imaginaryLiteral;
/// Matches fixed point literals
extern const internal::VariadicDynCastAllOfMatcher<Stmt, FixedPointLiteral>
fixedPointLiteral;
/// Matches user defined literal operator call.
///
/// Example match: "foo"_suffix
extern const internal::VariadicDynCastAllOfMatcher<Stmt, UserDefinedLiteral>
userDefinedLiteral;
/// Matches compound (i.e. non-scalar) literals
///
/// Example match: {1}, (1, 2)
/// \code
/// int array[4] = {1};
/// vector int myvec = (vector int)(1, 2);
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CompoundLiteralExpr>
compoundLiteralExpr;
/// Matches co_await expressions.
///
/// Given
/// \code
/// co_await 1;
/// \endcode
/// coawaitExpr()
/// matches 'co_await 1'
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CoawaitExpr>
coawaitExpr;
/// Matches co_await expressions where the type of the promise is dependent
extern const internal::VariadicDynCastAllOfMatcher<Stmt, DependentCoawaitExpr>
dependentCoawaitExpr;
/// Matches co_yield expressions.
///
/// Given
/// \code
/// co_yield 1;
/// \endcode
/// coyieldExpr()
/// matches 'co_yield 1'
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CoyieldExpr>
coyieldExpr;
/// Matches nullptr literal.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXNullPtrLiteralExpr>
cxxNullPtrLiteralExpr;
/// Matches GNU __builtin_choose_expr.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ChooseExpr>
chooseExpr;
/// Matches GNU __null expression.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, GNUNullExpr>
gnuNullExpr;
/// Matches C11 _Generic expression.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, GenericSelectionExpr>
genericSelectionExpr;
/// Matches atomic builtins.
/// Example matches __atomic_load_n(ptr, 1)
/// \code
/// void foo() { int *ptr; __atomic_load_n(ptr, 1); }
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt, AtomicExpr> atomicExpr;
/// Matches statement expression (GNU extension).
///
/// Example match: ({ int X = 4; X; })
/// \code
/// int C = ({ int X = 4; X; });
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt, StmtExpr> stmtExpr;
/// Matches binary operator expressions.
///
/// Example matches a || b
/// \code
/// !(a || b)
/// \endcode
/// See also the binaryOperation() matcher for more-general matching.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, BinaryOperator>
binaryOperator;
/// Matches unary operator expressions.
///
/// Example matches !a
/// \code
/// !a || b
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt, UnaryOperator>
unaryOperator;
/// Matches conditional operator expressions.
///
/// Example matches a ? b : c
/// \code
/// (a ? b : c) + 42
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ConditionalOperator>
conditionalOperator;
/// Matches binary conditional operator expressions (GNU extension).
///
/// Example matches a ?: b
/// \code
/// (a ?: b) + 42;
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt,
BinaryConditionalOperator>
binaryConditionalOperator;
/// Matches opaque value expressions. They are used as helpers
/// to reference another expressions and can be met
/// in BinaryConditionalOperators, for example.
///
/// Example matches 'a'
/// \code
/// (a ?: c) + 42;
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt, OpaqueValueExpr>
opaqueValueExpr;
/// Matches a C++ static_assert declaration.
///
/// Example:
/// staticAssertDecl()
/// matches
/// static_assert(sizeof(S) == sizeof(int))
/// in
/// \code
/// struct S {
/// int x;
/// };
/// static_assert(sizeof(S) == sizeof(int));
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Decl, StaticAssertDecl>
staticAssertDecl;
/// Matches a reinterpret_cast expression.
///
/// Either the source expression or the destination type can be matched
/// using has(), but hasDestinationType() is more specific and can be
/// more readable.
///
/// Example matches reinterpret_cast<char*>(&p) in
/// \code
/// void* p = reinterpret_cast<char*>(&p);
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXReinterpretCastExpr>
cxxReinterpretCastExpr;
/// Matches a C++ static_cast expression.
///
/// \see hasDestinationType
/// \see reinterpretCast
///
/// Example:
/// cxxStaticCastExpr()
/// matches
/// static_cast<long>(8)
/// in
/// \code
/// long eight(static_cast<long>(8));
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXStaticCastExpr>
cxxStaticCastExpr;
/// Matches a dynamic_cast expression.
///
/// Example:
/// cxxDynamicCastExpr()
/// matches
/// dynamic_cast<D*>(&b);
/// in
/// \code
/// struct B { virtual ~B() {} }; struct D : B {};
/// B b;
/// D* p = dynamic_cast<D*>(&b);
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXDynamicCastExpr>
cxxDynamicCastExpr;
/// Matches a const_cast expression.
///
/// Example: Matches const_cast<int*>(&r) in
/// \code
/// int n = 42;
/// const int &r(n);
/// int* p = const_cast<int*>(&r);
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXConstCastExpr>
cxxConstCastExpr;
/// Matches a C-style cast expression.
///
/// Example: Matches (int) 2.2f in
/// \code
/// int i = (int) 2.2f;
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CStyleCastExpr>
cStyleCastExpr;
/// Matches explicit cast expressions.
///
/// Matches any cast expression written in user code, whether it be a
/// C-style cast, a functional-style cast, or a keyword cast.
///
/// Does not match implicit conversions.
///
/// Note: the name "explicitCast" is chosen to match Clang's terminology, as
/// Clang uses the term "cast" to apply to implicit conversions as well as to
/// actual cast expressions.
///
/// \see hasDestinationType.
///
/// Example: matches all five of the casts in
/// \code
/// int((int)(reinterpret_cast<int>(static_cast<int>(const_cast<int>(42)))))
/// \endcode
/// but does not match the implicit conversion in
/// \code
/// long ell = 42;
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ExplicitCastExpr>
explicitCastExpr;
/// Matches the implicit cast nodes of Clang's AST.
///
/// This matches many different places, including function call return value
/// eliding, as well as any type conversions.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ImplicitCastExpr>
implicitCastExpr;
/// Matches any cast nodes of Clang's AST.
///
/// Example: castExpr() matches each of the following:
/// \code
/// (int) 3;
/// const_cast<Expr *>(SubExpr);
/// char c = 0;
/// \endcode
/// but does not match
/// \code
/// int i = (0);
/// int k = 0;
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CastExpr> castExpr;
/// Matches functional cast expressions
///
/// Example: Matches Foo(bar);
/// \code
/// Foo f = bar;
/// Foo g = (Foo) bar;
/// Foo h = Foo(bar);
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXFunctionalCastExpr>
cxxFunctionalCastExpr;
/// Matches functional cast expressions having N != 1 arguments
///
/// Example: Matches Foo(bar, bar)
/// \code
/// Foo h = Foo(bar, bar);
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXTemporaryObjectExpr>
cxxTemporaryObjectExpr;
/// Matches predefined identifier expressions [C99 6.4.2.2].
///
/// Example: Matches __func__
/// \code
/// printf("%s", __func__);
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt, PredefinedExpr>
predefinedExpr;
/// Matches C99 designated initializer expressions [C99 6.7.8].
///
/// Example: Matches { [2].y = 1.0, [0].x = 1.0 }
/// \code
/// point ptarray[10] = { [2].y = 1.0, [0].x = 1.0 };
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt, DesignatedInitExpr>
designatedInitExpr;
/// Matches designated initializer expressions that contain
/// a specific number of designators.
///
/// Example: Given
/// \code
/// point ptarray[10] = { [2].y = 1.0, [0].x = 1.0 };
/// point ptarray2[10] = { [2].y = 1.0, [2].x = 0.0, [0].x = 1.0 };
/// \endcode
/// designatorCountIs(2)
/// matches '{ [2].y = 1.0, [0].x = 1.0 }',
/// but not '{ [2].y = 1.0, [2].x = 0.0, [0].x = 1.0 }'.
AST_MATCHER_P(DesignatedInitExpr, designatorCountIs, unsigned, N) {
return Node.size() == N;
}
/// Matches \c QualTypes in the clang AST.
extern const internal::VariadicAllOfMatcher<QualType> qualType;
/// Matches \c Types in the clang AST.
extern const internal::VariadicAllOfMatcher<Type> type;
/// Matches \c TypeLocs in the clang AST.
extern const internal::VariadicAllOfMatcher<TypeLoc> typeLoc;
/// Matches if any of the given matchers matches.
///
/// Unlike \c anyOf, \c eachOf will generate a match result for each
/// matching submatcher.
///
/// For example, in:
/// \code
/// class A { int a; int b; };
/// \endcode
/// The matcher:
/// \code
/// cxxRecordDecl(eachOf(has(fieldDecl(hasName("a")).bind("v")),
/// has(fieldDecl(hasName("b")).bind("v"))))
/// \endcode
/// will generate two results binding "v", the first of which binds
/// the field declaration of \c a, the second the field declaration of
/// \c b.
///
/// Usable as: Any Matcher
extern const internal::VariadicOperatorMatcherFunc<
2, std::numeric_limits<unsigned>::max()>
eachOf;
/// Matches if any of the given matchers matches.
///
/// Usable as: Any Matcher
extern const internal::VariadicOperatorMatcherFunc<
2, std::numeric_limits<unsigned>::max()>
anyOf;
/// Matches if all given matchers match.
///
/// Usable as: Any Matcher
extern const internal::VariadicOperatorMatcherFunc<
2, std::numeric_limits<unsigned>::max()>
allOf;
/// Matches any node regardless of the submatcher.
///
/// However, \c optionally will retain any bindings generated by the submatcher.
/// Useful when additional information which may or may not present about a main
/// matching node is desired.
///
/// For example, in:
/// \code
/// class Foo {
/// int bar;
/// }
/// \endcode
/// The matcher:
/// \code
/// cxxRecordDecl(
/// optionally(has(
/// fieldDecl(hasName("bar")).bind("var")
/// ))).bind("record")
/// \endcode
/// will produce a result binding for both "record" and "var".
/// The matcher will produce a "record" binding for even if there is no data
/// member named "bar" in that class.
///
/// Usable as: Any Matcher
extern const internal::VariadicOperatorMatcherFunc<1, 1> optionally;
/// Matches sizeof (C99), alignof (C++11) and vec_step (OpenCL)
///
/// Given
/// \code
/// Foo x = bar;
/// int y = sizeof(x) + alignof(x);
/// \endcode
/// unaryExprOrTypeTraitExpr()
/// matches \c sizeof(x) and \c alignof(x)
extern const internal::VariadicDynCastAllOfMatcher<Stmt,
UnaryExprOrTypeTraitExpr>
unaryExprOrTypeTraitExpr;
/// Matches any of the \p NodeMatchers with InnerMatchers nested within
///
/// Given
/// \code
/// if (true);
/// for (; true; );
/// \endcode
/// with the matcher
/// \code
/// mapAnyOf(ifStmt, forStmt).with(
/// hasCondition(cxxBoolLiteralExpr(equals(true)))
/// ).bind("trueCond")
/// \endcode
/// matches the \c if and the \c for. It is equivalent to:
/// \code
/// auto trueCond = hasCondition(cxxBoolLiteralExpr(equals(true)));
/// anyOf(
/// ifStmt(trueCond).bind("trueCond"),
/// forStmt(trueCond).bind("trueCond")
/// );
/// \endcode
///
/// The with() chain-call accepts zero or more matchers which are combined
/// as-if with allOf() in each of the node matchers.
/// Usable as: Any Matcher
template <typename T, typename... U>
auto mapAnyOf(internal::VariadicDynCastAllOfMatcher<T, U> const &...) {
return internal::MapAnyOfHelper<U...>();
}
/// Matches nodes which can be used with binary operators.
///
/// The code
/// \code
/// var1 != var2;
/// \endcode
/// might be represented in the clang AST as a binaryOperator, a
/// cxxOperatorCallExpr or a cxxRewrittenBinaryOperator, depending on
///
/// * whether the types of var1 and var2 are fundamental (binaryOperator) or at
/// least one is a class type (cxxOperatorCallExpr)
/// * whether the code appears in a template declaration, if at least one of the
/// vars is a dependent-type (binaryOperator)
/// * whether the code relies on a rewritten binary operator, such as a
/// spaceship operator or an inverted equality operator
/// (cxxRewrittenBinaryOperator)
///
/// This matcher elides details in places where the matchers for the nodes are
/// compatible.
///
/// Given
/// \code
/// binaryOperation(
/// hasOperatorName("!="),
/// hasLHS(expr().bind("lhs")),
/// hasRHS(expr().bind("rhs"))
/// )
/// \endcode
/// matches each use of "!=" in:
/// \code
/// struct S{
/// bool operator!=(const S&) const;
/// };
///
/// void foo()
/// {
/// 1 != 2;
/// S() != S();
/// }
///
/// template<typename T>
/// void templ()
/// {
/// 1 != 2;
/// T() != S();
/// }
/// struct HasOpEq
/// {
/// bool operator==(const HasOpEq &) const;
/// };
///
/// void inverse()
/// {
/// HasOpEq s1;
/// HasOpEq s2;
/// if (s1 != s2)
/// return;
/// }
///
/// struct HasSpaceship
/// {
/// bool operator<=>(const HasOpEq &) const;
/// };
///
/// void use_spaceship()
/// {
/// HasSpaceship s1;
/// HasSpaceship s2;
/// if (s1 != s2)
/// return;
/// }
/// \endcode
extern const internal::MapAnyOfMatcher<BinaryOperator, CXXOperatorCallExpr,
CXXRewrittenBinaryOperator>
binaryOperation;
/// Matches function calls and constructor calls
///
/// Because CallExpr and CXXConstructExpr do not share a common
/// base class with API accessing arguments etc, AST Matchers for code
/// which should match both are typically duplicated. This matcher
/// removes the need for duplication.
///
/// Given code
/// \code
/// struct ConstructorTakesInt
/// {
/// ConstructorTakesInt(int i) {}
/// };
///
/// void callTakesInt(int i)
/// {
/// }
///
/// void doCall()
/// {
/// callTakesInt(42);
/// }
///
/// void doConstruct()
/// {
/// ConstructorTakesInt cti(42);
/// }
/// \endcode
///
/// The matcher
/// \code
/// invocation(hasArgument(0, integerLiteral(equals(42))))
/// \endcode
/// matches the expression in both doCall and doConstruct
extern const internal::MapAnyOfMatcher<CallExpr, CXXConstructExpr> invocation;
/// Matches unary expressions that have a specific type of argument.
///
/// Given
/// \code
/// int a, c; float b; int s = sizeof(a) + sizeof(b) + alignof(c);
/// \endcode
/// unaryExprOrTypeTraitExpr(hasArgumentOfType(asString("int"))
/// matches \c sizeof(a) and \c alignof(c)
AST_MATCHER_P(UnaryExprOrTypeTraitExpr, hasArgumentOfType,
internal::Matcher<QualType>, InnerMatcher) {
const QualType ArgumentType = Node.getTypeOfArgument();
return InnerMatcher.matches(ArgumentType, Finder, Builder);
}
/// Matches unary expressions of a certain kind.
///
/// Given
/// \code
/// int x;
/// int s = sizeof(x) + alignof(x)
/// \endcode
/// unaryExprOrTypeTraitExpr(ofKind(UETT_SizeOf))
/// matches \c sizeof(x)
///
/// If the matcher is use from clang-query, UnaryExprOrTypeTrait parameter
/// should be passed as a quoted string. e.g., ofKind("UETT_SizeOf").
AST_MATCHER_P(UnaryExprOrTypeTraitExpr, ofKind, UnaryExprOrTypeTrait, Kind) {
return Node.getKind() == Kind;
}
/// Same as unaryExprOrTypeTraitExpr, but only matching
/// alignof.
inline internal::BindableMatcher<Stmt> alignOfExpr(
const internal::Matcher<UnaryExprOrTypeTraitExpr> &InnerMatcher) {
return stmt(unaryExprOrTypeTraitExpr(
allOf(anyOf(ofKind(UETT_AlignOf), ofKind(UETT_PreferredAlignOf)),
InnerMatcher)));
}
/// Same as unaryExprOrTypeTraitExpr, but only matching
/// sizeof.
inline internal::BindableMatcher<Stmt> sizeOfExpr(
const internal::Matcher<UnaryExprOrTypeTraitExpr> &InnerMatcher) {
return stmt(unaryExprOrTypeTraitExpr(
allOf(ofKind(UETT_SizeOf), InnerMatcher)));
}
/// Matches NamedDecl nodes that have the specified name.
///
/// Supports specifying enclosing namespaces or classes by prefixing the name
/// with '<enclosing>::'.
/// Does not match typedefs of an underlying type with the given name.
///
/// Example matches X (Name == "X")
/// \code
/// class X;
/// \endcode
///
/// Example matches X (Name is one of "::a::b::X", "a::b::X", "b::X", "X")
/// \code
/// namespace a { namespace b { class X; } }
/// \endcode
inline internal::Matcher<NamedDecl> hasName(StringRef Name) {
return internal::Matcher<NamedDecl>(
new internal::HasNameMatcher({std::string(Name)}));
}
/// Matches NamedDecl nodes that have any of the specified names.
///
/// This matcher is only provided as a performance optimization of hasName.
/// \code
/// hasAnyName(a, b, c)
/// \endcode
/// is equivalent to, but faster than
/// \code
/// anyOf(hasName(a), hasName(b), hasName(c))
/// \endcode
extern const internal::VariadicFunction<internal::Matcher<NamedDecl>, StringRef,
internal::hasAnyNameFunc>
hasAnyName;
/// Matches NamedDecl nodes whose fully qualified names contain
/// a substring matched by the given RegExp.
///
/// Supports specifying enclosing namespaces or classes by
/// prefixing the name with '<enclosing>::'. Does not match typedefs
/// of an underlying type with the given name.
///
/// Example matches X (regexp == "::X")
/// \code
/// class X;
/// \endcode
///
/// Example matches X (regexp is one of "::X", "^foo::.*X", among others)
/// \code
/// namespace foo { namespace bar { class X; } }
/// \endcode
AST_MATCHER_REGEX(NamedDecl, matchesName, RegExp) {
std::string FullNameString = "::" + Node.getQualifiedNameAsString();
return RegExp->match(FullNameString);
}
/// Matches overloaded operator names.
///
/// Matches overloaded operator names specified in strings without the
/// "operator" prefix: e.g. "<<".
///
/// Given:
/// \code
/// class A { int operator*(); };
/// const A &operator<<(const A &a, const A &b);
/// A a;
/// a << a; // <-- This matches
/// \endcode
///
/// \c cxxOperatorCallExpr(hasOverloadedOperatorName("<<"))) matches the
/// specified line and
/// \c cxxRecordDecl(hasMethod(hasOverloadedOperatorName("*")))
/// matches the declaration of \c A.
///
/// Usable as: Matcher<CXXOperatorCallExpr>, Matcher<FunctionDecl>
inline internal::PolymorphicMatcher<
internal::HasOverloadedOperatorNameMatcher,
AST_POLYMORPHIC_SUPPORTED_TYPES(CXXOperatorCallExpr, FunctionDecl),
std::vector<std::string>>
hasOverloadedOperatorName(StringRef Name) {
return internal::PolymorphicMatcher<
internal::HasOverloadedOperatorNameMatcher,
AST_POLYMORPHIC_SUPPORTED_TYPES(CXXOperatorCallExpr, FunctionDecl),
std::vector<std::string>>({std::string(Name)});
}
/// Matches overloaded operator names.
///
/// Matches overloaded operator names specified in strings without the
/// "operator" prefix: e.g. "<<".
///
/// hasAnyOverloadedOperatorName("+", "-")
/// Is equivalent to
/// anyOf(hasOverloadedOperatorName("+"), hasOverloadedOperatorName("-"))
extern const internal::VariadicFunction<
internal::PolymorphicMatcher<internal::HasOverloadedOperatorNameMatcher,
AST_POLYMORPHIC_SUPPORTED_TYPES(
CXXOperatorCallExpr, FunctionDecl),
std::vector<std::string>>,
StringRef, internal::hasAnyOverloadedOperatorNameFunc>
hasAnyOverloadedOperatorName;
/// Matches template-dependent, but known, member names.
///
/// In template declarations, dependent members are not resolved and so can
/// not be matched to particular named declarations.
///
/// This matcher allows to match on the known name of members.
///
/// Given
/// \code
/// template <typename T>
/// struct S {
/// void mem();
/// };
/// template <typename T>
/// void x() {
/// S<T> s;
/// s.mem();
/// }
/// \endcode
/// \c cxxDependentScopeMemberExpr(hasMemberName("mem")) matches `s.mem()`
AST_MATCHER_P(CXXDependentScopeMemberExpr, hasMemberName, std::string, N) {
return Node.getMember().getAsString() == N;
}
/// Matches template-dependent, but known, member names against an already-bound
/// node
///
/// In template declarations, dependent members are not resolved and so can
/// not be matched to particular named declarations.
///
/// This matcher allows to match on the name of already-bound VarDecl, FieldDecl
/// and CXXMethodDecl nodes.
///
/// Given
/// \code
/// template <typename T>
/// struct S {
/// void mem();
/// };
/// template <typename T>
/// void x() {
/// S<T> s;
/// s.mem();
/// }
/// \endcode
/// The matcher
/// @code
/// \c cxxDependentScopeMemberExpr(
/// hasObjectExpression(declRefExpr(hasType(templateSpecializationType(
/// hasDeclaration(classTemplateDecl(has(cxxRecordDecl(has(
/// cxxMethodDecl(hasName("mem")).bind("templMem")
/// )))))
/// )))),
/// memberHasSameNameAsBoundNode("templMem")
/// )
/// @endcode
/// first matches and binds the @c mem member of the @c S template, then
/// compares its name to the usage in @c s.mem() in the @c x function template
AST_MATCHER_P(CXXDependentScopeMemberExpr, memberHasSameNameAsBoundNode,
std::string, BindingID) {
auto MemberName = Node.getMember().getAsString();
return Builder->removeBindings(
[this, MemberName](const BoundNodesMap &Nodes) {
const auto &BN = Nodes.getNode(this->BindingID);
if (const auto *ND = BN.get<NamedDecl>()) {
if (!isa<FieldDecl, CXXMethodDecl, VarDecl>(ND))
return true;
return ND->getName() != MemberName;
}
return true;
});
}
/// Matches C++ classes that are directly or indirectly derived from a class
/// matching \c Base, or Objective-C classes that directly or indirectly
/// subclass a class matching \c Base.
///
/// Note that a class is not considered to be derived from itself.
///
/// Example matches Y, Z, C (Base == hasName("X"))
/// \code
/// class X;
/// class Y : public X {}; // directly derived
/// class Z : public Y {}; // indirectly derived
/// typedef X A;
/// typedef A B;
/// class C : public B {}; // derived from a typedef of X
/// \endcode
///
/// In the following example, Bar matches isDerivedFrom(hasName("X")):
/// \code
/// class Foo;
/// typedef Foo X;
/// class Bar : public Foo {}; // derived from a type that X is a typedef of
/// \endcode
///
/// In the following example, Bar matches isDerivedFrom(hasName("NSObject"))
/// \code
/// @interface NSObject @end
/// @interface Bar : NSObject @end
/// \endcode
///
/// Usable as: Matcher<CXXRecordDecl>, Matcher<ObjCInterfaceDecl>
AST_POLYMORPHIC_MATCHER_P(
isDerivedFrom,
AST_POLYMORPHIC_SUPPORTED_TYPES(CXXRecordDecl, ObjCInterfaceDecl),
internal::Matcher<NamedDecl>, Base) {
// Check if the node is a C++ struct/union/class.
if (const auto *RD = dyn_cast<CXXRecordDecl>(&Node))
return Finder->classIsDerivedFrom(RD, Base, Builder, /*Directly=*/false);
// The node must be an Objective-C class.
const auto *InterfaceDecl = cast<ObjCInterfaceDecl>(&Node);
return Finder->objcClassIsDerivedFrom(InterfaceDecl, Base, Builder,
/*Directly=*/false);
}
/// Overloaded method as shortcut for \c isDerivedFrom(hasName(...)).
AST_POLYMORPHIC_MATCHER_P_OVERLOAD(
isDerivedFrom,
AST_POLYMORPHIC_SUPPORTED_TYPES(CXXRecordDecl, ObjCInterfaceDecl),
std::string, BaseName, 1) {
if (BaseName.empty())
return false;
const auto M = isDerivedFrom(hasName(BaseName));
if (const auto *RD = dyn_cast<CXXRecordDecl>(&Node))
return Matcher<CXXRecordDecl>(M).matches(*RD, Finder, Builder);
const auto *InterfaceDecl = cast<ObjCInterfaceDecl>(&Node);
return Matcher<ObjCInterfaceDecl>(M).matches(*InterfaceDecl, Finder, Builder);
}
/// Matches C++ classes that have a direct or indirect base matching \p
/// BaseSpecMatcher.
///
/// Example:
/// matcher hasAnyBase(hasType(cxxRecordDecl(hasName("SpecialBase"))))
/// \code
/// class Foo;
/// class Bar : Foo {};
/// class Baz : Bar {};
/// class SpecialBase;
/// class Proxy : SpecialBase {}; // matches Proxy
/// class IndirectlyDerived : Proxy {}; //matches IndirectlyDerived
/// \endcode
///
// FIXME: Refactor this and isDerivedFrom to reuse implementation.
AST_MATCHER_P(CXXRecordDecl, hasAnyBase, internal::Matcher<CXXBaseSpecifier>,
BaseSpecMatcher) {
return internal::matchesAnyBase(Node, BaseSpecMatcher, Finder, Builder);
}
/// Matches C++ classes that have a direct base matching \p BaseSpecMatcher.
///
/// Example:
/// matcher hasDirectBase(hasType(cxxRecordDecl(hasName("SpecialBase"))))
/// \code
/// class Foo;
/// class Bar : Foo {};
/// class Baz : Bar {};
/// class SpecialBase;
/// class Proxy : SpecialBase {}; // matches Proxy
/// class IndirectlyDerived : Proxy {}; // doesn't match
/// \endcode
AST_MATCHER_P(CXXRecordDecl, hasDirectBase, internal::Matcher<CXXBaseSpecifier>,
BaseSpecMatcher) {
return Node.hasDefinition() &&
llvm::any_of(Node.bases(), [&](const CXXBaseSpecifier &Base) {
return BaseSpecMatcher.matches(Base, Finder, Builder);
});
}
/// Similar to \c isDerivedFrom(), but also matches classes that directly
/// match \c Base.
AST_POLYMORPHIC_MATCHER_P_OVERLOAD(
isSameOrDerivedFrom,
AST_POLYMORPHIC_SUPPORTED_TYPES(CXXRecordDecl, ObjCInterfaceDecl),
internal::Matcher<NamedDecl>, Base, 0) {
const auto M = anyOf(Base, isDerivedFrom(Base));
if (const auto *RD = dyn_cast<CXXRecordDecl>(&Node))
return Matcher<CXXRecordDecl>(M).matches(*RD, Finder, Builder);
const auto *InterfaceDecl = cast<ObjCInterfaceDecl>(&Node);
return Matcher<ObjCInterfaceDecl>(M).matches(*InterfaceDecl, Finder, Builder);
}
/// Overloaded method as shortcut for
/// \c isSameOrDerivedFrom(hasName(...)).
AST_POLYMORPHIC_MATCHER_P_OVERLOAD(
isSameOrDerivedFrom,
AST_POLYMORPHIC_SUPPORTED_TYPES(CXXRecordDecl, ObjCInterfaceDecl),
std::string, BaseName, 1) {
if (BaseName.empty())
return false;
const auto M = isSameOrDerivedFrom(hasName(BaseName));
if (const auto *RD = dyn_cast<CXXRecordDecl>(&Node))
return Matcher<CXXRecordDecl>(M).matches(*RD, Finder, Builder);
const auto *InterfaceDecl = cast<ObjCInterfaceDecl>(&Node);
return Matcher<ObjCInterfaceDecl>(M).matches(*InterfaceDecl, Finder, Builder);
}
/// Matches C++ or Objective-C classes that are directly derived from a class
/// matching \c Base.
///
/// Note that a class is not considered to be derived from itself.
///
/// Example matches Y, C (Base == hasName("X"))
/// \code
/// class X;
/// class Y : public X {}; // directly derived
/// class Z : public Y {}; // indirectly derived
/// typedef X A;
/// typedef A B;
/// class C : public B {}; // derived from a typedef of X
/// \endcode
///
/// In the following example, Bar matches isDerivedFrom(hasName("X")):
/// \code
/// class Foo;
/// typedef Foo X;
/// class Bar : public Foo {}; // derived from a type that X is a typedef of
/// \endcode
AST_POLYMORPHIC_MATCHER_P_OVERLOAD(
isDirectlyDerivedFrom,
AST_POLYMORPHIC_SUPPORTED_TYPES(CXXRecordDecl, ObjCInterfaceDecl),
internal::Matcher<NamedDecl>, Base, 0) {
// Check if the node is a C++ struct/union/class.
if (const auto *RD = dyn_cast<CXXRecordDecl>(&Node))
return Finder->classIsDerivedFrom(RD, Base, Builder, /*Directly=*/true);
// The node must be an Objective-C class.
const auto *InterfaceDecl = cast<ObjCInterfaceDecl>(&Node);
return Finder->objcClassIsDerivedFrom(InterfaceDecl, Base, Builder,
/*Directly=*/true);
}
/// Overloaded method as shortcut for \c isDirectlyDerivedFrom(hasName(...)).
AST_POLYMORPHIC_MATCHER_P_OVERLOAD(
isDirectlyDerivedFrom,
AST_POLYMORPHIC_SUPPORTED_TYPES(CXXRecordDecl, ObjCInterfaceDecl),
std::string, BaseName, 1) {
if (BaseName.empty())
return false;
const auto M = isDirectlyDerivedFrom(hasName(BaseName));
if (const auto *RD = dyn_cast<CXXRecordDecl>(&Node))
return Matcher<CXXRecordDecl>(M).matches(*RD, Finder, Builder);
const auto *InterfaceDecl = cast<ObjCInterfaceDecl>(&Node);
return Matcher<ObjCInterfaceDecl>(M).matches(*InterfaceDecl, Finder, Builder);
}
/// Matches the first method of a class or struct that satisfies \c
/// InnerMatcher.
///
/// Given:
/// \code
/// class A { void func(); };
/// class B { void member(); };
/// \endcode
///
/// \c cxxRecordDecl(hasMethod(hasName("func"))) matches the declaration of
/// \c A but not \c B.
AST_MATCHER_P(CXXRecordDecl, hasMethod, internal::Matcher<CXXMethodDecl>,
InnerMatcher) {
BoundNodesTreeBuilder Result(*Builder);
auto MatchIt = matchesFirstInPointerRange(InnerMatcher, Node.method_begin(),
Node.method_end(), Finder, &Result);
if (MatchIt == Node.method_end())
return false;
if (Finder->isTraversalIgnoringImplicitNodes() && (*MatchIt)->isImplicit())
return false;
*Builder = std::move(Result);
return true;
}
/// Matches the generated class of lambda expressions.
///
/// Given:
/// \code
/// auto x = []{};
/// \endcode
///
/// \c cxxRecordDecl(isLambda()) matches the implicit class declaration of
/// \c decltype(x)
AST_MATCHER(CXXRecordDecl, isLambda) {
return Node.isLambda();
}
/// Matches AST nodes that have child AST nodes that match the
/// provided matcher.
///
/// Example matches X, Y
/// (matcher = cxxRecordDecl(has(cxxRecordDecl(hasName("X")))
/// \code
/// class X {}; // Matches X, because X::X is a class of name X inside X.
/// class Y { class X {}; };
/// class Z { class Y { class X {}; }; }; // Does not match Z.
/// \endcode
///
/// ChildT must be an AST base type.
///
/// Usable as: Any Matcher
/// Note that has is direct matcher, so it also matches things like implicit
/// casts and paren casts. If you are matching with expr then you should
/// probably consider using ignoringParenImpCasts like:
/// has(ignoringParenImpCasts(expr())).
extern const internal::ArgumentAdaptingMatcherFunc<internal::HasMatcher> has;
/// Matches AST nodes that have descendant AST nodes that match the
/// provided matcher.
///
/// Example matches X, Y, Z
/// (matcher = cxxRecordDecl(hasDescendant(cxxRecordDecl(hasName("X")))))
/// \code
/// class X {}; // Matches X, because X::X is a class of name X inside X.
/// class Y { class X {}; };
/// class Z { class Y { class X {}; }; };
/// \endcode
///
/// DescendantT must be an AST base type.
///
/// Usable as: Any Matcher
extern const internal::ArgumentAdaptingMatcherFunc<
internal::HasDescendantMatcher>
hasDescendant;
/// Matches AST nodes that have child AST nodes that match the
/// provided matcher.
///
/// Example matches X, Y, Y::X, Z::Y, Z::Y::X
/// (matcher = cxxRecordDecl(forEach(cxxRecordDecl(hasName("X")))
/// \code
/// class X {};
/// class Y { class X {}; }; // Matches Y, because Y::X is a class of name X
/// // inside Y.
/// class Z { class Y { class X {}; }; }; // Does not match Z.
/// \endcode
///
/// ChildT must be an AST base type.
///
/// As opposed to 'has', 'forEach' will cause a match for each result that
/// matches instead of only on the first one.
///
/// Usable as: Any Matcher
extern const internal::ArgumentAdaptingMatcherFunc<internal::ForEachMatcher>
forEach;
/// Matches AST nodes that have descendant AST nodes that match the
/// provided matcher.
///
/// Example matches X, A, A::X, B, B::C, B::C::X
/// (matcher = cxxRecordDecl(forEachDescendant(cxxRecordDecl(hasName("X")))))
/// \code
/// class X {};
/// class A { class X {}; }; // Matches A, because A::X is a class of name
/// // X inside A.
/// class B { class C { class X {}; }; };
/// \endcode
///
/// DescendantT must be an AST base type.
///
/// As opposed to 'hasDescendant', 'forEachDescendant' will cause a match for
/// each result that matches instead of only on the first one.
///
/// Note: Recursively combined ForEachDescendant can cause many matches:
/// cxxRecordDecl(forEachDescendant(cxxRecordDecl(
/// forEachDescendant(cxxRecordDecl())
/// )))
/// will match 10 times (plus injected class name matches) on:
/// \code
/// class A { class B { class C { class D { class E {}; }; }; }; };
/// \endcode
///
/// Usable as: Any Matcher
extern const internal::ArgumentAdaptingMatcherFunc<
internal::ForEachDescendantMatcher>
forEachDescendant;
/// Matches if the node or any descendant matches.
///
/// Generates results for each match.
///
/// For example, in:
/// \code
/// class A { class B {}; class C {}; };
/// \endcode
/// The matcher:
/// \code
/// cxxRecordDecl(hasName("::A"),
/// findAll(cxxRecordDecl(isDefinition()).bind("m")))
/// \endcode
/// will generate results for \c A, \c B and \c C.
///
/// Usable as: Any Matcher
template <typename T>
internal::Matcher<T> findAll(const internal::Matcher<T> &Matcher) {
return eachOf(Matcher, forEachDescendant(Matcher));
}
/// Matches AST nodes that have a parent that matches the provided
/// matcher.
///
/// Given
/// \code
/// void f() { for (;;) { int x = 42; if (true) { int x = 43; } } }
/// \endcode
/// \c compoundStmt(hasParent(ifStmt())) matches "{ int x = 43; }".
///
/// Usable as: Any Matcher
extern const internal::ArgumentAdaptingMatcherFunc<
internal::HasParentMatcher,
internal::TypeList<Decl, NestedNameSpecifierLoc, Stmt, TypeLoc, Attr>,
internal::TypeList<Decl, NestedNameSpecifierLoc, Stmt, TypeLoc, Attr>>
hasParent;
/// Matches AST nodes that have an ancestor that matches the provided
/// matcher.
///
/// Given
/// \code
/// void f() { if (true) { int x = 42; } }
/// void g() { for (;;) { int x = 43; } }
/// \endcode
/// \c expr(integerLiteral(hasAncestor(ifStmt()))) matches \c 42, but not 43.
///
/// Usable as: Any Matcher
extern const internal::ArgumentAdaptingMatcherFunc<
internal::HasAncestorMatcher,
internal::TypeList<Decl, NestedNameSpecifierLoc, Stmt, TypeLoc, Attr>,
internal::TypeList<Decl, NestedNameSpecifierLoc, Stmt, TypeLoc, Attr>>
hasAncestor;
/// Matches if the provided matcher does not match.
///
/// Example matches Y (matcher = cxxRecordDecl(unless(hasName("X"))))
/// \code
/// class X {};
/// class Y {};
/// \endcode
///
/// Usable as: Any Matcher
extern const internal::VariadicOperatorMatcherFunc<1, 1> unless;
/// Matches a node if the declaration associated with that node
/// matches the given matcher.
///
/// The associated declaration is:
/// - for type nodes, the declaration of the underlying type
/// - for CallExpr, the declaration of the callee
/// - for MemberExpr, the declaration of the referenced member
/// - for CXXConstructExpr, the declaration of the constructor
/// - for CXXNewExpr, the declaration of the operator new
/// - for ObjCIvarExpr, the declaration of the ivar
///
/// For type nodes, hasDeclaration will generally match the declaration of the
/// sugared type. Given
/// \code
/// class X {};
/// typedef X Y;
/// Y y;
/// \endcode
/// in varDecl(hasType(hasDeclaration(decl()))) the decl will match the
/// typedefDecl. A common use case is to match the underlying, desugared type.
/// This can be achieved by using the hasUnqualifiedDesugaredType matcher:
/// \code
/// varDecl(hasType(hasUnqualifiedDesugaredType(
/// recordType(hasDeclaration(decl())))))
/// \endcode
/// In this matcher, the decl will match the CXXRecordDecl of class X.
///
/// Usable as: Matcher<AddrLabelExpr>, Matcher<CallExpr>,
/// Matcher<CXXConstructExpr>, Matcher<CXXNewExpr>, Matcher<DeclRefExpr>,
/// Matcher<EnumType>, Matcher<InjectedClassNameType>, Matcher<LabelStmt>,
/// Matcher<MemberExpr>, Matcher<QualType>, Matcher<RecordType>,
/// Matcher<TagType>, Matcher<TemplateSpecializationType>,
/// Matcher<TemplateTypeParmType>, Matcher<TypedefType>,
/// Matcher<UnresolvedUsingType>
inline internal::PolymorphicMatcher<
internal::HasDeclarationMatcher,
void(internal::HasDeclarationSupportedTypes), internal::Matcher<Decl>>
hasDeclaration(const internal::Matcher<Decl> &InnerMatcher) {
return internal::PolymorphicMatcher<
internal::HasDeclarationMatcher,
void(internal::HasDeclarationSupportedTypes), internal::Matcher<Decl>>(
InnerMatcher);
}
/// Matches a \c NamedDecl whose underlying declaration matches the given
/// matcher.
///
/// Given
/// \code
/// namespace N { template<class T> void f(T t); }
/// template <class T> void g() { using N::f; f(T()); }
/// \endcode
/// \c unresolvedLookupExpr(hasAnyDeclaration(
/// namedDecl(hasUnderlyingDecl(hasName("::N::f")))))
/// matches the use of \c f in \c g() .
AST_MATCHER_P(NamedDecl, hasUnderlyingDecl, internal::Matcher<NamedDecl>,
InnerMatcher) {
const NamedDecl *UnderlyingDecl = Node.getUnderlyingDecl();
return UnderlyingDecl != nullptr &&
InnerMatcher.matches(*UnderlyingDecl, Finder, Builder);
}
/// Matches on the implicit object argument of a member call expression, after
/// stripping off any parentheses or implicit casts.
///
/// Given
/// \code
/// class Y { public: void m(); };
/// Y g();
/// class X : public Y {};
/// void z(Y y, X x) { y.m(); (g()).m(); x.m(); }
/// \endcode
/// cxxMemberCallExpr(on(hasType(cxxRecordDecl(hasName("Y")))))
/// matches `y.m()` and `(g()).m()`.
/// cxxMemberCallExpr(on(hasType(cxxRecordDecl(hasName("X")))))
/// matches `x.m()`.
/// cxxMemberCallExpr(on(callExpr()))
/// matches `(g()).m()`.
///
/// FIXME: Overload to allow directly matching types?
AST_MATCHER_P(CXXMemberCallExpr, on, internal::Matcher<Expr>,
InnerMatcher) {
const Expr *ExprNode = Node.getImplicitObjectArgument()
->IgnoreParenImpCasts();
return (ExprNode != nullptr &&
InnerMatcher.matches(*ExprNode, Finder, Builder));
}
/// Matches on the receiver of an ObjectiveC Message expression.
///
/// Example
/// matcher = objCMessageExpr(hasReceiverType(asString("UIWebView *")));
/// matches the [webView ...] message invocation.
/// \code
/// NSString *webViewJavaScript = ...
/// UIWebView *webView = ...
/// [webView stringByEvaluatingJavaScriptFromString:webViewJavascript];
/// \endcode
AST_MATCHER_P(ObjCMessageExpr, hasReceiverType, internal::Matcher<QualType>,
InnerMatcher) {
const QualType TypeDecl = Node.getReceiverType();
return InnerMatcher.matches(TypeDecl, Finder, Builder);
}
/// Returns true when the Objective-C method declaration is a class method.
///
/// Example
/// matcher = objcMethodDecl(isClassMethod())
/// matches
/// \code
/// @interface I + (void)foo; @end
/// \endcode
/// but not
/// \code
/// @interface I - (void)bar; @end
/// \endcode
AST_MATCHER(ObjCMethodDecl, isClassMethod) {
return Node.isClassMethod();
}
/// Returns true when the Objective-C method declaration is an instance method.
///
/// Example
/// matcher = objcMethodDecl(isInstanceMethod())
/// matches
/// \code
/// @interface I - (void)bar; @end
/// \endcode
/// but not
/// \code
/// @interface I + (void)foo; @end
/// \endcode
AST_MATCHER(ObjCMethodDecl, isInstanceMethod) {
return Node.isInstanceMethod();
}
/// Returns true when the Objective-C message is sent to a class.
///
/// Example
/// matcher = objcMessageExpr(isClassMessage())
/// matches
/// \code
/// [NSString stringWithFormat:@"format"];
/// \endcode
/// but not
/// \code
/// NSString *x = @"hello";
/// [x containsString:@"h"];
/// \endcode
AST_MATCHER(ObjCMessageExpr, isClassMessage) {
return Node.isClassMessage();
}
/// Returns true when the Objective-C message is sent to an instance.
///
/// Example
/// matcher = objcMessageExpr(isInstanceMessage())
/// matches
/// \code
/// NSString *x = @"hello";
/// [x containsString:@"h"];
/// \endcode
/// but not
/// \code
/// [NSString stringWithFormat:@"format"];
/// \endcode
AST_MATCHER(ObjCMessageExpr, isInstanceMessage) {
return Node.isInstanceMessage();
}
/// Matches if the Objective-C message is sent to an instance,
/// and the inner matcher matches on that instance.
///
/// For example the method call in
/// \code
/// NSString *x = @"hello";
/// [x containsString:@"h"];
/// \endcode
/// is matched by
/// objcMessageExpr(hasReceiver(declRefExpr(to(varDecl(hasName("x"))))))
AST_MATCHER_P(ObjCMessageExpr, hasReceiver, internal::Matcher<Expr>,
InnerMatcher) {
const Expr *ReceiverNode = Node.getInstanceReceiver();
return (ReceiverNode != nullptr &&
InnerMatcher.matches(*ReceiverNode->IgnoreParenImpCasts(), Finder,
Builder));
}
/// Matches when BaseName == Selector.getAsString()
///
/// matcher = objCMessageExpr(hasSelector("loadHTMLString:baseURL:"));
/// matches the outer message expr in the code below, but NOT the message
/// invocation for self.bodyView.
/// \code
/// [self.bodyView loadHTMLString:html baseURL:NULL];
/// \endcode
AST_MATCHER_P(ObjCMessageExpr, hasSelector, std::string, BaseName) {
Selector Sel = Node.getSelector();
return BaseName == Sel.getAsString();
}
/// Matches when at least one of the supplied string equals to the
/// Selector.getAsString()
///
/// matcher = objCMessageExpr(hasSelector("methodA:", "methodB:"));
/// matches both of the expressions below:
/// \code
/// [myObj methodA:argA];
/// [myObj methodB:argB];
/// \endcode
extern const internal::VariadicFunction<internal::Matcher<ObjCMessageExpr>,
StringRef,
internal::hasAnySelectorFunc>
hasAnySelector;
/// Matches ObjC selectors whose name contains
/// a substring matched by the given RegExp.
/// matcher = objCMessageExpr(matchesSelector("loadHTMLString\:baseURL?"));
/// matches the outer message expr in the code below, but NOT the message
/// invocation for self.bodyView.
/// \code
/// [self.bodyView loadHTMLString:html baseURL:NULL];
/// \endcode
AST_MATCHER_REGEX(ObjCMessageExpr, matchesSelector, RegExp) {
std::string SelectorString = Node.getSelector().getAsString();
return RegExp->match(SelectorString);
}
/// Matches when the selector is the empty selector
///
/// Matches only when the selector of the objCMessageExpr is NULL. This may
/// represent an error condition in the tree!
AST_MATCHER(ObjCMessageExpr, hasNullSelector) {
return Node.getSelector().isNull();
}
/// Matches when the selector is a Unary Selector
///
/// matcher = objCMessageExpr(matchesSelector(hasUnarySelector());
/// matches self.bodyView in the code below, but NOT the outer message
/// invocation of "loadHTMLString:baseURL:".
/// \code
/// [self.bodyView loadHTMLString:html baseURL:NULL];
/// \endcode
AST_MATCHER(ObjCMessageExpr, hasUnarySelector) {
return Node.getSelector().isUnarySelector();
}
/// Matches when the selector is a keyword selector
///
/// objCMessageExpr(hasKeywordSelector()) matches the generated setFrame
/// message expression in
///
/// \code
/// UIWebView *webView = ...;
/// CGRect bodyFrame = webView.frame;
/// bodyFrame.size.height = self.bodyContentHeight;
/// webView.frame = bodyFrame;
/// // ^---- matches here
/// \endcode
AST_MATCHER(ObjCMessageExpr, hasKeywordSelector) {
return Node.getSelector().isKeywordSelector();
}
/// Matches when the selector has the specified number of arguments
///
/// matcher = objCMessageExpr(numSelectorArgs(0));
/// matches self.bodyView in the code below
///
/// matcher = objCMessageExpr(numSelectorArgs(2));
/// matches the invocation of "loadHTMLString:baseURL:" but not that
/// of self.bodyView
/// \code
/// [self.bodyView loadHTMLString:html baseURL:NULL];
/// \endcode
AST_MATCHER_P(ObjCMessageExpr, numSelectorArgs, unsigned, N) {
return Node.getSelector().getNumArgs() == N;
}
/// Matches if the call expression's callee expression matches.
///
/// Given
/// \code
/// class Y { void x() { this->x(); x(); Y y; y.x(); } };
/// void f() { f(); }
/// \endcode
/// callExpr(callee(expr()))
/// matches this->x(), x(), y.x(), f()
/// with callee(...)
/// matching this->x, x, y.x, f respectively
///
/// Note: Callee cannot take the more general internal::Matcher<Expr>
/// because this introduces ambiguous overloads with calls to Callee taking a
/// internal::Matcher<Decl>, as the matcher hierarchy is purely
/// implemented in terms of implicit casts.
AST_MATCHER_P(CallExpr, callee, internal::Matcher<Stmt>,
InnerMatcher) {
const Expr *ExprNode = Node.getCallee();
return (ExprNode != nullptr &&
InnerMatcher.matches(*ExprNode, Finder, Builder));
}
/// Matches 1) if the call expression's callee's declaration matches the
/// given matcher; or 2) if the Obj-C message expression's callee's method
/// declaration matches the given matcher.
///
/// Example matches y.x() (matcher = callExpr(callee(
/// cxxMethodDecl(hasName("x")))))
/// \code
/// class Y { public: void x(); };
/// void z() { Y y; y.x(); }
/// \endcode
///
/// Example 2. Matches [I foo] with
/// objcMessageExpr(callee(objcMethodDecl(hasName("foo"))))
///
/// \code
/// @interface I: NSObject
/// +(void)foo;
/// @end
/// ...
/// [I foo]
/// \endcode
AST_POLYMORPHIC_MATCHER_P_OVERLOAD(
callee, AST_POLYMORPHIC_SUPPORTED_TYPES(ObjCMessageExpr, CallExpr),
internal::Matcher<Decl>, InnerMatcher, 1) {
if (const auto *CallNode = dyn_cast<CallExpr>(&Node))
return callExpr(hasDeclaration(InnerMatcher))
.matches(Node, Finder, Builder);
else {
// The dynamic cast below is guaranteed to succeed as there are only 2
// supported return types.
const auto *MsgNode = cast<ObjCMessageExpr>(&Node);
const Decl *DeclNode = MsgNode->getMethodDecl();
return (DeclNode != nullptr &&
InnerMatcher.matches(*DeclNode, Finder, Builder));
}
}
/// Matches if the expression's or declaration's type matches a type
/// matcher.
///
/// Example matches x (matcher = expr(hasType(cxxRecordDecl(hasName("X")))))
/// and z (matcher = varDecl(hasType(cxxRecordDecl(hasName("X")))))
/// and U (matcher = typedefDecl(hasType(asString("int")))
/// and friend class X (matcher = friendDecl(hasType("X"))
/// and public virtual X (matcher = cxxBaseSpecifier(hasType(
/// asString("class X")))
/// \code
/// class X {};
/// void y(X &x) { x; X z; }
/// typedef int U;
/// class Y { friend class X; };
/// class Z : public virtual X {};
/// \endcode
AST_POLYMORPHIC_MATCHER_P_OVERLOAD(
hasType,
AST_POLYMORPHIC_SUPPORTED_TYPES(Expr, FriendDecl, TypedefNameDecl,
ValueDecl, CXXBaseSpecifier),
internal::Matcher<QualType>, InnerMatcher, 0) {
QualType QT = internal::getUnderlyingType(Node);
if (!QT.isNull())
return InnerMatcher.matches(QT, Finder, Builder);
return false;
}
/// Overloaded to match the declaration of the expression's or value
/// declaration's type.
///
/// In case of a value declaration (for example a variable declaration),
/// this resolves one layer of indirection. For example, in the value
/// declaration "X x;", cxxRecordDecl(hasName("X")) matches the declaration of
/// X, while varDecl(hasType(cxxRecordDecl(hasName("X")))) matches the
/// declaration of x.
///
/// Example matches x (matcher = expr(hasType(cxxRecordDecl(hasName("X")))))
/// and z (matcher = varDecl(hasType(cxxRecordDecl(hasName("X")))))
/// and friend class X (matcher = friendDecl(hasType("X"))
/// and public virtual X (matcher = cxxBaseSpecifier(hasType(
/// cxxRecordDecl(hasName("X"))))
/// \code
/// class X {};
/// void y(X &x) { x; X z; }
/// class Y { friend class X; };
/// class Z : public virtual X {};
/// \endcode
///
/// Example matches class Derived
/// (matcher = cxxRecordDecl(hasAnyBase(hasType(cxxRecordDecl(hasName("Base"))))))
/// \code
/// class Base {};
/// class Derived : Base {};
/// \endcode
///
/// Usable as: Matcher<Expr>, Matcher<FriendDecl>, Matcher<ValueDecl>,
/// Matcher<CXXBaseSpecifier>
AST_POLYMORPHIC_MATCHER_P_OVERLOAD(
hasType,
AST_POLYMORPHIC_SUPPORTED_TYPES(Expr, FriendDecl, ValueDecl,
CXXBaseSpecifier),
internal::Matcher<Decl>, InnerMatcher, 1) {
QualType QT = internal::getUnderlyingType(Node);
if (!QT.isNull())
return qualType(hasDeclaration(InnerMatcher)).matches(QT, Finder, Builder);
return false;
}
/// Matches if the type location of a node matches the inner matcher.
///
/// Examples:
/// \code
/// int x;
/// \endcode
/// declaratorDecl(hasTypeLoc(loc(asString("int"))))
/// matches int x
///
/// \code
/// auto x = int(3);
/// \code
/// cxxTemporaryObjectExpr(hasTypeLoc(loc(asString("int"))))
/// matches int(3)
///
/// \code
/// struct Foo { Foo(int, int); };
/// auto x = Foo(1, 2);
/// \code
/// cxxFunctionalCastExpr(hasTypeLoc(loc(asString("struct Foo"))))
/// matches Foo(1, 2)
///
/// Usable as: Matcher<BlockDecl>, Matcher<CXXBaseSpecifier>,
/// Matcher<CXXCtorInitializer>, Matcher<CXXFunctionalCastExpr>,
/// Matcher<CXXNewExpr>, Matcher<CXXTemporaryObjectExpr>,
/// Matcher<CXXUnresolvedConstructExpr>,
/// Matcher<ClassTemplateSpecializationDecl>, Matcher<CompoundLiteralExpr>,
/// Matcher<DeclaratorDecl>, Matcher<ExplicitCastExpr>,
/// Matcher<ObjCPropertyDecl>, Matcher<TemplateArgumentLoc>,
/// Matcher<TypedefNameDecl>
AST_POLYMORPHIC_MATCHER_P(
hasTypeLoc,
AST_POLYMORPHIC_SUPPORTED_TYPES(
BlockDecl, CXXBaseSpecifier, CXXCtorInitializer, CXXFunctionalCastExpr,
CXXNewExpr, CXXTemporaryObjectExpr, CXXUnresolvedConstructExpr,
ClassTemplateSpecializationDecl, CompoundLiteralExpr, DeclaratorDecl,
ExplicitCastExpr, ObjCPropertyDecl, TemplateArgumentLoc,
TypedefNameDecl),
internal::Matcher<TypeLoc>, Inner) {
TypeSourceInfo *source = internal::GetTypeSourceInfo(Node);
if (source == nullptr) {
// This happens for example for implicit destructors.
return false;
}
return Inner.matches(source->getTypeLoc(), Finder, Builder);
}
/// Matches if the matched type is represented by the given string.
///
/// Given
/// \code
/// class Y { public: void x(); };
/// void z() { Y* y; y->x(); }
/// \endcode
/// cxxMemberCallExpr(on(hasType(asString("class Y *"))))
/// matches y->x()
AST_MATCHER_P(QualType, asString, std::string, Name) {
return Name == Node.getAsString();
}
/// Matches if the matched type is a pointer type and the pointee type
/// matches the specified matcher.
///
/// Example matches y->x()
/// (matcher = cxxMemberCallExpr(on(hasType(pointsTo
/// cxxRecordDecl(hasName("Y")))))))
/// \code
/// class Y { public: void x(); };
/// void z() { Y *y; y->x(); }
/// \endcode
AST_MATCHER_P(
QualType, pointsTo, internal::Matcher<QualType>,
InnerMatcher) {
return (!Node.isNull() && Node->isAnyPointerType() &&
InnerMatcher.matches(Node->getPointeeType(), Finder, Builder));
}
/// Overloaded to match the pointee type's declaration.
AST_MATCHER_P_OVERLOAD(QualType, pointsTo, internal::Matcher<Decl>,
InnerMatcher, 1) {
return pointsTo(qualType(hasDeclaration(InnerMatcher)))
.matches(Node, Finder, Builder);
}
/// Matches if the matched type matches the unqualified desugared
/// type of the matched node.
///
/// For example, in:
/// \code
/// class A {};
/// using B = A;
/// \endcode
/// The matcher type(hasUnqualifiedDesugaredType(recordType())) matches
/// both B and A.
AST_MATCHER_P(Type, hasUnqualifiedDesugaredType, internal::Matcher<Type>,
InnerMatcher) {
return InnerMatcher.matches(*Node.getUnqualifiedDesugaredType(), Finder,
Builder);
}
/// Matches if the matched type is a reference type and the referenced
/// type matches the specified matcher.
///
/// Example matches X &x and const X &y
/// (matcher = varDecl(hasType(references(cxxRecordDecl(hasName("X"))))))
/// \code
/// class X {
/// void a(X b) {
/// X &x = b;
/// const X &y = b;
/// }
/// };
/// \endcode
AST_MATCHER_P(QualType, references, internal::Matcher<QualType>,
InnerMatcher) {
return (!Node.isNull() && Node->isReferenceType() &&
InnerMatcher.matches(Node->getPointeeType(), Finder, Builder));
}
/// Matches QualTypes whose canonical type matches InnerMatcher.
///
/// Given:
/// \code
/// typedef int &int_ref;
/// int a;
/// int_ref b = a;
/// \endcode
///
/// \c varDecl(hasType(qualType(referenceType()))))) will not match the
/// declaration of b but \c
/// varDecl(hasType(qualType(hasCanonicalType(referenceType())))))) does.
AST_MATCHER_P(QualType, hasCanonicalType, internal::Matcher<QualType>,
InnerMatcher) {
if (Node.isNull())
return false;
return InnerMatcher.matches(Node.getCanonicalType(), Finder, Builder);
}
/// Overloaded to match the referenced type's declaration.
AST_MATCHER_P_OVERLOAD(QualType, references, internal::Matcher<Decl>,
InnerMatcher, 1) {
return references(qualType(hasDeclaration(InnerMatcher)))
.matches(Node, Finder, Builder);
}
/// Matches on the implicit object argument of a member call expression. Unlike
/// `on`, matches the argument directly without stripping away anything.
///
/// Given
/// \code
/// class Y { public: void m(); };
/// Y g();
/// class X : public Y { void g(); };
/// void z(Y y, X x) { y.m(); x.m(); x.g(); (g()).m(); }
/// \endcode
/// cxxMemberCallExpr(onImplicitObjectArgument(hasType(
/// cxxRecordDecl(hasName("Y")))))
/// matches `y.m()`, `x.m()` and (g()).m(), but not `x.g()`.
/// cxxMemberCallExpr(on(callExpr()))
/// does not match `(g()).m()`, because the parens are not ignored.
///
/// FIXME: Overload to allow directly matching types?
AST_MATCHER_P(CXXMemberCallExpr, onImplicitObjectArgument,
internal::Matcher<Expr>, InnerMatcher) {
const Expr *ExprNode = Node.getImplicitObjectArgument();
return (ExprNode != nullptr &&
InnerMatcher.matches(*ExprNode, Finder, Builder));
}
/// Matches if the type of the expression's implicit object argument either
/// matches the InnerMatcher, or is a pointer to a type that matches the
/// InnerMatcher.
///
/// Given
/// \code
/// class Y { public: void m(); };
/// class X : public Y { void g(); };
/// void z() { Y y; y.m(); Y *p; p->m(); X x; x.m(); x.g(); }
/// \endcode
/// cxxMemberCallExpr(thisPointerType(hasDeclaration(
/// cxxRecordDecl(hasName("Y")))))
/// matches `y.m()`, `p->m()` and `x.m()`.
/// cxxMemberCallExpr(thisPointerType(hasDeclaration(
/// cxxRecordDecl(hasName("X")))))
/// matches `x.g()`.
AST_MATCHER_P_OVERLOAD(CXXMemberCallExpr, thisPointerType,
internal::Matcher<QualType>, InnerMatcher, 0) {
return onImplicitObjectArgument(
anyOf(hasType(InnerMatcher), hasType(pointsTo(InnerMatcher))))
.matches(Node, Finder, Builder);
}
/// Overloaded to match the type's declaration.
AST_MATCHER_P_OVERLOAD(CXXMemberCallExpr, thisPointerType,
internal::Matcher<Decl>, InnerMatcher, 1) {
return onImplicitObjectArgument(
anyOf(hasType(InnerMatcher), hasType(pointsTo(InnerMatcher))))
.matches(Node, Finder, Builder);
}
/// Matches a DeclRefExpr that refers to a declaration that matches the
/// specified matcher.
///
/// Example matches x in if(x)
/// (matcher = declRefExpr(to(varDecl(hasName("x")))))
/// \code
/// bool x;
/// if (x) {}
/// \endcode
AST_MATCHER_P(DeclRefExpr, to, internal::Matcher<Decl>,
InnerMatcher) {
const Decl *DeclNode = Node.getDecl();
return (DeclNode != nullptr &&
InnerMatcher.matches(*DeclNode, Finder, Builder));
}
/// Matches if a node refers to a declaration through a specific
/// using shadow declaration.
///
/// Examples:
/// \code
/// namespace a { int f(); }
/// using a::f;
/// int x = f();
/// \endcode
/// declRefExpr(throughUsingDecl(anything()))
/// matches \c f
///
/// \code
/// namespace a { class X{}; }
/// using a::X;
/// X x;
/// \code
/// typeLoc(loc(usingType(throughUsingDecl(anything()))))
/// matches \c X
///
/// Usable as: Matcher<DeclRefExpr>, Matcher<UsingType>
AST_POLYMORPHIC_MATCHER_P(throughUsingDecl,
AST_POLYMORPHIC_SUPPORTED_TYPES(DeclRefExpr,
UsingType),
internal::Matcher<UsingShadowDecl>, Inner) {
const NamedDecl *FoundDecl = Node.getFoundDecl();
if (const UsingShadowDecl *UsingDecl = dyn_cast<UsingShadowDecl>(FoundDecl))
return Inner.matches(*UsingDecl, Finder, Builder);
return false;
}
/// Matches an \c OverloadExpr if any of the declarations in the set of
/// overloads matches the given matcher.
///
/// Given
/// \code
/// template <typename T> void foo(T);
/// template <typename T> void bar(T);
/// template <typename T> void baz(T t) {
/// foo(t);
/// bar(t);
/// }
/// \endcode
/// unresolvedLookupExpr(hasAnyDeclaration(
/// functionTemplateDecl(hasName("foo"))))
/// matches \c foo in \c foo(t); but not \c bar in \c bar(t);
AST_MATCHER_P(OverloadExpr, hasAnyDeclaration, internal::Matcher<Decl>,
InnerMatcher) {
return matchesFirstInPointerRange(InnerMatcher, Node.decls_begin(),
Node.decls_end(), Finder,
Builder) != Node.decls_end();
}
/// Matches the Decl of a DeclStmt which has a single declaration.
///
/// Given
/// \code
/// int a, b;
/// int c;
/// \endcode
/// declStmt(hasSingleDecl(anything()))
/// matches 'int c;' but not 'int a, b;'.
AST_MATCHER_P(DeclStmt, hasSingleDecl, internal::Matcher<Decl>, InnerMatcher) {
if (Node.isSingleDecl()) {
const Decl *FoundDecl = Node.getSingleDecl();
return InnerMatcher.matches(*FoundDecl, Finder, Builder);
}
return false;
}
/// Matches a variable declaration that has an initializer expression
/// that matches the given matcher.
///
/// Example matches x (matcher = varDecl(hasInitializer(callExpr())))
/// \code
/// bool y() { return true; }
/// bool x = y();
/// \endcode
AST_MATCHER_P(
VarDecl, hasInitializer, internal::Matcher<Expr>,
InnerMatcher) {
const Expr *Initializer = Node.getAnyInitializer();
return (Initializer != nullptr &&
InnerMatcher.matches(*Initializer, Finder, Builder));
}
/// Matches a variable serving as the implicit variable for a lambda init-
/// capture.
///
/// Example matches x (matcher = varDecl(isInitCapture()))
/// \code
/// auto f = [x=3]() { return x; };
/// \endcode
AST_MATCHER(VarDecl, isInitCapture) { return Node.isInitCapture(); }
/// Matches each lambda capture in a lambda expression.
///
/// Given
/// \code
/// int main() {
/// int x, y;
/// float z;
/// auto f = [=]() { return x + y + z; };
/// }
/// \endcode
/// lambdaExpr(forEachLambdaCapture(
/// lambdaCapture(capturesVar(varDecl(hasType(isInteger()))))))
/// will trigger two matches, binding for 'x' and 'y' respectively.
AST_MATCHER_P(LambdaExpr, forEachLambdaCapture,
internal::Matcher<LambdaCapture>, InnerMatcher) {
BoundNodesTreeBuilder Result;
bool Matched = false;
for (const auto &Capture : Node.captures()) {
if (Finder->isTraversalIgnoringImplicitNodes() && Capture.isImplicit())
continue;
BoundNodesTreeBuilder CaptureBuilder(*Builder);
if (InnerMatcher.matches(Capture, Finder, &CaptureBuilder)) {
Matched = true;
Result.addMatch(CaptureBuilder);
}
}
*Builder = std::move(Result);
return Matched;
}
/// \brief Matches a static variable with local scope.
///
/// Example matches y (matcher = varDecl(isStaticLocal()))
/// \code
/// void f() {
/// int x;
/// static int y;
/// }
/// static int z;
/// \endcode
AST_MATCHER(VarDecl, isStaticLocal) {
return Node.isStaticLocal();
}
/// Matches a variable declaration that has function scope and is a
/// non-static local variable.
///
/// Example matches x (matcher = varDecl(hasLocalStorage())
/// \code
/// void f() {
/// int x;
/// static int y;
/// }
/// int z;
/// \endcode
AST_MATCHER(VarDecl, hasLocalStorage) {
return Node.hasLocalStorage();
}
/// Matches a variable declaration that does not have local storage.
///
/// Example matches y and z (matcher = varDecl(hasGlobalStorage())
/// \code
/// void f() {
/// int x;
/// static int y;
/// }
/// int z;
/// \endcode
AST_MATCHER(VarDecl, hasGlobalStorage) {
return Node.hasGlobalStorage();
}
/// Matches a variable declaration that has automatic storage duration.
///
/// Example matches x, but not y, z, or a.
/// (matcher = varDecl(hasAutomaticStorageDuration())
/// \code
/// void f() {
/// int x;
/// static int y;
/// thread_local int z;
/// }
/// int a;
/// \endcode
AST_MATCHER(VarDecl, hasAutomaticStorageDuration) {
return Node.getStorageDuration() == SD_Automatic;
}
/// Matches a variable declaration that has static storage duration.
/// It includes the variable declared at namespace scope and those declared
/// with "static" and "extern" storage class specifiers.
///
/// \code
/// void f() {
/// int x;
/// static int y;
/// thread_local int z;
/// }
/// int a;
/// static int b;
/// extern int c;
/// varDecl(hasStaticStorageDuration())
/// matches the function declaration y, a, b and c.
/// \endcode
AST_MATCHER(VarDecl, hasStaticStorageDuration) {
return Node.getStorageDuration() == SD_Static;
}
/// Matches a variable declaration that has thread storage duration.
///
/// Example matches z, but not x, z, or a.
/// (matcher = varDecl(hasThreadStorageDuration())
/// \code
/// void f() {
/// int x;
/// static int y;
/// thread_local int z;
/// }
/// int a;
/// \endcode
AST_MATCHER(VarDecl, hasThreadStorageDuration) {
return Node.getStorageDuration() == SD_Thread;
}
/// Matches a variable declaration that is an exception variable from
/// a C++ catch block, or an Objective-C \@catch statement.
///
/// Example matches x (matcher = varDecl(isExceptionVariable())
/// \code
/// void f(int y) {
/// try {
/// } catch (int x) {
/// }
/// }
/// \endcode
AST_MATCHER(VarDecl, isExceptionVariable) {
return Node.isExceptionVariable();
}
/// Checks that a call expression or a constructor call expression has
/// a specific number of arguments (including absent default arguments).
///
/// Example matches f(0, 0) (matcher = callExpr(argumentCountIs(2)))
/// \code
/// void f(int x, int y);
/// f(0, 0);
/// \endcode
AST_POLYMORPHIC_MATCHER_P(argumentCountIs,
AST_POLYMORPHIC_SUPPORTED_TYPES(
CallExpr, CXXConstructExpr,
CXXUnresolvedConstructExpr, ObjCMessageExpr),
unsigned, N) {
unsigned NumArgs = Node.getNumArgs();
if (!Finder->isTraversalIgnoringImplicitNodes())
return NumArgs == N;
while (NumArgs) {
if (!isa<CXXDefaultArgExpr>(Node.getArg(NumArgs - 1)))
break;
--NumArgs;
}
return NumArgs == N;
}
/// Matches the n'th argument of a call expression or a constructor
/// call expression.
///
/// Example matches y in x(y)
/// (matcher = callExpr(hasArgument(0, declRefExpr())))
/// \code
/// void x(int) { int y; x(y); }
/// \endcode
AST_POLYMORPHIC_MATCHER_P2(hasArgument,
AST_POLYMORPHIC_SUPPORTED_TYPES(
CallExpr, CXXConstructExpr,
CXXUnresolvedConstructExpr, ObjCMessageExpr),
unsigned, N, internal::Matcher<Expr>, InnerMatcher) {
if (N >= Node.getNumArgs())
return false;
const Expr *Arg = Node.getArg(N);
if (Finder->isTraversalIgnoringImplicitNodes() && isa<CXXDefaultArgExpr>(Arg))
return false;
return InnerMatcher.matches(*Arg->IgnoreParenImpCasts(), Finder, Builder);
}
/// Matches the n'th item of an initializer list expression.
///
/// Example matches y.
/// (matcher = initListExpr(hasInit(0, expr())))
/// \code
/// int x{y}.
/// \endcode
AST_MATCHER_P2(InitListExpr, hasInit, unsigned, N,
ast_matchers::internal::Matcher<Expr>, InnerMatcher) {
return N < Node.getNumInits() &&
InnerMatcher.matches(*Node.getInit(N), Finder, Builder);
}
/// Matches declaration statements that contain a specific number of
/// declarations.
///
/// Example: Given
/// \code
/// int a, b;
/// int c;
/// int d = 2, e;
/// \endcode
/// declCountIs(2)
/// matches 'int a, b;' and 'int d = 2, e;', but not 'int c;'.
AST_MATCHER_P(DeclStmt, declCountIs, unsigned, N) {
return std::distance(Node.decl_begin(), Node.decl_end()) == (ptrdiff_t)N;
}
/// Matches the n'th declaration of a declaration statement.
///
/// Note that this does not work for global declarations because the AST
/// breaks up multiple-declaration DeclStmt's into multiple single-declaration
/// DeclStmt's.
/// Example: Given non-global declarations
/// \code
/// int a, b = 0;
/// int c;
/// int d = 2, e;
/// \endcode
/// declStmt(containsDeclaration(
/// 0, varDecl(hasInitializer(anything()))))
/// matches only 'int d = 2, e;', and
/// declStmt(containsDeclaration(1, varDecl()))
/// \code
/// matches 'int a, b = 0' as well as 'int d = 2, e;'
/// but 'int c;' is not matched.
/// \endcode
AST_MATCHER_P2(DeclStmt, containsDeclaration, unsigned, N,
internal::Matcher<Decl>, InnerMatcher) {
const unsigned NumDecls = std::distance(Node.decl_begin(), Node.decl_end());
if (N >= NumDecls)
return false;
DeclStmt::const_decl_iterator Iterator = Node.decl_begin();
std::advance(Iterator, N);
return InnerMatcher.matches(**Iterator, Finder, Builder);
}
/// Matches a C++ catch statement that has a catch-all handler.
///
/// Given
/// \code
/// try {
/// // ...
/// } catch (int) {
/// // ...
/// } catch (...) {
/// // ...
/// }
/// \endcode
/// cxxCatchStmt(isCatchAll()) matches catch(...) but not catch(int).
AST_MATCHER(CXXCatchStmt, isCatchAll) {
return Node.getExceptionDecl() == nullptr;
}
/// Matches a constructor initializer.
///
/// Given
/// \code
/// struct Foo {
/// Foo() : foo_(1) { }
/// int foo_;
/// };
/// \endcode
/// cxxRecordDecl(has(cxxConstructorDecl(
/// hasAnyConstructorInitializer(anything())
/// )))
/// record matches Foo, hasAnyConstructorInitializer matches foo_(1)
AST_MATCHER_P(CXXConstructorDecl, hasAnyConstructorInitializer,
internal::Matcher<CXXCtorInitializer>, InnerMatcher) {
auto MatchIt = matchesFirstInPointerRange(InnerMatcher, Node.init_begin(),
Node.init_end(), Finder, Builder);
if (MatchIt == Node.init_end())
return false;
return (*MatchIt)->isWritten() || !Finder->isTraversalIgnoringImplicitNodes();
}
/// Matches the field declaration of a constructor initializer.
///
/// Given
/// \code
/// struct Foo {
/// Foo() : foo_(1) { }
/// int foo_;
/// };
/// \endcode
/// cxxRecordDecl(has(cxxConstructorDecl(hasAnyConstructorInitializer(
/// forField(hasName("foo_"))))))
/// matches Foo
/// with forField matching foo_
AST_MATCHER_P(CXXCtorInitializer, forField,
internal::Matcher<FieldDecl>, InnerMatcher) {
const FieldDecl *NodeAsDecl = Node.getAnyMember();
return (NodeAsDecl != nullptr &&
InnerMatcher.matches(*NodeAsDecl, Finder, Builder));
}
/// Matches the initializer expression of a constructor initializer.
///
/// Given
/// \code
/// struct Foo {
/// Foo() : foo_(1) { }
/// int foo_;
/// };
/// \endcode
/// cxxRecordDecl(has(cxxConstructorDecl(hasAnyConstructorInitializer(
/// withInitializer(integerLiteral(equals(1)))))))
/// matches Foo
/// with withInitializer matching (1)
AST_MATCHER_P(CXXCtorInitializer, withInitializer,
internal::Matcher<Expr>, InnerMatcher) {
const Expr* NodeAsExpr = Node.getInit();
return (NodeAsExpr != nullptr &&
InnerMatcher.matches(*NodeAsExpr, Finder, Builder));
}
/// Matches a constructor initializer if it is explicitly written in
/// code (as opposed to implicitly added by the compiler).
///
/// Given
/// \code
/// struct Foo {
/// Foo() { }
/// Foo(int) : foo_("A") { }
/// string foo_;
/// };
/// \endcode
/// cxxConstructorDecl(hasAnyConstructorInitializer(isWritten()))
/// will match Foo(int), but not Foo()
AST_MATCHER(CXXCtorInitializer, isWritten) {
return Node.isWritten();
}
/// Matches a constructor initializer if it is initializing a base, as
/// opposed to a member.
///
/// Given
/// \code
/// struct B {};
/// struct D : B {
/// int I;
/// D(int i) : I(i) {}
/// };
/// struct E : B {
/// E() : B() {}
/// };
/// \endcode
/// cxxConstructorDecl(hasAnyConstructorInitializer(isBaseInitializer()))
/// will match E(), but not match D(int).
AST_MATCHER(CXXCtorInitializer, isBaseInitializer) {
return Node.isBaseInitializer();
}
/// Matches a constructor initializer if it is initializing a member, as
/// opposed to a base.
///
/// Given
/// \code
/// struct B {};
/// struct D : B {
/// int I;
/// D(int i) : I(i) {}
/// };
/// struct E : B {
/// E() : B() {}
/// };
/// \endcode
/// cxxConstructorDecl(hasAnyConstructorInitializer(isMemberInitializer()))
/// will match D(int), but not match E().
AST_MATCHER(CXXCtorInitializer, isMemberInitializer) {
return Node.isMemberInitializer();
}
/// Matches any argument of a call expression or a constructor call
/// expression, or an ObjC-message-send expression.
///
/// Given
/// \code
/// void x(int, int, int) { int y; x(1, y, 42); }
/// \endcode
/// callExpr(hasAnyArgument(declRefExpr()))
/// matches x(1, y, 42)
/// with hasAnyArgument(...)
/// matching y
///
/// For ObjectiveC, given
/// \code
/// @interface I - (void) f:(int) y; @end
/// void foo(I *i) { [i f:12]; }
/// \endcode
/// objcMessageExpr(hasAnyArgument(integerLiteral(equals(12))))
/// matches [i f:12]
AST_POLYMORPHIC_MATCHER_P(hasAnyArgument,
AST_POLYMORPHIC_SUPPORTED_TYPES(
CallExpr, CXXConstructExpr,
CXXUnresolvedConstructExpr, ObjCMessageExpr),
internal::Matcher<Expr>, InnerMatcher) {
for (const Expr *Arg : Node.arguments()) {
if (Finder->isTraversalIgnoringImplicitNodes() &&
isa<CXXDefaultArgExpr>(Arg))
break;
BoundNodesTreeBuilder Result(*Builder);
if (InnerMatcher.matches(*Arg, Finder, &Result)) {
*Builder = std::move(Result);
return true;
}
}
return false;
}
/// Matches lambda captures.
///
/// Given
/// \code
/// int main() {
/// int x;
/// auto f = [x](){};
/// auto g = [x = 1](){};
/// }
/// \endcode
/// In the matcher `lambdaExpr(hasAnyCapture(lambdaCapture()))`,
/// `lambdaCapture()` matches `x` and `x=1`.
extern const internal::VariadicAllOfMatcher<LambdaCapture> lambdaCapture;
/// Matches any capture in a lambda expression.
///
/// Given
/// \code
/// void foo() {
/// int t = 5;
/// auto f = [=](){ return t; };
/// }
/// \endcode
/// lambdaExpr(hasAnyCapture(lambdaCapture())) and
/// lambdaExpr(hasAnyCapture(lambdaCapture(refersToVarDecl(hasName("t")))))
/// both match `[=](){ return t; }`.
AST_MATCHER_P(LambdaExpr, hasAnyCapture, internal::Matcher<LambdaCapture>,
InnerMatcher) {
for (const LambdaCapture &Capture : Node.captures()) {
clang::ast_matchers::internal::BoundNodesTreeBuilder Result(*Builder);
if (InnerMatcher.matches(Capture, Finder, &Result)) {
*Builder = std::move(Result);
return true;
}
}
return false;
}
/// Matches a `LambdaCapture` that refers to the specified `VarDecl`. The
/// `VarDecl` can be a separate variable that is captured by value or
/// reference, or a synthesized variable if the capture has an initializer.
///
/// Given
/// \code
/// void foo() {
/// int x;
/// auto f = [x](){};
/// auto g = [x = 1](){};
/// }
/// \endcode
/// In the matcher
/// lambdaExpr(hasAnyCapture(lambdaCapture(capturesVar(hasName("x")))),
/// capturesVar(hasName("x")) matches `x` and `x = 1`.
AST_MATCHER_P(LambdaCapture, capturesVar, internal::Matcher<VarDecl>,
InnerMatcher) {
auto *capturedVar = Node.getCapturedVar();
return capturedVar && InnerMatcher.matches(*capturedVar, Finder, Builder);
}
/// Matches a `LambdaCapture` that refers to 'this'.
///
/// Given
/// \code
/// class C {
/// int cc;
/// int f() {
/// auto l = [this]() { return cc; };
/// return l();
/// }
/// };
/// \endcode
/// lambdaExpr(hasAnyCapture(lambdaCapture(capturesThis())))
/// matches `[this]() { return cc; }`.
AST_MATCHER(LambdaCapture, capturesThis) { return Node.capturesThis(); }
/// Matches a constructor call expression which uses list initialization.
AST_MATCHER(CXXConstructExpr, isListInitialization) {
return Node.isListInitialization();
}
/// Matches a constructor call expression which requires
/// zero initialization.
///
/// Given
/// \code
/// void foo() {
/// struct point { double x; double y; };
/// point pt[2] = { { 1.0, 2.0 } };
/// }
/// \endcode
/// initListExpr(has(cxxConstructExpr(requiresZeroInitialization()))
/// will match the implicit array filler for pt[1].
AST_MATCHER(CXXConstructExpr, requiresZeroInitialization) {
return Node.requiresZeroInitialization();
}
/// Matches the n'th parameter of a function or an ObjC method
/// declaration or a block.
///
/// Given
/// \code
/// class X { void f(int x) {} };
/// \endcode
/// cxxMethodDecl(hasParameter(0, hasType(varDecl())))
/// matches f(int x) {}
/// with hasParameter(...)
/// matching int x
///
/// For ObjectiveC, given
/// \code
/// @interface I - (void) f:(int) y; @end
/// \endcode
//
/// the matcher objcMethodDecl(hasParameter(0, hasName("y")))
/// matches the declaration of method f with hasParameter
/// matching y.
AST_POLYMORPHIC_MATCHER_P2(hasParameter,
AST_POLYMORPHIC_SUPPORTED_TYPES(FunctionDecl,
ObjCMethodDecl,
BlockDecl),
unsigned, N, internal::Matcher<ParmVarDecl>,
InnerMatcher) {
return (N < Node.parameters().size()
&& InnerMatcher.matches(*Node.parameters()[N], Finder, Builder));
}
/// Matches all arguments and their respective ParmVarDecl.
///
/// Given
/// \code
/// void f(int i);
/// int y;
/// f(y);
/// \endcode
/// callExpr(
/// forEachArgumentWithParam(
/// declRefExpr(to(varDecl(hasName("y")))),
/// parmVarDecl(hasType(isInteger()))
/// ))
/// matches f(y);
/// with declRefExpr(...)
/// matching int y
/// and parmVarDecl(...)
/// matching int i
AST_POLYMORPHIC_MATCHER_P2(forEachArgumentWithParam,
AST_POLYMORPHIC_SUPPORTED_TYPES(CallExpr,
CXXConstructExpr),
internal::Matcher<Expr>, ArgMatcher,
internal::Matcher<ParmVarDecl>, ParamMatcher) {
BoundNodesTreeBuilder Result;
// The first argument of an overloaded member operator is the implicit object
// argument of the method which should not be matched against a parameter, so
// we skip over it here.
BoundNodesTreeBuilder Matches;
unsigned ArgIndex = cxxOperatorCallExpr(callee(cxxMethodDecl()))
.matches(Node, Finder, &Matches)
? 1
: 0;
int ParamIndex = 0;
bool Matched = false;
for (; ArgIndex < Node.getNumArgs(); ++ArgIndex) {
BoundNodesTreeBuilder ArgMatches(*Builder);
if (ArgMatcher.matches(*(Node.getArg(ArgIndex)->IgnoreParenCasts()),
Finder, &ArgMatches)) {
BoundNodesTreeBuilder ParamMatches(ArgMatches);
if (expr(anyOf(cxxConstructExpr(hasDeclaration(cxxConstructorDecl(
hasParameter(ParamIndex, ParamMatcher)))),
callExpr(callee(functionDecl(
hasParameter(ParamIndex, ParamMatcher))))))
.matches(Node, Finder, &ParamMatches)) {
Result.addMatch(ParamMatches);
Matched = true;
}
}
++ParamIndex;
}
*Builder = std::move(Result);
return Matched;
}
/// Matches all arguments and their respective types for a \c CallExpr or
/// \c CXXConstructExpr. It is very similar to \c forEachArgumentWithParam but
/// it works on calls through function pointers as well.
///
/// The difference is, that function pointers do not provide access to a
/// \c ParmVarDecl, but only the \c QualType for each argument.
///
/// Given
/// \code
/// void f(int i);
/// int y;
/// f(y);
/// void (*f_ptr)(int) = f;
/// f_ptr(y);
/// \endcode
/// callExpr(
/// forEachArgumentWithParamType(
/// declRefExpr(to(varDecl(hasName("y")))),
/// qualType(isInteger()).bind("type)
/// ))
/// matches f(y) and f_ptr(y)
/// with declRefExpr(...)
/// matching int y
/// and qualType(...)
/// matching int
AST_POLYMORPHIC_MATCHER_P2(forEachArgumentWithParamType,
AST_POLYMORPHIC_SUPPORTED_TYPES(CallExpr,
CXXConstructExpr),
internal::Matcher<Expr>, ArgMatcher,
internal::Matcher<QualType>, ParamMatcher) {
BoundNodesTreeBuilder Result;
// The first argument of an overloaded member operator is the implicit object
// argument of the method which should not be matched against a parameter, so
// we skip over it here.
BoundNodesTreeBuilder Matches;
unsigned ArgIndex = cxxOperatorCallExpr(callee(cxxMethodDecl()))
.matches(Node, Finder, &Matches)
? 1
: 0;
const FunctionProtoType *FProto = nullptr;
if (const auto *Call = dyn_cast<CallExpr>(&Node)) {
if (const auto *Value =
dyn_cast_or_null<ValueDecl>(Call->getCalleeDecl())) {
QualType QT = Value->getType().getCanonicalType();
// This does not necessarily lead to a `FunctionProtoType`,
// e.g. K&R functions do not have a function prototype.
if (QT->isFunctionPointerType())
FProto = QT->getPointeeType()->getAs<FunctionProtoType>();
if (QT->isMemberFunctionPointerType()) {
const auto *MP = QT->getAs<MemberPointerType>();
assert(MP && "Must be member-pointer if its a memberfunctionpointer");
FProto = MP->getPointeeType()->getAs<FunctionProtoType>();
assert(FProto &&
"The call must have happened through a member function "
"pointer");
}
}
}
unsigned ParamIndex = 0;
bool Matched = false;
unsigned NumArgs = Node.getNumArgs();
if (FProto && FProto->isVariadic())
NumArgs = std::min(NumArgs, FProto->getNumParams());
for (; ArgIndex < NumArgs; ++ArgIndex, ++ParamIndex) {
BoundNodesTreeBuilder ArgMatches(*Builder);
if (ArgMatcher.matches(*(Node.getArg(ArgIndex)->IgnoreParenCasts()), Finder,
&ArgMatches)) {
BoundNodesTreeBuilder ParamMatches(ArgMatches);
// This test is cheaper compared to the big matcher in the next if.
// Therefore, please keep this order.
if (FProto && FProto->getNumParams() > ParamIndex) {
QualType ParamType = FProto->getParamType(ParamIndex);
if (ParamMatcher.matches(ParamType, Finder, &ParamMatches)) {
Result.addMatch(ParamMatches);
Matched = true;
continue;
}
}
if (expr(anyOf(cxxConstructExpr(hasDeclaration(cxxConstructorDecl(
hasParameter(ParamIndex, hasType(ParamMatcher))))),
callExpr(callee(functionDecl(
hasParameter(ParamIndex, hasType(ParamMatcher)))))))
.matches(Node, Finder, &ParamMatches)) {
Result.addMatch(ParamMatches);
Matched = true;
continue;
}
}
}
*Builder = std::move(Result);
return Matched;
}
/// Matches the ParmVarDecl nodes that are at the N'th position in the parameter
/// list. The parameter list could be that of either a block, function, or
/// objc-method.
///
///
/// Given
///
/// \code
/// void f(int a, int b, int c) {
/// }
/// \endcode
///
/// ``parmVarDecl(isAtPosition(0))`` matches ``int a``.
///
/// ``parmVarDecl(isAtPosition(1))`` matches ``int b``.
AST_MATCHER_P(ParmVarDecl, isAtPosition, unsigned, N) {
const clang::DeclContext *Context = Node.getParentFunctionOrMethod();
if (const auto *Decl = dyn_cast_or_null<FunctionDecl>(Context))
return N < Decl->param_size() && Decl->getParamDecl(N) == &Node;
if (const auto *Decl = dyn_cast_or_null<BlockDecl>(Context))
return N < Decl->param_size() && Decl->getParamDecl(N) == &Node;
if (const auto *Decl = dyn_cast_or_null<ObjCMethodDecl>(Context))
return N < Decl->param_size() && Decl->getParamDecl(N) == &Node;
return false;
}
/// Matches any parameter of a function or an ObjC method declaration or a
/// block.
///
/// Does not match the 'this' parameter of a method.
///
/// Given
/// \code
/// class X { void f(int x, int y, int z) {} };
/// \endcode
/// cxxMethodDecl(hasAnyParameter(hasName("y")))
/// matches f(int x, int y, int z) {}
/// with hasAnyParameter(...)
/// matching int y
///
/// For ObjectiveC, given
/// \code
/// @interface I - (void) f:(int) y; @end
/// \endcode
//
/// the matcher objcMethodDecl(hasAnyParameter(hasName("y")))
/// matches the declaration of method f with hasParameter
/// matching y.
///
/// For blocks, given
/// \code
/// b = ^(int y) { printf("%d", y) };
/// \endcode
///
/// the matcher blockDecl(hasAnyParameter(hasName("y")))
/// matches the declaration of the block b with hasParameter
/// matching y.
AST_POLYMORPHIC_MATCHER_P(hasAnyParameter,
AST_POLYMORPHIC_SUPPORTED_TYPES(FunctionDecl,
ObjCMethodDecl,
BlockDecl),
internal::Matcher<ParmVarDecl>,
InnerMatcher) {
return matchesFirstInPointerRange(InnerMatcher, Node.param_begin(),
Node.param_end(), Finder,
Builder) != Node.param_end();
}
/// Matches \c FunctionDecls and \c FunctionProtoTypes that have a
/// specific parameter count.
///
/// Given
/// \code
/// void f(int i) {}
/// void g(int i, int j) {}
/// void h(int i, int j);
/// void j(int i);
/// void k(int x, int y, int z, ...);
/// \endcode
/// functionDecl(parameterCountIs(2))
/// matches \c g and \c h
/// functionProtoType(parameterCountIs(2))
/// matches \c g and \c h
/// functionProtoType(parameterCountIs(3))
/// matches \c k
AST_POLYMORPHIC_MATCHER_P(parameterCountIs,
AST_POLYMORPHIC_SUPPORTED_TYPES(FunctionDecl,
FunctionProtoType),
unsigned, N) {
return Node.getNumParams() == N;
}
/// Matches classTemplateSpecialization, templateSpecializationType and
/// functionDecl nodes where the template argument matches the inner matcher.
/// This matcher may produce multiple matches.
///
/// Given
/// \code
/// template <typename T, unsigned N, unsigned M>
/// struct Matrix {};
///
/// constexpr unsigned R = 2;
/// Matrix<int, R * 2, R * 4> M;
///
/// template <typename T, typename U>
/// void f(T&& t, U&& u) {}
///
/// bool B = false;
/// f(R, B);
/// \endcode
/// templateSpecializationType(forEachTemplateArgument(isExpr(expr())))
/// matches twice, with expr() matching 'R * 2' and 'R * 4'
/// functionDecl(forEachTemplateArgument(refersToType(builtinType())))
/// matches the specialization f<unsigned, bool> twice, for 'unsigned'
/// and 'bool'
AST_POLYMORPHIC_MATCHER_P(
forEachTemplateArgument,
AST_POLYMORPHIC_SUPPORTED_TYPES(ClassTemplateSpecializationDecl,
TemplateSpecializationType, FunctionDecl),
clang::ast_matchers::internal::Matcher<TemplateArgument>, InnerMatcher) {
ArrayRef<TemplateArgument> TemplateArgs =
clang::ast_matchers::internal::getTemplateSpecializationArgs(Node);
clang::ast_matchers::internal::BoundNodesTreeBuilder Result;
bool Matched = false;
for (const auto &Arg : TemplateArgs) {
clang::ast_matchers::internal::BoundNodesTreeBuilder ArgBuilder(*Builder);
if (InnerMatcher.matches(Arg, Finder, &ArgBuilder)) {
Matched = true;
Result.addMatch(ArgBuilder);
}
}
*Builder = std::move(Result);
return Matched;
}
/// Matches \c FunctionDecls that have a noreturn attribute.
///
/// Given
/// \code
/// void nope();
/// [[noreturn]] void a();
/// __attribute__((noreturn)) void b();
/// struct c { [[noreturn]] c(); };
/// \endcode
/// functionDecl(isNoReturn())
/// matches all of those except
/// \code
/// void nope();
/// \endcode
AST_MATCHER(FunctionDecl, isNoReturn) { return Node.isNoReturn(); }
/// Matches the return type of a function declaration.
///
/// Given:
/// \code
/// class X { int f() { return 1; } };
/// \endcode
/// cxxMethodDecl(returns(asString("int")))
/// matches int f() { return 1; }
AST_MATCHER_P(FunctionDecl, returns,
internal::Matcher<QualType>, InnerMatcher) {
return InnerMatcher.matches(Node.getReturnType(), Finder, Builder);
}
/// Matches extern "C" function or variable declarations.
///
/// Given:
/// \code
/// extern "C" void f() {}
/// extern "C" { void g() {} }
/// void h() {}
/// extern "C" int x = 1;
/// extern "C" int y = 2;
/// int z = 3;
/// \endcode
/// functionDecl(isExternC())
/// matches the declaration of f and g, but not the declaration of h.
/// varDecl(isExternC())
/// matches the declaration of x and y, but not the declaration of z.
AST_POLYMORPHIC_MATCHER(isExternC, AST_POLYMORPHIC_SUPPORTED_TYPES(FunctionDecl,
VarDecl)) {
return Node.isExternC();
}
/// Matches variable/function declarations that have "static" storage
/// class specifier ("static" keyword) written in the source.
///
/// Given:
/// \code
/// static void f() {}
/// static int i = 0;
/// extern int j;
/// int k;
/// \endcode
/// functionDecl(isStaticStorageClass())
/// matches the function declaration f.
/// varDecl(isStaticStorageClass())
/// matches the variable declaration i.
AST_POLYMORPHIC_MATCHER(isStaticStorageClass,
AST_POLYMORPHIC_SUPPORTED_TYPES(FunctionDecl,
VarDecl)) {
return Node.getStorageClass() == SC_Static;
}
/// Matches deleted function declarations.
///
/// Given:
/// \code
/// void Func();
/// void DeletedFunc() = delete;
/// \endcode
/// functionDecl(isDeleted())
/// matches the declaration of DeletedFunc, but not Func.
AST_MATCHER(FunctionDecl, isDeleted) {
return Node.isDeleted();
}
/// Matches defaulted function declarations.
///
/// Given:
/// \code
/// class A { ~A(); };
/// class B { ~B() = default; };
/// \endcode
/// functionDecl(isDefaulted())
/// matches the declaration of ~B, but not ~A.
AST_MATCHER(FunctionDecl, isDefaulted) {
return Node.isDefaulted();
}
/// Matches weak function declarations.
///
/// Given:
/// \code
/// void foo() __attribute__((__weakref__("__foo")));
/// void bar();
/// \endcode
/// functionDecl(isWeak())
/// matches the weak declaration "foo", but not "bar".
AST_MATCHER(FunctionDecl, isWeak) { return Node.isWeak(); }
/// Matches functions that have a dynamic exception specification.
///
/// Given:
/// \code
/// void f();
/// void g() noexcept;
/// void h() noexcept(true);
/// void i() noexcept(false);
/// void j() throw();
/// void k() throw(int);
/// void l() throw(...);
/// \endcode
/// functionDecl(hasDynamicExceptionSpec()) and
/// functionProtoType(hasDynamicExceptionSpec())
/// match the declarations of j, k, and l, but not f, g, h, or i.
AST_POLYMORPHIC_MATCHER(hasDynamicExceptionSpec,
AST_POLYMORPHIC_SUPPORTED_TYPES(FunctionDecl,
FunctionProtoType)) {
if (const FunctionProtoType *FnTy = internal::getFunctionProtoType(Node))
return FnTy->hasDynamicExceptionSpec();
return false;
}
/// Matches functions that have a non-throwing exception specification.
///
/// Given:
/// \code
/// void f();
/// void g() noexcept;
/// void h() throw();
/// void i() throw(int);
/// void j() noexcept(false);
/// \endcode
/// functionDecl(isNoThrow()) and functionProtoType(isNoThrow())
/// match the declarations of g, and h, but not f, i or j.
AST_POLYMORPHIC_MATCHER(isNoThrow,
AST_POLYMORPHIC_SUPPORTED_TYPES(FunctionDecl,
FunctionProtoType)) {
const FunctionProtoType *FnTy = internal::getFunctionProtoType(Node);
// If the function does not have a prototype, then it is assumed to be a
// throwing function (as it would if the function did not have any exception
// specification).
if (!FnTy)
return false;
// Assume the best for any unresolved exception specification.
if (isUnresolvedExceptionSpec(FnTy->getExceptionSpecType()))
return true;
return FnTy->isNothrow();
}
/// Matches consteval function declarations and if consteval/if ! consteval
/// statements.
///
/// Given:
/// \code
/// consteval int a();
/// void b() { if consteval {} }
/// void c() { if ! consteval {} }
/// void d() { if ! consteval {} else {} }
/// \endcode
/// functionDecl(isConsteval())
/// matches the declaration of "int a()".
/// ifStmt(isConsteval())
/// matches the if statement in "void b()", "void c()", "void d()".
AST_POLYMORPHIC_MATCHER(isConsteval,
AST_POLYMORPHIC_SUPPORTED_TYPES(FunctionDecl, IfStmt)) {
return Node.isConsteval();
}
/// Matches constexpr variable and function declarations,
/// and if constexpr.
///
/// Given:
/// \code
/// constexpr int foo = 42;
/// constexpr int bar();
/// void baz() { if constexpr(1 > 0) {} }
/// \endcode
/// varDecl(isConstexpr())
/// matches the declaration of foo.
/// functionDecl(isConstexpr())
/// matches the declaration of bar.
/// ifStmt(isConstexpr())
/// matches the if statement in baz.
AST_POLYMORPHIC_MATCHER(isConstexpr,
AST_POLYMORPHIC_SUPPORTED_TYPES(VarDecl,
FunctionDecl,
IfStmt)) {
return Node.isConstexpr();
}
/// Matches constinit variable declarations.
///
/// Given:
/// \code
/// constinit int foo = 42;
/// constinit const char* bar = "bar";
/// int baz = 42;
/// [[clang::require_constant_initialization]] int xyz = 42;
/// \endcode
/// varDecl(isConstinit())
/// matches the declaration of `foo` and `bar`, but not `baz` and `xyz`.
AST_MATCHER(VarDecl, isConstinit) {
if (const auto *CIA = Node.getAttr<ConstInitAttr>())
return CIA->isConstinit();
return false;
}
/// Matches selection statements with initializer.
///
/// Given:
/// \code
/// void foo() {
/// if (int i = foobar(); i > 0) {}
/// switch (int i = foobar(); i) {}
/// for (auto& a = get_range(); auto& x : a) {}
/// }
/// void bar() {
/// if (foobar() > 0) {}
/// switch (foobar()) {}
/// for (auto& x : get_range()) {}
/// }
/// \endcode
/// ifStmt(hasInitStatement(anything()))
/// matches the if statement in foo but not in bar.
/// switchStmt(hasInitStatement(anything()))
/// matches the switch statement in foo but not in bar.
/// cxxForRangeStmt(hasInitStatement(anything()))
/// matches the range for statement in foo but not in bar.
AST_POLYMORPHIC_MATCHER_P(hasInitStatement,
AST_POLYMORPHIC_SUPPORTED_TYPES(IfStmt, SwitchStmt,
CXXForRangeStmt),
internal::Matcher<Stmt>, InnerMatcher) {
const Stmt *Init = Node.getInit();
return Init != nullptr && InnerMatcher.matches(*Init, Finder, Builder);
}
/// Matches the condition expression of an if statement, for loop,
/// switch statement or conditional operator.
///
/// Example matches true (matcher = hasCondition(cxxBoolLiteral(equals(true))))
/// \code
/// if (true) {}
/// \endcode
AST_POLYMORPHIC_MATCHER_P(
hasCondition,
AST_POLYMORPHIC_SUPPORTED_TYPES(IfStmt, ForStmt, WhileStmt, DoStmt,
SwitchStmt, AbstractConditionalOperator),
internal::Matcher<Expr>, InnerMatcher) {
const Expr *const Condition = Node.getCond();
return (Condition != nullptr &&
InnerMatcher.matches(*Condition, Finder, Builder));
}
/// Matches the then-statement of an if statement.
///
/// Examples matches the if statement
/// (matcher = ifStmt(hasThen(cxxBoolLiteral(equals(true)))))
/// \code
/// if (false) true; else false;
/// \endcode
AST_MATCHER_P(IfStmt, hasThen, internal::Matcher<Stmt>, InnerMatcher) {
const Stmt *const Then = Node.getThen();
return (Then != nullptr && InnerMatcher.matches(*Then, Finder, Builder));
}
/// Matches the else-statement of an if statement.
///
/// Examples matches the if statement
/// (matcher = ifStmt(hasElse(cxxBoolLiteral(equals(true)))))
/// \code
/// if (false) false; else true;
/// \endcode
AST_MATCHER_P(IfStmt, hasElse, internal::Matcher<Stmt>, InnerMatcher) {
const Stmt *const Else = Node.getElse();
return (Else != nullptr && InnerMatcher.matches(*Else, Finder, Builder));
}
/// Matches if a node equals a previously bound node.
///
/// Matches a node if it equals the node previously bound to \p ID.
///
/// Given
/// \code
/// class X { int a; int b; };
/// \endcode
/// cxxRecordDecl(
/// has(fieldDecl(hasName("a"), hasType(type().bind("t")))),
/// has(fieldDecl(hasName("b"), hasType(type(equalsBoundNode("t"))))))
/// matches the class \c X, as \c a and \c b have the same type.
///
/// Note that when multiple matches are involved via \c forEach* matchers,
/// \c equalsBoundNodes acts as a filter.
/// For example:
/// compoundStmt(
/// forEachDescendant(varDecl().bind("d")),
/// forEachDescendant(declRefExpr(to(decl(equalsBoundNode("d"))))))
/// will trigger a match for each combination of variable declaration
/// and reference to that variable declaration within a compound statement.
AST_POLYMORPHIC_MATCHER_P(equalsBoundNode,
AST_POLYMORPHIC_SUPPORTED_TYPES(Stmt, Decl, Type,
QualType),
std::string, ID) {
// FIXME: Figure out whether it makes sense to allow this
// on any other node types.
// For *Loc it probably does not make sense, as those seem
// unique. For NestedNameSepcifier it might make sense, as
// those also have pointer identity, but I'm not sure whether
// they're ever reused.
internal::NotEqualsBoundNodePredicate Predicate;
Predicate.ID = ID;
Predicate.Node = DynTypedNode::create(Node);
return Builder->removeBindings(Predicate);
}
/// Matches the condition variable statement in an if statement.
///
/// Given
/// \code
/// if (A* a = GetAPointer()) {}
/// \endcode
/// hasConditionVariableStatement(...)
/// matches 'A* a = GetAPointer()'.
AST_MATCHER_P(IfStmt, hasConditionVariableStatement,
internal::Matcher<DeclStmt>, InnerMatcher) {
const DeclStmt* const DeclarationStatement =
Node.getConditionVariableDeclStmt();
return DeclarationStatement != nullptr &&
InnerMatcher.matches(*DeclarationStatement, Finder, Builder);
}
/// Matches the index expression of an array subscript expression.
///
/// Given
/// \code
/// int i[5];
/// void f() { i[1] = 42; }
/// \endcode
/// arraySubscriptExpression(hasIndex(integerLiteral()))
/// matches \c i[1] with the \c integerLiteral() matching \c 1
AST_MATCHER_P(ArraySubscriptExpr, hasIndex,
internal::Matcher<Expr>, InnerMatcher) {
if (const Expr* Expression = Node.getIdx())
return InnerMatcher.matches(*Expression, Finder, Builder);
return false;
}
/// Matches the base expression of an array subscript expression.
///
/// Given
/// \code
/// int i[5];
/// void f() { i[1] = 42; }
/// \endcode
/// arraySubscriptExpression(hasBase(implicitCastExpr(
/// hasSourceExpression(declRefExpr()))))
/// matches \c i[1] with the \c declRefExpr() matching \c i
AST_MATCHER_P(ArraySubscriptExpr, hasBase,
internal::Matcher<Expr>, InnerMatcher) {
if (const Expr* Expression = Node.getBase())
return InnerMatcher.matches(*Expression, Finder, Builder);
return false;
}
/// Matches a 'for', 'while', 'do while' statement or a function
/// definition that has a given body. Note that in case of functions
/// this matcher only matches the definition itself and not the other
/// declarations of the same function.
///
/// Given
/// \code
/// for (;;) {}
/// \endcode
/// hasBody(compoundStmt())
/// matches 'for (;;) {}'
/// with compoundStmt()
/// matching '{}'
///
/// Given
/// \code
/// void f();
/// void f() {}
/// \endcode
/// hasBody(functionDecl())
/// matches 'void f() {}'
/// with compoundStmt()
/// matching '{}'
/// but does not match 'void f();'
AST_POLYMORPHIC_MATCHER_P(hasBody,
AST_POLYMORPHIC_SUPPORTED_TYPES(DoStmt, ForStmt,
WhileStmt,
CXXForRangeStmt,
FunctionDecl),
internal::Matcher<Stmt>, InnerMatcher) {
if (Finder->isTraversalIgnoringImplicitNodes() && isDefaultedHelper(&Node))
return false;
const Stmt *const Statement = internal::GetBodyMatcher<NodeType>::get(Node);
return (Statement != nullptr &&
InnerMatcher.matches(*Statement, Finder, Builder));
}
/// Matches a function declaration that has a given body present in the AST.
/// Note that this matcher matches all the declarations of a function whose
/// body is present in the AST.
///
/// Given
/// \code
/// void f();
/// void f() {}
/// void g();
/// \endcode
/// functionDecl(hasAnyBody(compoundStmt()))
/// matches both 'void f();'
/// and 'void f() {}'
/// with compoundStmt()
/// matching '{}'
/// but does not match 'void g();'
AST_MATCHER_P(FunctionDecl, hasAnyBody,
internal::Matcher<Stmt>, InnerMatcher) {
const Stmt *const Statement = Node.getBody();
return (Statement != nullptr &&
InnerMatcher.matches(*Statement, Finder, Builder));
}
/// Matches compound statements where at least one substatement matches
/// a given matcher. Also matches StmtExprs that have CompoundStmt as children.
///
/// Given
/// \code
/// { {}; 1+2; }
/// \endcode
/// hasAnySubstatement(compoundStmt())
/// matches '{ {}; 1+2; }'
/// with compoundStmt()
/// matching '{}'
AST_POLYMORPHIC_MATCHER_P(hasAnySubstatement,
AST_POLYMORPHIC_SUPPORTED_TYPES(CompoundStmt,
StmtExpr),
internal::Matcher<Stmt>, InnerMatcher) {
const CompoundStmt *CS = CompoundStmtMatcher<NodeType>::get(Node);
return CS && matchesFirstInPointerRange(InnerMatcher, CS->body_begin(),
CS->body_end(), Finder,
Builder) != CS->body_end();
}
/// Checks that a compound statement contains a specific number of
/// child statements.
///
/// Example: Given
/// \code
/// { for (;;) {} }
/// \endcode
/// compoundStmt(statementCountIs(0)))
/// matches '{}'
/// but does not match the outer compound statement.
AST_MATCHER_P(CompoundStmt, statementCountIs, unsigned, N) {
return Node.size() == N;
}
/// Matches literals that are equal to the given value of type ValueT.
///
/// Given
/// \code
/// f('\0', false, 3.14, 42);
/// \endcode
/// characterLiteral(equals(0))
/// matches '\0'
/// cxxBoolLiteral(equals(false)) and cxxBoolLiteral(equals(0))
/// match false
/// floatLiteral(equals(3.14)) and floatLiteral(equals(314e-2))
/// match 3.14
/// integerLiteral(equals(42))
/// matches 42
///
/// Note that you cannot directly match a negative numeric literal because the
/// minus sign is not part of the literal: It is a unary operator whose operand
/// is the positive numeric literal. Instead, you must use a unaryOperator()
/// matcher to match the minus sign:
///
/// unaryOperator(hasOperatorName("-"),
/// hasUnaryOperand(integerLiteral(equals(13))))
///
/// Usable as: Matcher<CharacterLiteral>, Matcher<CXXBoolLiteralExpr>,
/// Matcher<FloatingLiteral>, Matcher<IntegerLiteral>
template <typename ValueT>
internal::PolymorphicMatcher<internal::ValueEqualsMatcher,
void(internal::AllNodeBaseTypes), ValueT>
equals(const ValueT &Value) {
return internal::PolymorphicMatcher<internal::ValueEqualsMatcher,
void(internal::AllNodeBaseTypes), ValueT>(
Value);
}
AST_POLYMORPHIC_MATCHER_P_OVERLOAD(equals,
AST_POLYMORPHIC_SUPPORTED_TYPES(CharacterLiteral,
CXXBoolLiteralExpr,
IntegerLiteral),
bool, Value, 0) {
return internal::ValueEqualsMatcher<NodeType, ParamT>(Value)
.matchesNode(Node);
}
AST_POLYMORPHIC_MATCHER_P_OVERLOAD(equals,
AST_POLYMORPHIC_SUPPORTED_TYPES(CharacterLiteral,
CXXBoolLiteralExpr,
IntegerLiteral),
unsigned, Value, 1) {
return internal::ValueEqualsMatcher<NodeType, ParamT>(Value)
.matchesNode(Node);
}
AST_POLYMORPHIC_MATCHER_P_OVERLOAD(equals,
AST_POLYMORPHIC_SUPPORTED_TYPES(CharacterLiteral,
CXXBoolLiteralExpr,
FloatingLiteral,
IntegerLiteral),
double, Value, 2) {
return internal::ValueEqualsMatcher<NodeType, ParamT>(Value)
.matchesNode(Node);
}
/// Matches the operator Name of operator expressions (binary or
/// unary).
///
/// Example matches a || b (matcher = binaryOperator(hasOperatorName("||")))
/// \code
/// !(a || b)
/// \endcode
AST_POLYMORPHIC_MATCHER_P(
hasOperatorName,
AST_POLYMORPHIC_SUPPORTED_TYPES(BinaryOperator, CXXOperatorCallExpr,
CXXRewrittenBinaryOperator, UnaryOperator),
std::string, Name) {
if (Optional<StringRef> OpName = internal::getOpName(Node))
return *OpName == Name;
return false;
}
/// Matches operator expressions (binary or unary) that have any of the
/// specified names.
///
/// hasAnyOperatorName("+", "-")
/// Is equivalent to
/// anyOf(hasOperatorName("+"), hasOperatorName("-"))
extern const internal::VariadicFunction<
internal::PolymorphicMatcher<internal::HasAnyOperatorNameMatcher,
AST_POLYMORPHIC_SUPPORTED_TYPES(
BinaryOperator, CXXOperatorCallExpr,
CXXRewrittenBinaryOperator, UnaryOperator),
std::vector<std::string>>,
StringRef, internal::hasAnyOperatorNameFunc>
hasAnyOperatorName;
/// Matches all kinds of assignment operators.
///
/// Example 1: matches a += b (matcher = binaryOperator(isAssignmentOperator()))
/// \code
/// if (a == b)
/// a += b;
/// \endcode
///
/// Example 2: matches s1 = s2
/// (matcher = cxxOperatorCallExpr(isAssignmentOperator()))
/// \code
/// struct S { S& operator=(const S&); };
/// void x() { S s1, s2; s1 = s2; }
/// \endcode
AST_POLYMORPHIC_MATCHER(
isAssignmentOperator,
AST_POLYMORPHIC_SUPPORTED_TYPES(BinaryOperator, CXXOperatorCallExpr,
CXXRewrittenBinaryOperator)) {
return Node.isAssignmentOp();
}
/// Matches comparison operators.
///
/// Example 1: matches a == b (matcher = binaryOperator(isComparisonOperator()))
/// \code
/// if (a == b)
/// a += b;
/// \endcode
///
/// Example 2: matches s1 < s2
/// (matcher = cxxOperatorCallExpr(isComparisonOperator()))
/// \code
/// struct S { bool operator<(const S& other); };
/// void x(S s1, S s2) { bool b1 = s1 < s2; }
/// \endcode
AST_POLYMORPHIC_MATCHER(
isComparisonOperator,
AST_POLYMORPHIC_SUPPORTED_TYPES(BinaryOperator, CXXOperatorCallExpr,
CXXRewrittenBinaryOperator)) {
return Node.isComparisonOp();
}
/// Matches the left hand side of binary operator expressions.
///
/// Example matches a (matcher = binaryOperator(hasLHS()))
/// \code
/// a || b
/// \endcode
AST_POLYMORPHIC_MATCHER_P(hasLHS,
AST_POLYMORPHIC_SUPPORTED_TYPES(
BinaryOperator, CXXOperatorCallExpr,
CXXRewrittenBinaryOperator, ArraySubscriptExpr),
internal::Matcher<Expr>, InnerMatcher) {
const Expr *LeftHandSide = internal::getLHS(Node);
return (LeftHandSide != nullptr &&
InnerMatcher.matches(*LeftHandSide, Finder, Builder));
}
/// Matches the right hand side of binary operator expressions.
///
/// Example matches b (matcher = binaryOperator(hasRHS()))
/// \code
/// a || b
/// \endcode
AST_POLYMORPHIC_MATCHER_P(hasRHS,
AST_POLYMORPHIC_SUPPORTED_TYPES(
BinaryOperator, CXXOperatorCallExpr,
CXXRewrittenBinaryOperator, ArraySubscriptExpr),
internal::Matcher<Expr>, InnerMatcher) {
const Expr *RightHandSide = internal::getRHS(Node);
return (RightHandSide != nullptr &&
InnerMatcher.matches(*RightHandSide, Finder, Builder));
}
/// Matches if either the left hand side or the right hand side of a
/// binary operator matches.
AST_POLYMORPHIC_MATCHER_P(
hasEitherOperand,
AST_POLYMORPHIC_SUPPORTED_TYPES(BinaryOperator, CXXOperatorCallExpr,
CXXRewrittenBinaryOperator),
internal::Matcher<Expr>, InnerMatcher) {
return internal::VariadicDynCastAllOfMatcher<Stmt, NodeType>()(
anyOf(hasLHS(InnerMatcher), hasRHS(InnerMatcher)))
.matches(Node, Finder, Builder);
}
/// Matches if both matchers match with opposite sides of the binary operator.
///
/// Example matcher = binaryOperator(hasOperands(integerLiteral(equals(1),
/// integerLiteral(equals(2)))
/// \code
/// 1 + 2 // Match
/// 2 + 1 // Match
/// 1 + 1 // No match
/// 2 + 2 // No match
/// \endcode
AST_POLYMORPHIC_MATCHER_P2(
hasOperands,
AST_POLYMORPHIC_SUPPORTED_TYPES(BinaryOperator, CXXOperatorCallExpr,
CXXRewrittenBinaryOperator),
internal::Matcher<Expr>, Matcher1, internal::Matcher<Expr>, Matcher2) {
return internal::VariadicDynCastAllOfMatcher<Stmt, NodeType>()(
anyOf(allOf(hasLHS(Matcher1), hasRHS(Matcher2)),
allOf(hasLHS(Matcher2), hasRHS(Matcher1))))
.matches(Node, Finder, Builder);
}
/// Matches if the operand of a unary operator matches.
///
/// Example matches true (matcher = hasUnaryOperand(
/// cxxBoolLiteral(equals(true))))
/// \code
/// !true
/// \endcode
AST_POLYMORPHIC_MATCHER_P(hasUnaryOperand,
AST_POLYMORPHIC_SUPPORTED_TYPES(UnaryOperator,
CXXOperatorCallExpr),
internal::Matcher<Expr>, InnerMatcher) {
const Expr *const Operand = internal::getSubExpr(Node);
return (Operand != nullptr &&
InnerMatcher.matches(*Operand, Finder, Builder));
}
/// Matches if the cast's source expression
/// or opaque value's source expression matches the given matcher.
///
/// Example 1: matches "a string"
/// (matcher = castExpr(hasSourceExpression(cxxConstructExpr())))
/// \code
/// class URL { URL(string); };
/// URL url = "a string";
/// \endcode
///
/// Example 2: matches 'b' (matcher =
/// opaqueValueExpr(hasSourceExpression(implicitCastExpr(declRefExpr())))
/// \code
/// int a = b ?: 1;
/// \endcode
AST_POLYMORPHIC_MATCHER_P(hasSourceExpression,
AST_POLYMORPHIC_SUPPORTED_TYPES(CastExpr,
OpaqueValueExpr),
internal::Matcher<Expr>, InnerMatcher) {
const Expr *const SubExpression =
internal::GetSourceExpressionMatcher<NodeType>::get(Node);
return (SubExpression != nullptr &&
InnerMatcher.matches(*SubExpression, Finder, Builder));
}
/// Matches casts that has a given cast kind.
///
/// Example: matches the implicit cast around \c 0
/// (matcher = castExpr(hasCastKind(CK_NullToPointer)))
/// \code
/// int *p = 0;
/// \endcode
///
/// If the matcher is use from clang-query, CastKind parameter
/// should be passed as a quoted string. e.g., hasCastKind("CK_NullToPointer").
AST_MATCHER_P(CastExpr, hasCastKind, CastKind, Kind) {
return Node.getCastKind() == Kind;
}
/// Matches casts whose destination type matches a given matcher.
///
/// (Note: Clang's AST refers to other conversions as "casts" too, and calls
/// actual casts "explicit" casts.)
AST_MATCHER_P(ExplicitCastExpr, hasDestinationType,
internal::Matcher<QualType>, InnerMatcher) {
const QualType NodeType = Node.getTypeAsWritten();
return InnerMatcher.matches(NodeType, Finder, Builder);
}
/// Matches implicit casts whose destination type matches a given
/// matcher.
///
/// FIXME: Unit test this matcher
AST_MATCHER_P(ImplicitCastExpr, hasImplicitDestinationType,
internal::Matcher<QualType>, InnerMatcher) {
return InnerMatcher.matches(Node.getType(), Finder, Builder);
}
/// Matches TagDecl object that are spelled with "struct."
///
/// Example matches S, but not C, U or E.
/// \code
/// struct S {};
/// class C {};
/// union U {};
/// enum E {};
/// \endcode
AST_MATCHER(TagDecl, isStruct) {
return Node.isStruct();
}
/// Matches TagDecl object that are spelled with "union."
///
/// Example matches U, but not C, S or E.
/// \code
/// struct S {};
/// class C {};
/// union U {};
/// enum E {};
/// \endcode
AST_MATCHER(TagDecl, isUnion) {
return Node.isUnion();
}
/// Matches TagDecl object that are spelled with "class."
///
/// Example matches C, but not S, U or E.
/// \code
/// struct S {};
/// class C {};
/// union U {};
/// enum E {};
/// \endcode
AST_MATCHER(TagDecl, isClass) {
return Node.isClass();
}
/// Matches TagDecl object that are spelled with "enum."
///
/// Example matches E, but not C, S or U.
/// \code
/// struct S {};
/// class C {};
/// union U {};
/// enum E {};
/// \endcode
AST_MATCHER(TagDecl, isEnum) {
return Node.isEnum();
}
/// Matches the true branch expression of a conditional operator.
///
/// Example 1 (conditional ternary operator): matches a
/// \code
/// condition ? a : b
/// \endcode
///
/// Example 2 (conditional binary operator): matches opaqueValueExpr(condition)
/// \code
/// condition ?: b
/// \endcode
AST_MATCHER_P(AbstractConditionalOperator, hasTrueExpression,
internal::Matcher<Expr>, InnerMatcher) {
const Expr *Expression = Node.getTrueExpr();
return (Expression != nullptr &&
InnerMatcher.matches(*Expression, Finder, Builder));
}
/// Matches the false branch expression of a conditional operator
/// (binary or ternary).
///
/// Example matches b
/// \code
/// condition ? a : b
/// condition ?: b
/// \endcode
AST_MATCHER_P(AbstractConditionalOperator, hasFalseExpression,
internal::Matcher<Expr>, InnerMatcher) {
const Expr *Expression = Node.getFalseExpr();
return (Expression != nullptr &&
InnerMatcher.matches(*Expression, Finder, Builder));
}
/// Matches if a declaration has a body attached.
///
/// Example matches A, va, fa
/// \code
/// class A {};
/// class B; // Doesn't match, as it has no body.
/// int va;
/// extern int vb; // Doesn't match, as it doesn't define the variable.
/// void fa() {}
/// void fb(); // Doesn't match, as it has no body.
/// @interface X
/// - (void)ma; // Doesn't match, interface is declaration.
/// @end
/// @implementation X
/// - (void)ma {}
/// @end
/// \endcode
///
/// Usable as: Matcher<TagDecl>, Matcher<VarDecl>, Matcher<FunctionDecl>,
/// Matcher<ObjCMethodDecl>
AST_POLYMORPHIC_MATCHER(isDefinition,
AST_POLYMORPHIC_SUPPORTED_TYPES(TagDecl, VarDecl,
ObjCMethodDecl,
FunctionDecl)) {
return Node.isThisDeclarationADefinition();
}
/// Matches if a function declaration is variadic.
///
/// Example matches f, but not g or h. The function i will not match, even when
/// compiled in C mode.
/// \code
/// void f(...);
/// void g(int);
/// template <typename... Ts> void h(Ts...);
/// void i();
/// \endcode
AST_MATCHER(FunctionDecl, isVariadic) {
return Node.isVariadic();
}
/// Matches the class declaration that the given method declaration
/// belongs to.
///
/// FIXME: Generalize this for other kinds of declarations.
/// FIXME: What other kind of declarations would we need to generalize
/// this to?
///
/// Example matches A() in the last line
/// (matcher = cxxConstructExpr(hasDeclaration(cxxMethodDecl(
/// ofClass(hasName("A"))))))
/// \code
/// class A {
/// public:
/// A();
/// };
/// A a = A();
/// \endcode
AST_MATCHER_P(CXXMethodDecl, ofClass,
internal::Matcher<CXXRecordDecl>, InnerMatcher) {
ASTChildrenNotSpelledInSourceScope RAII(Finder, false);
const CXXRecordDecl *Parent = Node.getParent();
return (Parent != nullptr &&
InnerMatcher.matches(*Parent, Finder, Builder));
}
/// Matches each method overridden by the given method. This matcher may
/// produce multiple matches.
///
/// Given
/// \code
/// class A { virtual void f(); };
/// class B : public A { void f(); };
/// class C : public B { void f(); };
/// \endcode
/// cxxMethodDecl(ofClass(hasName("C")),
/// forEachOverridden(cxxMethodDecl().bind("b"))).bind("d")
/// matches once, with "b" binding "A::f" and "d" binding "C::f" (Note
/// that B::f is not overridden by C::f).
///
/// The check can produce multiple matches in case of multiple inheritance, e.g.
/// \code
/// class A1 { virtual void f(); };
/// class A2 { virtual void f(); };
/// class C : public A1, public A2 { void f(); };
/// \endcode
/// cxxMethodDecl(ofClass(hasName("C")),
/// forEachOverridden(cxxMethodDecl().bind("b"))).bind("d")
/// matches twice, once with "b" binding "A1::f" and "d" binding "C::f", and
/// once with "b" binding "A2::f" and "d" binding "C::f".
AST_MATCHER_P(CXXMethodDecl, forEachOverridden,
internal::Matcher<CXXMethodDecl>, InnerMatcher) {
BoundNodesTreeBuilder Result;
bool Matched = false;
for (const auto *Overridden : Node.overridden_methods()) {
BoundNodesTreeBuilder OverriddenBuilder(*Builder);
const bool OverriddenMatched =
InnerMatcher.matches(*Overridden, Finder, &OverriddenBuilder);
if (OverriddenMatched) {
Matched = true;
Result.addMatch(OverriddenBuilder);
}
}
*Builder = std::move(Result);
return Matched;
}
/// Matches declarations of virtual methods and C++ base specifers that specify
/// virtual inheritance.
///
/// Example:
/// \code
/// class A {
/// public:
/// virtual void x(); // matches x
/// };
/// \endcode
///
/// Example:
/// \code
/// class Base {};
/// class DirectlyDerived : virtual Base {}; // matches Base
/// class IndirectlyDerived : DirectlyDerived, Base {}; // matches Base
/// \endcode
///
/// Usable as: Matcher<CXXMethodDecl>, Matcher<CXXBaseSpecifier>
AST_POLYMORPHIC_MATCHER(isVirtual,
AST_POLYMORPHIC_SUPPORTED_TYPES(CXXMethodDecl,
CXXBaseSpecifier)) {
return Node.isVirtual();
}
/// Matches if the given method declaration has an explicit "virtual".
///
/// Given
/// \code
/// class A {
/// public:
/// virtual void x();
/// };
/// class B : public A {
/// public:
/// void x();
/// };
/// \endcode
/// matches A::x but not B::x
AST_MATCHER(CXXMethodDecl, isVirtualAsWritten) {
return Node.isVirtualAsWritten();
}
AST_MATCHER(CXXConstructorDecl, isInheritingConstructor) {
return Node.isInheritingConstructor();
}
/// Matches if the given method or class declaration is final.
///
/// Given:
/// \code
/// class A final {};
///
/// struct B {
/// virtual void f();
/// };
///
/// struct C : B {
/// void f() final;
/// };
/// \endcode
/// matches A and C::f, but not B, C, or B::f
AST_POLYMORPHIC_MATCHER(isFinal,
AST_POLYMORPHIC_SUPPORTED_TYPES(CXXRecordDecl,
CXXMethodDecl)) {
return Node.template hasAttr<FinalAttr>();
}
/// Matches if the given method declaration is pure.
///
/// Given
/// \code
/// class A {
/// public:
/// virtual void x() = 0;
/// };
/// \endcode
/// matches A::x
AST_MATCHER(CXXMethodDecl, isPure) {
return Node.isPure();
}
/// Matches if the given method declaration is const.
///
/// Given
/// \code
/// struct A {
/// void foo() const;
/// void bar();
/// };
/// \endcode
///
/// cxxMethodDecl(isConst()) matches A::foo() but not A::bar()
AST_MATCHER(CXXMethodDecl, isConst) {
return Node.isConst();
}
/// Matches if the given method declaration declares a copy assignment
/// operator.
///
/// Given
/// \code
/// struct A {
/// A &operator=(const A &);
/// A &operator=(A &&);
/// };
/// \endcode
///
/// cxxMethodDecl(isCopyAssignmentOperator()) matches the first method but not
/// the second one.
AST_MATCHER(CXXMethodDecl, isCopyAssignmentOperator) {
return Node.isCopyAssignmentOperator();
}
/// Matches if the given method declaration declares a move assignment
/// operator.
///
/// Given
/// \code
/// struct A {
/// A &operator=(const A &);
/// A &operator=(A &&);
/// };
/// \endcode
///
/// cxxMethodDecl(isMoveAssignmentOperator()) matches the second method but not
/// the first one.
AST_MATCHER(CXXMethodDecl, isMoveAssignmentOperator) {
return Node.isMoveAssignmentOperator();
}
/// Matches if the given method declaration overrides another method.
///
/// Given
/// \code
/// class A {
/// public:
/// virtual void x();
/// };
/// class B : public A {
/// public:
/// virtual void x();
/// };
/// \endcode
/// matches B::x
AST_MATCHER(CXXMethodDecl, isOverride) {
return Node.size_overridden_methods() > 0 || Node.hasAttr<OverrideAttr>();
}
/// Matches method declarations that are user-provided.
///
/// Given
/// \code
/// struct S {
/// S(); // #1
/// S(const S &) = default; // #2
/// S(S &&) = delete; // #3
/// };
/// \endcode
/// cxxConstructorDecl(isUserProvided()) will match #1, but not #2 or #3.
AST_MATCHER(CXXMethodDecl, isUserProvided) {
return Node.isUserProvided();
}
/// Matches member expressions that are called with '->' as opposed
/// to '.'.
///
/// Member calls on the implicit this pointer match as called with '->'.
///
/// Given
/// \code
/// class Y {
/// void x() { this->x(); x(); Y y; y.x(); a; this->b; Y::b; }
/// template <class T> void f() { this->f<T>(); f<T>(); }
/// int a;
/// static int b;
/// };
/// template <class T>
/// class Z {
/// void x() { this->m; }
/// };
/// \endcode
/// memberExpr(isArrow())
/// matches this->x, x, y.x, a, this->b
/// cxxDependentScopeMemberExpr(isArrow())
/// matches this->m
/// unresolvedMemberExpr(isArrow())
/// matches this->f<T>, f<T>
AST_POLYMORPHIC_MATCHER(
isArrow, AST_POLYMORPHIC_SUPPORTED_TYPES(MemberExpr, UnresolvedMemberExpr,
CXXDependentScopeMemberExpr)) {
return Node.isArrow();
}
/// Matches QualType nodes that are of integer type.
///
/// Given
/// \code
/// void a(int);
/// void b(long);
/// void c(double);
/// \endcode
/// functionDecl(hasAnyParameter(hasType(isInteger())))
/// matches "a(int)", "b(long)", but not "c(double)".
AST_MATCHER(QualType, isInteger) {
return Node->isIntegerType();
}
/// Matches QualType nodes that are of unsigned integer type.
///
/// Given
/// \code
/// void a(int);
/// void b(unsigned long);
/// void c(double);
/// \endcode
/// functionDecl(hasAnyParameter(hasType(isUnsignedInteger())))
/// matches "b(unsigned long)", but not "a(int)" and "c(double)".
AST_MATCHER(QualType, isUnsignedInteger) {
return Node->isUnsignedIntegerType();
}
/// Matches QualType nodes that are of signed integer type.
///
/// Given
/// \code
/// void a(int);
/// void b(unsigned long);
/// void c(double);
/// \endcode
/// functionDecl(hasAnyParameter(hasType(isSignedInteger())))
/// matches "a(int)", but not "b(unsigned long)" and "c(double)".
AST_MATCHER(QualType, isSignedInteger) {
return Node->isSignedIntegerType();
}
/// Matches QualType nodes that are of character type.
///
/// Given
/// \code
/// void a(char);
/// void b(wchar_t);
/// void c(double);
/// \endcode
/// functionDecl(hasAnyParameter(hasType(isAnyCharacter())))
/// matches "a(char)", "b(wchar_t)", but not "c(double)".
AST_MATCHER(QualType, isAnyCharacter) {
return Node->isAnyCharacterType();
}
/// Matches QualType nodes that are of any pointer type; this includes
/// the Objective-C object pointer type, which is different despite being
/// syntactically similar.
///
/// Given
/// \code
/// int *i = nullptr;
///
/// @interface Foo
/// @end
/// Foo *f;
///
/// int j;
/// \endcode
/// varDecl(hasType(isAnyPointer()))
/// matches "int *i" and "Foo *f", but not "int j".
AST_MATCHER(QualType, isAnyPointer) {
return Node->isAnyPointerType();
}
/// Matches QualType nodes that are const-qualified, i.e., that
/// include "top-level" const.
///
/// Given
/// \code
/// void a(int);
/// void b(int const);
/// void c(const int);
/// void d(const int*);
/// void e(int const) {};
/// \endcode
/// functionDecl(hasAnyParameter(hasType(isConstQualified())))
/// matches "void b(int const)", "void c(const int)" and
/// "void e(int const) {}". It does not match d as there
/// is no top-level const on the parameter type "const int *".
AST_MATCHER(QualType, isConstQualified) {
return Node.isConstQualified();
}
/// Matches QualType nodes that are volatile-qualified, i.e., that
/// include "top-level" volatile.
///
/// Given
/// \code
/// void a(int);
/// void b(int volatile);
/// void c(volatile int);
/// void d(volatile int*);
/// void e(int volatile) {};
/// \endcode
/// functionDecl(hasAnyParameter(hasType(isVolatileQualified())))
/// matches "void b(int volatile)", "void c(volatile int)" and
/// "void e(int volatile) {}". It does not match d as there
/// is no top-level volatile on the parameter type "volatile int *".
AST_MATCHER(QualType, isVolatileQualified) {
return Node.isVolatileQualified();
}
/// Matches QualType nodes that have local CV-qualifiers attached to
/// the node, not hidden within a typedef.
///
/// Given
/// \code
/// typedef const int const_int;
/// const_int i;
/// int *const j;
/// int *volatile k;
/// int m;
/// \endcode
/// \c varDecl(hasType(hasLocalQualifiers())) matches only \c j and \c k.
/// \c i is const-qualified but the qualifier is not local.
AST_MATCHER(QualType, hasLocalQualifiers) {
return Node.hasLocalQualifiers();
}
/// Matches a member expression where the member is matched by a
/// given matcher.
///
/// Given
/// \code
/// struct { int first, second; } first, second;
/// int i(second.first);
/// int j(first.second);
/// \endcode
/// memberExpr(member(hasName("first")))
/// matches second.first
/// but not first.second (because the member name there is "second").
AST_MATCHER_P(MemberExpr, member,
internal::Matcher<ValueDecl>, InnerMatcher) {
return InnerMatcher.matches(*Node.getMemberDecl(), Finder, Builder);
}
/// Matches a member expression where the object expression is matched by a
/// given matcher. Implicit object expressions are included; that is, it matches
/// use of implicit `this`.
///
/// Given
/// \code
/// struct X {
/// int m;
/// int f(X x) { x.m; return m; }
/// };
/// \endcode
/// memberExpr(hasObjectExpression(hasType(cxxRecordDecl(hasName("X")))))
/// matches `x.m`, but not `m`; however,
/// memberExpr(hasObjectExpression(hasType(pointsTo(
// cxxRecordDecl(hasName("X"))))))
/// matches `m` (aka. `this->m`), but not `x.m`.
AST_POLYMORPHIC_MATCHER_P(
hasObjectExpression,
AST_POLYMORPHIC_SUPPORTED_TYPES(MemberExpr, UnresolvedMemberExpr,
CXXDependentScopeMemberExpr),
internal::Matcher<Expr>, InnerMatcher) {
if (const auto *E = dyn_cast<UnresolvedMemberExpr>(&Node))
if (E->isImplicitAccess())
return false;
if (const auto *E = dyn_cast<CXXDependentScopeMemberExpr>(&Node))
if (E->isImplicitAccess())
return false;
return InnerMatcher.matches(*Node.getBase(), Finder, Builder);
}
/// Matches any using shadow declaration.
///
/// Given
/// \code
/// namespace X { void b(); }
/// using X::b;
/// \endcode
/// usingDecl(hasAnyUsingShadowDecl(hasName("b"))))
/// matches \code using X::b \endcode
AST_MATCHER_P(BaseUsingDecl, hasAnyUsingShadowDecl,
internal::Matcher<UsingShadowDecl>, InnerMatcher) {
return matchesFirstInPointerRange(InnerMatcher, Node.shadow_begin(),
Node.shadow_end(), Finder,
Builder) != Node.shadow_end();
}
/// Matches a using shadow declaration where the target declaration is
/// matched by the given matcher.
///
/// Given
/// \code
/// namespace X { int a; void b(); }
/// using X::a;
/// using X::b;
/// \endcode
/// usingDecl(hasAnyUsingShadowDecl(hasTargetDecl(functionDecl())))
/// matches \code using X::b \endcode
/// but not \code using X::a \endcode
AST_MATCHER_P(UsingShadowDecl, hasTargetDecl,
internal::Matcher<NamedDecl>, InnerMatcher) {
return InnerMatcher.matches(*Node.getTargetDecl(), Finder, Builder);
}
/// Matches template instantiations of function, class, or static
/// member variable template instantiations.
///
/// Given
/// \code
/// template <typename T> class X {}; class A {}; X<A> x;
/// \endcode
/// or
/// \code
/// template <typename T> class X {}; class A {}; template class X<A>;
/// \endcode
/// or
/// \code
/// template <typename T> class X {}; class A {}; extern template class X<A>;
/// \endcode
/// cxxRecordDecl(hasName("::X"), isTemplateInstantiation())
/// matches the template instantiation of X<A>.
///
/// But given
/// \code
/// template <typename T> class X {}; class A {};
/// template <> class X<A> {}; X<A> x;
/// \endcode
/// cxxRecordDecl(hasName("::X"), isTemplateInstantiation())
/// does not match, as X<A> is an explicit template specialization.
///
/// Usable as: Matcher<FunctionDecl>, Matcher<VarDecl>, Matcher<CXXRecordDecl>
AST_POLYMORPHIC_MATCHER(isTemplateInstantiation,
AST_POLYMORPHIC_SUPPORTED_TYPES(FunctionDecl, VarDecl,
CXXRecordDecl)) {
return (Node.getTemplateSpecializationKind() == TSK_ImplicitInstantiation ||
Node.getTemplateSpecializationKind() ==
TSK_ExplicitInstantiationDefinition ||
Node.getTemplateSpecializationKind() ==
TSK_ExplicitInstantiationDeclaration);
}
/// Matches declarations that are template instantiations or are inside
/// template instantiations.
///
/// Given
/// \code
/// template<typename T> void A(T t) { T i; }
/// A(0);
/// A(0U);
/// \endcode
/// functionDecl(isInstantiated())
/// matches 'A(int) {...};' and 'A(unsigned) {...}'.
AST_MATCHER_FUNCTION(internal::Matcher<Decl>, isInstantiated) {
auto IsInstantiation = decl(anyOf(cxxRecordDecl(isTemplateInstantiation()),
functionDecl(isTemplateInstantiation())));
return decl(anyOf(IsInstantiation, hasAncestor(IsInstantiation)));
}
/// Matches statements inside of a template instantiation.
///
/// Given
/// \code
/// int j;
/// template<typename T> void A(T t) { T i; j += 42;}
/// A(0);
/// A(0U);
/// \endcode
/// declStmt(isInTemplateInstantiation())
/// matches 'int i;' and 'unsigned i'.
/// unless(stmt(isInTemplateInstantiation()))
/// will NOT match j += 42; as it's shared between the template definition and
/// instantiation.
AST_MATCHER_FUNCTION(internal::Matcher<Stmt>, isInTemplateInstantiation) {
return stmt(
hasAncestor(decl(anyOf(cxxRecordDecl(isTemplateInstantiation()),
functionDecl(isTemplateInstantiation())))));
}
/// Matches explicit template specializations of function, class, or
/// static member variable template instantiations.
///
/// Given
/// \code
/// template<typename T> void A(T t) { }
/// template<> void A(int N) { }
/// \endcode
/// functionDecl(isExplicitTemplateSpecialization())
/// matches the specialization A<int>().
///
/// Usable as: Matcher<FunctionDecl>, Matcher<VarDecl>, Matcher<CXXRecordDecl>
AST_POLYMORPHIC_MATCHER(isExplicitTemplateSpecialization,
AST_POLYMORPHIC_SUPPORTED_TYPES(FunctionDecl, VarDecl,
CXXRecordDecl)) {
return (Node.getTemplateSpecializationKind() == TSK_ExplicitSpecialization);
}
/// Matches \c TypeLocs for which the given inner
/// QualType-matcher matches.
AST_MATCHER_FUNCTION_P_OVERLOAD(internal::BindableMatcher<TypeLoc>, loc,
internal::Matcher<QualType>, InnerMatcher, 0) {
return internal::BindableMatcher<TypeLoc>(
new internal::TypeLocTypeMatcher(InnerMatcher));
}
/// Matches `QualifiedTypeLoc`s in the clang AST.
///
/// Given
/// \code
/// const int x = 0;
/// \endcode
/// qualifiedTypeLoc()
/// matches `const int`.
extern const internal::VariadicDynCastAllOfMatcher<TypeLoc, QualifiedTypeLoc>
qualifiedTypeLoc;
/// Matches `QualifiedTypeLoc`s that have an unqualified `TypeLoc` matching
/// `InnerMatcher`.
///
/// Given
/// \code
/// int* const x;
/// const int y;
/// \endcode
/// qualifiedTypeLoc(hasUnqualifiedLoc(pointerTypeLoc()))
/// matches the `TypeLoc` of the variable declaration of `x`, but not `y`.
AST_MATCHER_P(QualifiedTypeLoc, hasUnqualifiedLoc, internal::Matcher<TypeLoc>,
InnerMatcher) {
return InnerMatcher.matches(Node.getUnqualifiedLoc(), Finder, Builder);
}
/// Matches a function declared with the specified return `TypeLoc`.
///
/// Given
/// \code
/// int f() { return 5; }
/// void g() {}
/// \endcode
/// functionDecl(hasReturnTypeLoc(loc(asString("int"))))
/// matches the declaration of `f`, but not `g`.
AST_MATCHER_P(FunctionDecl, hasReturnTypeLoc, internal::Matcher<TypeLoc>,
ReturnMatcher) {
auto Loc = Node.getFunctionTypeLoc();
return Loc && ReturnMatcher.matches(Loc.getReturnLoc(), Finder, Builder);
}
/// Matches pointer `TypeLoc`s.
///
/// Given
/// \code
/// int* x;
/// \endcode
/// pointerTypeLoc()
/// matches `int*`.
extern const internal::VariadicDynCastAllOfMatcher<TypeLoc, PointerTypeLoc>
pointerTypeLoc;
/// Matches pointer `TypeLoc`s that have a pointee `TypeLoc` matching
/// `PointeeMatcher`.
///
/// Given
/// \code
/// int* x;
/// \endcode
/// pointerTypeLoc(hasPointeeLoc(loc(asString("int"))))
/// matches `int*`.
AST_MATCHER_P(PointerTypeLoc, hasPointeeLoc, internal::Matcher<TypeLoc>,
PointeeMatcher) {
return PointeeMatcher.matches(Node.getPointeeLoc(), Finder, Builder);
}
/// Matches reference `TypeLoc`s.
///
/// Given
/// \code
/// int x = 3;
/// int& l = x;
/// int&& r = 3;
/// \endcode
/// referenceTypeLoc()
/// matches `int&` and `int&&`.
extern const internal::VariadicDynCastAllOfMatcher<TypeLoc, ReferenceTypeLoc>
referenceTypeLoc;
/// Matches reference `TypeLoc`s that have a referent `TypeLoc` matching
/// `ReferentMatcher`.
///
/// Given
/// \code
/// int x = 3;
/// int& xx = x;
/// \endcode
/// referenceTypeLoc(hasReferentLoc(loc(asString("int"))))
/// matches `int&`.
AST_MATCHER_P(ReferenceTypeLoc, hasReferentLoc, internal::Matcher<TypeLoc>,
ReferentMatcher) {
return ReferentMatcher.matches(Node.getPointeeLoc(), Finder, Builder);
}
/// Matches template specialization `TypeLoc`s.
///
/// Given
/// \code
/// template <typename T> class C {};
/// C<char> var;
/// \endcode
/// varDecl(hasTypeLoc(templateSpecializationTypeLoc(typeLoc())))
/// matches `C<char> var`.
extern const internal::VariadicDynCastAllOfMatcher<
TypeLoc, TemplateSpecializationTypeLoc>
templateSpecializationTypeLoc;
/// Matches template specialization `TypeLoc`s that have at least one
/// `TemplateArgumentLoc` matching the given `InnerMatcher`.
///
/// Given
/// \code
/// template<typename T> class A {};
/// A<int> a;
/// \endcode
/// varDecl(hasTypeLoc(templateSpecializationTypeLoc(hasAnyTemplateArgumentLoc(
/// hasTypeLoc(loc(asString("int")))))))
/// matches `A<int> a`.
AST_MATCHER_P(TemplateSpecializationTypeLoc, hasAnyTemplateArgumentLoc,
internal::Matcher<TemplateArgumentLoc>, InnerMatcher) {
for (unsigned Index = 0, N = Node.getNumArgs(); Index < N; ++Index) {
clang::ast_matchers::internal::BoundNodesTreeBuilder Result(*Builder);
if (InnerMatcher.matches(Node.getArgLoc(Index), Finder, &Result)) {
*Builder = std::move(Result);
return true;
}
}
return false;
}
/// Matches template specialization `TypeLoc`s where the n'th
/// `TemplateArgumentLoc` matches the given `InnerMatcher`.
///
/// Given
/// \code
/// template<typename T, typename U> class A {};
/// A<double, int> b;
/// A<int, double> c;
/// \endcode
/// varDecl(hasTypeLoc(templateSpecializationTypeLoc(hasTemplateArgumentLoc(0,
/// hasTypeLoc(loc(asString("double")))))))
/// matches `A<double, int> b`, but not `A<int, double> c`.
AST_POLYMORPHIC_MATCHER_P2(
hasTemplateArgumentLoc,
AST_POLYMORPHIC_SUPPORTED_TYPES(DeclRefExpr, TemplateSpecializationTypeLoc),
unsigned, Index, internal::Matcher<TemplateArgumentLoc>, InnerMatcher) {
return internal::MatchTemplateArgLocAt(Node, Index, InnerMatcher, Finder,
Builder);
}
/// Matches C or C++ elaborated `TypeLoc`s.
///
/// Given
/// \code
/// struct s {};
/// struct s ss;
/// \endcode
/// elaboratedTypeLoc()
/// matches the `TypeLoc` of the variable declaration of `ss`.
extern const internal::VariadicDynCastAllOfMatcher<TypeLoc, ElaboratedTypeLoc>
elaboratedTypeLoc;
/// Matches elaborated `TypeLoc`s that have a named `TypeLoc` matching
/// `InnerMatcher`.
///
/// Given
/// \code
/// template <typename T>
/// class C {};
/// class C<int> c;
///
/// class D {};
/// class D d;
/// \endcode
/// elaboratedTypeLoc(hasNamedTypeLoc(templateSpecializationTypeLoc()));
/// matches the `TypeLoc` of the variable declaration of `c`, but not `d`.
AST_MATCHER_P(ElaboratedTypeLoc, hasNamedTypeLoc, internal::Matcher<TypeLoc>,
InnerMatcher) {
return InnerMatcher.matches(Node.getNamedTypeLoc(), Finder, Builder);
}
/// Matches type \c bool.
///
/// Given
/// \code
/// struct S { bool func(); };
/// \endcode
/// functionDecl(returns(booleanType()))
/// matches "bool func();"
AST_MATCHER(Type, booleanType) {
return Node.isBooleanType();
}
/// Matches type \c void.
///
/// Given
/// \code
/// struct S { void func(); };
/// \endcode
/// functionDecl(returns(voidType()))
/// matches "void func();"
AST_MATCHER(Type, voidType) {
return Node.isVoidType();
}
template <typename NodeType>
using AstTypeMatcher = internal::VariadicDynCastAllOfMatcher<Type, NodeType>;
/// Matches builtin Types.
///
/// Given
/// \code
/// struct A {};
/// A a;
/// int b;
/// float c;
/// bool d;
/// \endcode
/// builtinType()
/// matches "int b", "float c" and "bool d"
extern const AstTypeMatcher<BuiltinType> builtinType;
/// Matches all kinds of arrays.
///
/// Given
/// \code
/// int a[] = { 2, 3 };
/// int b[4];
/// void f() { int c[a[0]]; }
/// \endcode
/// arrayType()
/// matches "int a[]", "int b[4]" and "int c[a[0]]";
extern const AstTypeMatcher<ArrayType> arrayType;
/// Matches C99 complex types.
///
/// Given
/// \code
/// _Complex float f;
/// \endcode
/// complexType()
/// matches "_Complex float f"
extern const AstTypeMatcher<ComplexType> complexType;
/// Matches any real floating-point type (float, double, long double).
///
/// Given
/// \code
/// int i;
/// float f;
/// \endcode
/// realFloatingPointType()
/// matches "float f" but not "int i"
AST_MATCHER(Type, realFloatingPointType) {
return Node.isRealFloatingType();
}
/// Matches arrays and C99 complex types that have a specific element
/// type.
///
/// Given
/// \code
/// struct A {};
/// A a[7];
/// int b[7];
/// \endcode
/// arrayType(hasElementType(builtinType()))
/// matches "int b[7]"
///
/// Usable as: Matcher<ArrayType>, Matcher<ComplexType>
AST_TYPELOC_TRAVERSE_MATCHER_DECL(hasElementType, getElement,
AST_POLYMORPHIC_SUPPORTED_TYPES(ArrayType,
ComplexType));
/// Matches C arrays with a specified constant size.
///
/// Given
/// \code
/// void() {
/// int a[2];
/// int b[] = { 2, 3 };
/// int c[b[0]];
/// }
/// \endcode
/// constantArrayType()
/// matches "int a[2]"
extern const AstTypeMatcher<ConstantArrayType> constantArrayType;
/// Matches nodes that have the specified size.
///
/// Given
/// \code
/// int a[42];
/// int b[2 * 21];
/// int c[41], d[43];
/// char *s = "abcd";
/// wchar_t *ws = L"abcd";
/// char *w = "a";
/// \endcode
/// constantArrayType(hasSize(42))
/// matches "int a[42]" and "int b[2 * 21]"
/// stringLiteral(hasSize(4))
/// matches "abcd", L"abcd"
AST_POLYMORPHIC_MATCHER_P(hasSize,
AST_POLYMORPHIC_SUPPORTED_TYPES(ConstantArrayType,
StringLiteral),
unsigned, N) {
return internal::HasSizeMatcher<NodeType>::hasSize(Node, N);
}
/// Matches C++ arrays whose size is a value-dependent expression.
///
/// Given
/// \code
/// template<typename T, int Size>
/// class array {
/// T data[Size];
/// };
/// \endcode
/// dependentSizedArrayType
/// matches "T data[Size]"
extern const AstTypeMatcher<DependentSizedArrayType> dependentSizedArrayType;
/// Matches C arrays with unspecified size.
///
/// Given
/// \code
/// int a[] = { 2, 3 };
/// int b[42];
/// void f(int c[]) { int d[a[0]]; };
/// \endcode
/// incompleteArrayType()
/// matches "int a[]" and "int c[]"
extern const AstTypeMatcher<IncompleteArrayType> incompleteArrayType;
/// Matches C arrays with a specified size that is not an
/// integer-constant-expression.
///
/// Given
/// \code
/// void f() {
/// int a[] = { 2, 3 }
/// int b[42];
/// int c[a[0]];
/// }
/// \endcode
/// variableArrayType()
/// matches "int c[a[0]]"
extern const AstTypeMatcher<VariableArrayType> variableArrayType;
/// Matches \c VariableArrayType nodes that have a specific size
/// expression.
///
/// Given
/// \code
/// void f(int b) {
/// int a[b];
/// }
/// \endcode
/// variableArrayType(hasSizeExpr(ignoringImpCasts(declRefExpr(to(
/// varDecl(hasName("b")))))))
/// matches "int a[b]"
AST_MATCHER_P(VariableArrayType, hasSizeExpr,
internal::Matcher<Expr>, InnerMatcher) {
return InnerMatcher.matches(*Node.getSizeExpr(), Finder, Builder);
}
/// Matches atomic types.
///
/// Given
/// \code
/// _Atomic(int) i;
/// \endcode
/// atomicType()
/// matches "_Atomic(int) i"
extern const AstTypeMatcher<AtomicType> atomicType;
/// Matches atomic types with a specific value type.
///
/// Given
/// \code
/// _Atomic(int) i;
/// _Atomic(float) f;
/// \endcode
/// atomicType(hasValueType(isInteger()))
/// matches "_Atomic(int) i"
///
/// Usable as: Matcher<AtomicType>
AST_TYPELOC_TRAVERSE_MATCHER_DECL(hasValueType, getValue,
AST_POLYMORPHIC_SUPPORTED_TYPES(AtomicType));
/// Matches types nodes representing C++11 auto types.
///
/// Given:
/// \code
/// auto n = 4;
/// int v[] = { 2, 3 }
/// for (auto i : v) { }
/// \endcode
/// autoType()
/// matches "auto n" and "auto i"
extern const AstTypeMatcher<AutoType> autoType;
/// Matches types nodes representing C++11 decltype(<expr>) types.
///
/// Given:
/// \code
/// short i = 1;
/// int j = 42;
/// decltype(i + j) result = i + j;
/// \endcode
/// decltypeType()
/// matches "decltype(i + j)"
extern const AstTypeMatcher<DecltypeType> decltypeType;
/// Matches \c AutoType nodes where the deduced type is a specific type.
///
/// Note: There is no \c TypeLoc for the deduced type and thus no
/// \c getDeducedLoc() matcher.
///
/// Given
/// \code
/// auto a = 1;
/// auto b = 2.0;
/// \endcode
/// autoType(hasDeducedType(isInteger()))
/// matches "auto a"
///
/// Usable as: Matcher<AutoType>
AST_TYPE_TRAVERSE_MATCHER(hasDeducedType, getDeducedType,
AST_POLYMORPHIC_SUPPORTED_TYPES(AutoType));
/// Matches \c DecltypeType or \c UsingType nodes to find the underlying type.
///
/// Given
/// \code
/// decltype(1) a = 1;
/// decltype(2.0) b = 2.0;
/// \endcode
/// decltypeType(hasUnderlyingType(isInteger()))
/// matches the type of "a"
///
/// Usable as: Matcher<DecltypeType>, Matcher<UsingType>
AST_TYPE_TRAVERSE_MATCHER(hasUnderlyingType, getUnderlyingType,
AST_POLYMORPHIC_SUPPORTED_TYPES(DecltypeType,
UsingType));
/// Matches \c FunctionType nodes.
///
/// Given
/// \code
/// int (*f)(int);
/// void g();
/// \endcode
/// functionType()
/// matches "int (*f)(int)" and the type of "g".
extern const AstTypeMatcher<FunctionType> functionType;
/// Matches \c FunctionProtoType nodes.
///
/// Given
/// \code
/// int (*f)(int);
/// void g();
/// \endcode
/// functionProtoType()
/// matches "int (*f)(int)" and the type of "g" in C++ mode.
/// In C mode, "g" is not matched because it does not contain a prototype.
extern const AstTypeMatcher<FunctionProtoType> functionProtoType;
/// Matches \c ParenType nodes.
///
/// Given
/// \code
/// int (*ptr_to_array)[4];
/// int *array_of_ptrs[4];
/// \endcode
///
/// \c varDecl(hasType(pointsTo(parenType()))) matches \c ptr_to_array but not
/// \c array_of_ptrs.
extern const AstTypeMatcher<ParenType> parenType;
/// Matches \c ParenType nodes where the inner type is a specific type.
///
/// Given
/// \code
/// int (*ptr_to_array)[4];
/// int (*ptr_to_func)(int);
/// \endcode
///
/// \c varDecl(hasType(pointsTo(parenType(innerType(functionType()))))) matches
/// \c ptr_to_func but not \c ptr_to_array.
///
/// Usable as: Matcher<ParenType>
AST_TYPE_TRAVERSE_MATCHER(innerType, getInnerType,
AST_POLYMORPHIC_SUPPORTED_TYPES(ParenType));
/// Matches block pointer types, i.e. types syntactically represented as
/// "void (^)(int)".
///
/// The \c pointee is always required to be a \c FunctionType.
extern const AstTypeMatcher<BlockPointerType> blockPointerType;
/// Matches member pointer types.
/// Given
/// \code
/// struct A { int i; }
/// A::* ptr = A::i;
/// \endcode
/// memberPointerType()
/// matches "A::* ptr"
extern const AstTypeMatcher<MemberPointerType> memberPointerType;
/// Matches pointer types, but does not match Objective-C object pointer
/// types.
///
/// Given
/// \code
/// int *a;
/// int &b = *a;
/// int c = 5;
///
/// @interface Foo
/// @end
/// Foo *f;
/// \endcode
/// pointerType()
/// matches "int *a", but does not match "Foo *f".
extern const AstTypeMatcher<PointerType> pointerType;
/// Matches an Objective-C object pointer type, which is different from
/// a pointer type, despite being syntactically similar.
///
/// Given
/// \code
/// int *a;
///
/// @interface Foo
/// @end
/// Foo *f;
/// \endcode
/// pointerType()
/// matches "Foo *f", but does not match "int *a".
extern const AstTypeMatcher<ObjCObjectPointerType> objcObjectPointerType;
/// Matches both lvalue and rvalue reference types.
///
/// Given
/// \code
/// int *a;
/// int &b = *a;
/// int &&c = 1;
/// auto &d = b;
/// auto &&e = c;
/// auto &&f = 2;
/// int g = 5;
/// \endcode
///
/// \c referenceType() matches the types of \c b, \c c, \c d, \c e, and \c f.
extern const AstTypeMatcher<ReferenceType> referenceType;
/// Matches lvalue reference types.
///
/// Given:
/// \code
/// int *a;
/// int &b = *a;
/// int &&c = 1;
/// auto &d = b;
/// auto &&e = c;
/// auto &&f = 2;
/// int g = 5;
/// \endcode
///
/// \c lValueReferenceType() matches the types of \c b, \c d, and \c e. \c e is
/// matched since the type is deduced as int& by reference collapsing rules.
extern const AstTypeMatcher<LValueReferenceType> lValueReferenceType;
/// Matches rvalue reference types.
///
/// Given:
/// \code
/// int *a;
/// int &b = *a;
/// int &&c = 1;
/// auto &d = b;
/// auto &&e = c;
/// auto &&f = 2;
/// int g = 5;
/// \endcode
///
/// \c rValueReferenceType() matches the types of \c c and \c f. \c e is not
/// matched as it is deduced to int& by reference collapsing rules.
extern const AstTypeMatcher<RValueReferenceType> rValueReferenceType;
/// Narrows PointerType (and similar) matchers to those where the
/// \c pointee matches a given matcher.
///
/// Given
/// \code
/// int *a;
/// int const *b;
/// float const *f;
/// \endcode
/// pointerType(pointee(isConstQualified(), isInteger()))
/// matches "int const *b"
///
/// Usable as: Matcher<BlockPointerType>, Matcher<MemberPointerType>,
/// Matcher<PointerType>, Matcher<ReferenceType>
AST_TYPELOC_TRAVERSE_MATCHER_DECL(
pointee, getPointee,
AST_POLYMORPHIC_SUPPORTED_TYPES(BlockPointerType, MemberPointerType,
PointerType, ReferenceType));
/// Matches typedef types.
///
/// Given
/// \code
/// typedef int X;
/// \endcode
/// typedefType()
/// matches "typedef int X"
extern const AstTypeMatcher<TypedefType> typedefType;
/// Matches enum types.
///
/// Given
/// \code
/// enum C { Green };
/// enum class S { Red };
///
/// C c;
/// S s;
/// \endcode
//
/// \c enumType() matches the type of the variable declarations of both \c c and
/// \c s.
extern const AstTypeMatcher<EnumType> enumType;
/// Matches template specialization types.
///
/// Given
/// \code
/// template <typename T>
/// class C { };
///
/// template class C<int>; // A
/// C<char> var; // B
/// \endcode
///
/// \c templateSpecializationType() matches the type of the explicit
/// instantiation in \c A and the type of the variable declaration in \c B.
extern const AstTypeMatcher<TemplateSpecializationType>
templateSpecializationType;
/// Matches C++17 deduced template specialization types, e.g. deduced class
/// template types.
///
/// Given
/// \code
/// template <typename T>
/// class C { public: C(T); };
///
/// C c(123);
/// \endcode
/// \c deducedTemplateSpecializationType() matches the type in the declaration
/// of the variable \c c.
extern const AstTypeMatcher<DeducedTemplateSpecializationType>
deducedTemplateSpecializationType;
/// Matches types nodes representing unary type transformations.
///
/// Given:
/// \code
/// typedef __underlying_type(T) type;
/// \endcode
/// unaryTransformType()
/// matches "__underlying_type(T)"
extern const AstTypeMatcher<UnaryTransformType> unaryTransformType;
/// Matches record types (e.g. structs, classes).
///
/// Given
/// \code
/// class C {};
/// struct S {};
///
/// C c;
/// S s;
/// \endcode
///
/// \c recordType() matches the type of the variable declarations of both \c c
/// and \c s.
extern const AstTypeMatcher<RecordType> recordType;
/// Matches tag types (record and enum types).
///
/// Given
/// \code
/// enum E {};
/// class C {};
///
/// E e;
/// C c;
/// \endcode
///
/// \c tagType() matches the type of the variable declarations of both \c e
/// and \c c.
extern const AstTypeMatcher<TagType> tagType;
/// Matches types specified with an elaborated type keyword or with a
/// qualified name.
///
/// Given
/// \code
/// namespace N {
/// namespace M {
/// class D {};
/// }
/// }
/// class C {};
///
/// class C c;
/// N::M::D d;
/// \endcode
///
/// \c elaboratedType() matches the type of the variable declarations of both
/// \c c and \c d.
extern const AstTypeMatcher<ElaboratedType> elaboratedType;
/// Matches ElaboratedTypes whose qualifier, a NestedNameSpecifier,
/// matches \c InnerMatcher if the qualifier exists.
///
/// Given
/// \code
/// namespace N {
/// namespace M {
/// class D {};
/// }
/// }
/// N::M::D d;
/// \endcode
///
/// \c elaboratedType(hasQualifier(hasPrefix(specifiesNamespace(hasName("N"))))
/// matches the type of the variable declaration of \c d.
AST_MATCHER_P(ElaboratedType, hasQualifier,
internal::Matcher<NestedNameSpecifier>, InnerMatcher) {
if (const NestedNameSpecifier *Qualifier = Node.getQualifier())
return InnerMatcher.matches(*Qualifier, Finder, Builder);
return false;
}
/// Matches ElaboratedTypes whose named type matches \c InnerMatcher.
///
/// Given
/// \code
/// namespace N {
/// namespace M {
/// class D {};
/// }
/// }
/// N::M::D d;
/// \endcode
///
/// \c elaboratedType(namesType(recordType(
/// hasDeclaration(namedDecl(hasName("D")))))) matches the type of the variable
/// declaration of \c d.
AST_MATCHER_P(ElaboratedType, namesType, internal::Matcher<QualType>,
InnerMatcher) {
return InnerMatcher.matches(Node.getNamedType(), Finder, Builder);
}
/// Matches types specified through a using declaration.
///
/// Given
/// \code
/// namespace a { struct S {}; }
/// using a::S;
/// S s;
/// \endcode
///
/// \c usingType() matches the type of the variable declaration of \c s.
extern const AstTypeMatcher<UsingType> usingType;
/// Matches types that represent the result of substituting a type for a
/// template type parameter.
///
/// Given
/// \code
/// template <typename T>
/// void F(T t) {
/// int i = 1 + t;
/// }
/// \endcode
///
/// \c substTemplateTypeParmType() matches the type of 't' but not '1'
extern const AstTypeMatcher<SubstTemplateTypeParmType>
substTemplateTypeParmType;
/// Matches template type parameter substitutions that have a replacement
/// type that matches the provided matcher.
///
/// Given
/// \code
/// template <typename T>
/// double F(T t);
/// int i;
/// double j = F(i);
/// \endcode
///
/// \c substTemplateTypeParmType(hasReplacementType(type())) matches int
AST_TYPE_TRAVERSE_MATCHER(
hasReplacementType, getReplacementType,
AST_POLYMORPHIC_SUPPORTED_TYPES(SubstTemplateTypeParmType));
/// Matches template type parameter types.
///
/// Example matches T, but not int.
/// (matcher = templateTypeParmType())
/// \code
/// template <typename T> void f(int i);
/// \endcode
extern const AstTypeMatcher<TemplateTypeParmType> templateTypeParmType;
/// Matches injected class name types.
///
/// Example matches S s, but not S<T> s.
/// (matcher = parmVarDecl(hasType(injectedClassNameType())))
/// \code
/// template <typename T> struct S {
/// void f(S s);
/// void g(S<T> s);
/// };
/// \endcode
extern const AstTypeMatcher<InjectedClassNameType> injectedClassNameType;
/// Matches decayed type
/// Example matches i[] in declaration of f.
/// (matcher = valueDecl(hasType(decayedType(hasDecayedType(pointerType())))))
/// Example matches i[1].
/// (matcher = expr(hasType(decayedType(hasDecayedType(pointerType())))))
/// \code
/// void f(int i[]) {
/// i[1] = 0;
/// }
/// \endcode
extern const AstTypeMatcher<DecayedType> decayedType;
/// Matches the decayed type, whoes decayed type matches \c InnerMatcher
AST_MATCHER_P(DecayedType, hasDecayedType, internal::Matcher<QualType>,
InnerType) {
return InnerType.matches(Node.getDecayedType(), Finder, Builder);
}
/// Matches declarations whose declaration context, interpreted as a
/// Decl, matches \c InnerMatcher.
///
/// Given
/// \code
/// namespace N {
/// namespace M {
/// class D {};
/// }
/// }
/// \endcode
///
/// \c cxxRcordDecl(hasDeclContext(namedDecl(hasName("M")))) matches the
/// declaration of \c class \c D.
AST_MATCHER_P(Decl, hasDeclContext, internal::Matcher<Decl>, InnerMatcher) {
const DeclContext *DC = Node.getDeclContext();
if (!DC) return false;
return InnerMatcher.matches(*Decl::castFromDeclContext(DC), Finder, Builder);
}
/// Matches nested name specifiers.
///
/// Given
/// \code
/// namespace ns {
/// struct A { static void f(); };
/// void A::f() {}
/// void g() { A::f(); }
/// }
/// ns::A a;
/// \endcode
/// nestedNameSpecifier()
/// matches "ns::" and both "A::"
extern const internal::VariadicAllOfMatcher<NestedNameSpecifier>
nestedNameSpecifier;
/// Same as \c nestedNameSpecifier but matches \c NestedNameSpecifierLoc.
extern const internal::VariadicAllOfMatcher<NestedNameSpecifierLoc>
nestedNameSpecifierLoc;
/// Matches \c NestedNameSpecifierLocs for which the given inner
/// NestedNameSpecifier-matcher matches.
AST_MATCHER_FUNCTION_P_OVERLOAD(
internal::BindableMatcher<NestedNameSpecifierLoc>, loc,
internal::Matcher<NestedNameSpecifier>, InnerMatcher, 1) {
return internal::BindableMatcher<NestedNameSpecifierLoc>(
new internal::LocMatcher<NestedNameSpecifierLoc, NestedNameSpecifier>(
InnerMatcher));
}
/// Matches nested name specifiers that specify a type matching the
/// given \c QualType matcher without qualifiers.
///
/// Given
/// \code
/// struct A { struct B { struct C {}; }; };
/// A::B::C c;
/// \endcode
/// nestedNameSpecifier(specifiesType(
/// hasDeclaration(cxxRecordDecl(hasName("A")))
/// ))
/// matches "A::"
AST_MATCHER_P(NestedNameSpecifier, specifiesType,
internal::Matcher<QualType>, InnerMatcher) {
if (!Node.getAsType())
return false;
return InnerMatcher.matches(QualType(Node.getAsType(), 0), Finder, Builder);
}
/// Matches nested name specifier locs that specify a type matching the
/// given \c TypeLoc.
///
/// Given
/// \code
/// struct A { struct B { struct C {}; }; };
/// A::B::C c;
/// \endcode
/// nestedNameSpecifierLoc(specifiesTypeLoc(loc(type(
/// hasDeclaration(cxxRecordDecl(hasName("A")))))))
/// matches "A::"
AST_MATCHER_P(NestedNameSpecifierLoc, specifiesTypeLoc,
internal::Matcher<TypeLoc>, InnerMatcher) {
return Node && Node.getNestedNameSpecifier()->getAsType() &&
InnerMatcher.matches(Node.getTypeLoc(), Finder, Builder);
}
/// Matches on the prefix of a \c NestedNameSpecifier.
///
/// Given
/// \code
/// struct A { struct B { struct C {}; }; };
/// A::B::C c;
/// \endcode
/// nestedNameSpecifier(hasPrefix(specifiesType(asString("struct A")))) and
/// matches "A::"
AST_MATCHER_P_OVERLOAD(NestedNameSpecifier, hasPrefix,
internal::Matcher<NestedNameSpecifier>, InnerMatcher,
0) {
const NestedNameSpecifier *NextNode = Node.getPrefix();
if (!NextNode)
return false;
return InnerMatcher.matches(*NextNode, Finder, Builder);
}
/// Matches on the prefix of a \c NestedNameSpecifierLoc.
///
/// Given
/// \code
/// struct A { struct B { struct C {}; }; };
/// A::B::C c;
/// \endcode
/// nestedNameSpecifierLoc(hasPrefix(loc(specifiesType(asString("struct A")))))
/// matches "A::"
AST_MATCHER_P_OVERLOAD(NestedNameSpecifierLoc, hasPrefix,
internal::Matcher<NestedNameSpecifierLoc>, InnerMatcher,
1) {
NestedNameSpecifierLoc NextNode = Node.getPrefix();
if (!NextNode)
return false;
return InnerMatcher.matches(NextNode, Finder, Builder);
}
/// Matches nested name specifiers that specify a namespace matching the
/// given namespace matcher.
///
/// Given
/// \code
/// namespace ns { struct A {}; }
/// ns::A a;
/// \endcode
/// nestedNameSpecifier(specifiesNamespace(hasName("ns")))
/// matches "ns::"
AST_MATCHER_P(NestedNameSpecifier, specifiesNamespace,
internal::Matcher<NamespaceDecl>, InnerMatcher) {
if (!Node.getAsNamespace())
return false;
return InnerMatcher.matches(*Node.getAsNamespace(), Finder, Builder);
}
/// Matches attributes.
/// Attributes may be attached with a variety of different syntaxes (including
/// keywords, C++11 attributes, GNU ``__attribute``` and MSVC `__declspec``,
/// and ``#pragma``s). They may also be implicit.
///
/// Given
/// \code
/// struct [[nodiscard]] Foo{};
/// void bar(int * __attribute__((nonnull)) );
/// __declspec(noinline) void baz();
///
/// #pragma omp declare simd
/// int min();
/// \endcode
/// attr()
/// matches "nodiscard", "nonnull", "noinline", and the whole "#pragma" line.
extern const internal::VariadicAllOfMatcher<Attr> attr;
/// Overloads for the \c equalsNode matcher.
/// FIXME: Implement for other node types.
/// @{
/// Matches if a node equals another node.
///
/// \c Decl has pointer identity in the AST.
AST_MATCHER_P_OVERLOAD(Decl, equalsNode, const Decl*, Other, 0) {
return &Node == Other;
}
/// Matches if a node equals another node.
///
/// \c Stmt has pointer identity in the AST.
AST_MATCHER_P_OVERLOAD(Stmt, equalsNode, const Stmt*, Other, 1) {
return &Node == Other;
}
/// Matches if a node equals another node.
///
/// \c Type has pointer identity in the AST.
AST_MATCHER_P_OVERLOAD(Type, equalsNode, const Type*, Other, 2) {
return &Node == Other;
}
/// @}
/// Matches each case or default statement belonging to the given switch
/// statement. This matcher may produce multiple matches.
///
/// Given
/// \code
/// switch (1) { case 1: case 2: default: switch (2) { case 3: case 4: ; } }
/// \endcode
/// switchStmt(forEachSwitchCase(caseStmt().bind("c"))).bind("s")
/// matches four times, with "c" binding each of "case 1:", "case 2:",
/// "case 3:" and "case 4:", and "s" respectively binding "switch (1)",
/// "switch (1)", "switch (2)" and "switch (2)".
AST_MATCHER_P(SwitchStmt, forEachSwitchCase, internal::Matcher<SwitchCase>,
InnerMatcher) {
BoundNodesTreeBuilder Result;
// FIXME: getSwitchCaseList() does not necessarily guarantee a stable
// iteration order. We should use the more general iterating matchers once
// they are capable of expressing this matcher (for example, it should ignore
// case statements belonging to nested switch statements).
bool Matched = false;
for (const SwitchCase *SC = Node.getSwitchCaseList(); SC;
SC = SC->getNextSwitchCase()) {
BoundNodesTreeBuilder CaseBuilder(*Builder);
bool CaseMatched = InnerMatcher.matches(*SC, Finder, &CaseBuilder);
if (CaseMatched) {
Matched = true;
Result.addMatch(CaseBuilder);
}
}
*Builder = std::move(Result);
return Matched;
}
/// Matches each constructor initializer in a constructor definition.
///
/// Given
/// \code
/// class A { A() : i(42), j(42) {} int i; int j; };
/// \endcode
/// cxxConstructorDecl(forEachConstructorInitializer(
/// forField(decl().bind("x"))
/// ))
/// will trigger two matches, binding for 'i' and 'j' respectively.
AST_MATCHER_P(CXXConstructorDecl, forEachConstructorInitializer,
internal::Matcher<CXXCtorInitializer>, InnerMatcher) {
BoundNodesTreeBuilder Result;
bool Matched = false;
for (const auto *I : Node.inits()) {
if (Finder->isTraversalIgnoringImplicitNodes() && !I->isWritten())
continue;
BoundNodesTreeBuilder InitBuilder(*Builder);
if (InnerMatcher.matches(*I, Finder, &InitBuilder)) {
Matched = true;
Result.addMatch(InitBuilder);
}
}
*Builder = std::move(Result);
return Matched;
}
/// Matches constructor declarations that are copy constructors.
///
/// Given
/// \code
/// struct S {
/// S(); // #1
/// S(const S &); // #2
/// S(S &&); // #3
/// };
/// \endcode
/// cxxConstructorDecl(isCopyConstructor()) will match #2, but not #1 or #3.
AST_MATCHER(CXXConstructorDecl, isCopyConstructor) {
return Node.isCopyConstructor();
}
/// Matches constructor declarations that are move constructors.
///
/// Given
/// \code
/// struct S {
/// S(); // #1
/// S(const S &); // #2
/// S(S &&); // #3
/// };
/// \endcode
/// cxxConstructorDecl(isMoveConstructor()) will match #3, but not #1 or #2.
AST_MATCHER(CXXConstructorDecl, isMoveConstructor) {
return Node.isMoveConstructor();
}
/// Matches constructor declarations that are default constructors.
///
/// Given
/// \code
/// struct S {
/// S(); // #1
/// S(const S &); // #2
/// S(S &&); // #3
/// };
/// \endcode
/// cxxConstructorDecl(isDefaultConstructor()) will match #1, but not #2 or #3.
AST_MATCHER(CXXConstructorDecl, isDefaultConstructor) {
return Node.isDefaultConstructor();
}
/// Matches constructors that delegate to another constructor.
///
/// Given
/// \code
/// struct S {
/// S(); // #1
/// S(int) {} // #2
/// S(S &&) : S() {} // #3
/// };
/// S::S() : S(0) {} // #4
/// \endcode
/// cxxConstructorDecl(isDelegatingConstructor()) will match #3 and #4, but not
/// #1 or #2.
AST_MATCHER(CXXConstructorDecl, isDelegatingConstructor) {
return Node.isDelegatingConstructor();
}
/// Matches constructor, conversion function, and deduction guide declarations
/// that have an explicit specifier if this explicit specifier is resolved to
/// true.
///
/// Given
/// \code
/// template<bool b>
/// struct S {
/// S(int); // #1
/// explicit S(double); // #2
/// operator int(); // #3
/// explicit operator bool(); // #4
/// explicit(false) S(bool) // # 7
/// explicit(true) S(char) // # 8
/// explicit(b) S(S) // # 9
/// };
/// S(int) -> S<true> // #5
/// explicit S(double) -> S<false> // #6
/// \endcode
/// cxxConstructorDecl(isExplicit()) will match #2 and #8, but not #1, #7 or #9.
/// cxxConversionDecl(isExplicit()) will match #4, but not #3.
/// cxxDeductionGuideDecl(isExplicit()) will match #6, but not #5.
AST_POLYMORPHIC_MATCHER(isExplicit, AST_POLYMORPHIC_SUPPORTED_TYPES(
CXXConstructorDecl, CXXConversionDecl,
CXXDeductionGuideDecl)) {
return Node.isExplicit();
}
/// Matches the expression in an explicit specifier if present in the given
/// declaration.
///
/// Given
/// \code
/// template<bool b>
/// struct S {
/// S(int); // #1
/// explicit S(double); // #2
/// operator int(); // #3
/// explicit operator bool(); // #4
/// explicit(false) S(bool) // # 7
/// explicit(true) S(char) // # 8
/// explicit(b) S(S) // # 9
/// };
/// S(int) -> S<true> // #5
/// explicit S(double) -> S<false> // #6
/// \endcode
/// cxxConstructorDecl(hasExplicitSpecifier(constantExpr())) will match #7, #8 and #9, but not #1 or #2.
/// cxxConversionDecl(hasExplicitSpecifier(constantExpr())) will not match #3 or #4.
/// cxxDeductionGuideDecl(hasExplicitSpecifier(constantExpr())) will not match #5 or #6.
AST_MATCHER_P(FunctionDecl, hasExplicitSpecifier, internal::Matcher<Expr>,
InnerMatcher) {
ExplicitSpecifier ES = ExplicitSpecifier::getFromDecl(&Node);
if (!ES.getExpr())
return false;
ASTChildrenNotSpelledInSourceScope RAII(Finder, false);
return InnerMatcher.matches(*ES.getExpr(), Finder, Builder);
}
/// Matches functions, variables and namespace declarations that are marked with
/// the inline keyword.
///
/// Given
/// \code
/// inline void f();
/// void g();
/// namespace n {
/// inline namespace m {}
/// }
/// inline int Foo = 5;
/// \endcode
/// functionDecl(isInline()) will match ::f().
/// namespaceDecl(isInline()) will match n::m.
/// varDecl(isInline()) will match Foo;
AST_POLYMORPHIC_MATCHER(isInline, AST_POLYMORPHIC_SUPPORTED_TYPES(NamespaceDecl,
FunctionDecl,
VarDecl)) {
// This is required because the spelling of the function used to determine
// whether inline is specified or not differs between the polymorphic types.
if (const auto *FD = dyn_cast<FunctionDecl>(&Node))
return FD->isInlineSpecified();
if (const auto *NSD = dyn_cast<NamespaceDecl>(&Node))
return NSD->isInline();
if (const auto *VD = dyn_cast<VarDecl>(&Node))
return VD->isInline();
llvm_unreachable("Not a valid polymorphic type");
}
/// Matches anonymous namespace declarations.
///
/// Given
/// \code
/// namespace n {
/// namespace {} // #1
/// }
/// \endcode
/// namespaceDecl(isAnonymous()) will match #1 but not ::n.
AST_MATCHER(NamespaceDecl, isAnonymous) {
return Node.isAnonymousNamespace();
}
/// Matches declarations in the namespace `std`, but not in nested namespaces.
///
/// Given
/// \code
/// class vector {};
/// namespace foo {
/// class vector {};
/// namespace std {
/// class vector {};
/// }
/// }
/// namespace std {
/// inline namespace __1 {
/// class vector {}; // #1
/// namespace experimental {
/// class vector {};
/// }
/// }
/// }
/// \endcode
/// cxxRecordDecl(hasName("vector"), isInStdNamespace()) will match only #1.
AST_MATCHER(Decl, isInStdNamespace) { return Node.isInStdNamespace(); }
/// If the given case statement does not use the GNU case range
/// extension, matches the constant given in the statement.
///
/// Given
/// \code
/// switch (1) { case 1: case 1+1: case 3 ... 4: ; }
/// \endcode
/// caseStmt(hasCaseConstant(integerLiteral()))
/// matches "case 1:"
AST_MATCHER_P(CaseStmt, hasCaseConstant, internal::Matcher<Expr>,
InnerMatcher) {
if (Node.getRHS())
return false;
return InnerMatcher.matches(*Node.getLHS(), Finder, Builder);
}
/// Matches declaration that has a given attribute.
///
/// Given
/// \code
/// __attribute__((device)) void f() { ... }
/// \endcode
/// decl(hasAttr(clang::attr::CUDADevice)) matches the function declaration of
/// f. If the matcher is used from clang-query, attr::Kind parameter should be
/// passed as a quoted string. e.g., hasAttr("attr::CUDADevice").
AST_MATCHER_P(Decl, hasAttr, attr::Kind, AttrKind) {
for (const auto *Attr : Node.attrs()) {
if (Attr->getKind() == AttrKind)
return true;
}
return false;
}
/// Matches the return value expression of a return statement
///
/// Given
/// \code
/// return a + b;
/// \endcode
/// hasReturnValue(binaryOperator())
/// matches 'return a + b'
/// with binaryOperator()
/// matching 'a + b'
AST_MATCHER_P(ReturnStmt, hasReturnValue, internal::Matcher<Expr>,
InnerMatcher) {
if (const auto *RetValue = Node.getRetValue())
return InnerMatcher.matches(*RetValue, Finder, Builder);
return false;
}
/// Matches CUDA kernel call expression.
///
/// Example matches,
/// \code
/// kernel<<<i,j>>>();
/// \endcode
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CUDAKernelCallExpr>
cudaKernelCallExpr;
/// Matches expressions that resolve to a null pointer constant, such as
/// GNU's __null, C++11's nullptr, or C's NULL macro.
///
/// Given:
/// \code
/// void *v1 = NULL;
/// void *v2 = nullptr;
/// void *v3 = __null; // GNU extension
/// char *cp = (char *)0;
/// int *ip = 0;
/// int i = 0;
/// \endcode
/// expr(nullPointerConstant())
/// matches the initializer for v1, v2, v3, cp, and ip. Does not match the
/// initializer for i.
AST_MATCHER_FUNCTION(internal::Matcher<Expr>, nullPointerConstant) {
return anyOf(
gnuNullExpr(), cxxNullPtrLiteralExpr(),
integerLiteral(equals(0), hasParent(expr(hasType(pointerType())))));
}
/// Matches the DecompositionDecl the binding belongs to.
///
/// For example, in:
/// \code
/// void foo()
/// {
/// int arr[3];
/// auto &[f, s, t] = arr;
///
/// f = 42;
/// }
/// \endcode
/// The matcher:
/// \code
/// bindingDecl(hasName("f"),
/// forDecomposition(decompositionDecl())
/// \endcode
/// matches 'f' in 'auto &[f, s, t]'.
AST_MATCHER_P(BindingDecl, forDecomposition, internal::Matcher<ValueDecl>,
InnerMatcher) {
if (const ValueDecl *VD = Node.getDecomposedDecl())
return InnerMatcher.matches(*VD, Finder, Builder);
return false;
}
/// Matches the Nth binding of a DecompositionDecl.
///
/// For example, in:
/// \code
/// void foo()
/// {
/// int arr[3];
/// auto &[f, s, t] = arr;
///
/// f = 42;
/// }
/// \endcode
/// The matcher:
/// \code
/// decompositionDecl(hasBinding(0,
/// bindingDecl(hasName("f").bind("fBinding"))))
/// \endcode
/// matches the decomposition decl with 'f' bound to "fBinding".
AST_MATCHER_P2(DecompositionDecl, hasBinding, unsigned, N,
internal::Matcher<BindingDecl>, InnerMatcher) {
if (Node.bindings().size() <= N)
return false;
return InnerMatcher.matches(*Node.bindings()[N], Finder, Builder);
}
/// Matches any binding of a DecompositionDecl.
///
/// For example, in:
/// \code
/// void foo()
/// {
/// int arr[3];
/// auto &[f, s, t] = arr;
///
/// f = 42;
/// }
/// \endcode
/// The matcher:
/// \code
/// decompositionDecl(hasAnyBinding(bindingDecl(hasName("f").bind("fBinding"))))
/// \endcode
/// matches the decomposition decl with 'f' bound to "fBinding".
AST_MATCHER_P(DecompositionDecl, hasAnyBinding, internal::Matcher<BindingDecl>,
InnerMatcher) {
return llvm::any_of(Node.bindings(), [&](const auto *Binding) {
return InnerMatcher.matches(*Binding, Finder, Builder);
});
}
/// Matches declaration of the function the statement belongs to.
///
/// Deprecated. Use forCallable() to correctly handle the situation when
/// the declaration is not a function (but a block or an Objective-C method).
/// forFunction() not only fails to take non-functions into account but also
/// may match the wrong declaration in their presence.
///
/// Given:
/// \code
/// F& operator=(const F& o) {
/// std::copy_if(o.begin(), o.end(), begin(), [](V v) { return v > 0; });
/// return *this;
/// }
/// \endcode
/// returnStmt(forFunction(hasName("operator=")))
/// matches 'return *this'
/// but does not match 'return v > 0'
AST_MATCHER_P(Stmt, forFunction, internal::Matcher<FunctionDecl>,
InnerMatcher) {
const auto &Parents = Finder->getASTContext().getParents(Node);
llvm::SmallVector<DynTypedNode, 8> Stack(Parents.begin(), Parents.end());
while (!Stack.empty()) {
const auto &CurNode = Stack.back();
Stack.pop_back();
if (const auto *FuncDeclNode = CurNode.get<FunctionDecl>()) {
if (InnerMatcher.matches(*FuncDeclNode, Finder, Builder)) {
return true;
}
} else if (const auto *LambdaExprNode = CurNode.get<LambdaExpr>()) {
if (InnerMatcher.matches(*LambdaExprNode->getCallOperator(), Finder,
Builder)) {
return true;
}
} else {
llvm::append_range(Stack, Finder->getASTContext().getParents(CurNode));
}
}
return false;
}
/// Matches declaration of the function, method, or block the statement
/// belongs to.
///
/// Given:
/// \code
/// F& operator=(const F& o) {
/// std::copy_if(o.begin(), o.end(), begin(), [](V v) { return v > 0; });
/// return *this;
/// }
/// \endcode
/// returnStmt(forCallable(functionDecl(hasName("operator="))))
/// matches 'return *this'
/// but does not match 'return v > 0'
///
/// Given:
/// \code
/// -(void) foo {
/// int x = 1;
/// dispatch_sync(queue, ^{ int y = 2; });
/// }
/// \endcode
/// declStmt(forCallable(objcMethodDecl()))
/// matches 'int x = 1'
/// but does not match 'int y = 2'.
/// whereas declStmt(forCallable(blockDecl()))
/// matches 'int y = 2'
/// but does not match 'int x = 1'.
AST_MATCHER_P(Stmt, forCallable, internal::Matcher<Decl>, InnerMatcher) {
const auto &Parents = Finder->getASTContext().getParents(Node);
llvm::SmallVector<DynTypedNode, 8> Stack(Parents.begin(), Parents.end());
while (!Stack.empty()) {
const auto &CurNode = Stack.back();
Stack.pop_back();
if (const auto *FuncDeclNode = CurNode.get<FunctionDecl>()) {
if (InnerMatcher.matches(*FuncDeclNode, Finder, Builder)) {
return true;
}
} else if (const auto *LambdaExprNode = CurNode.get<LambdaExpr>()) {
if (InnerMatcher.matches(*LambdaExprNode->getCallOperator(), Finder,
Builder)) {
return true;
}
} else if (const auto *ObjCMethodDeclNode = CurNode.get<ObjCMethodDecl>()) {
if (InnerMatcher.matches(*ObjCMethodDeclNode, Finder, Builder)) {
return true;
}
} else if (const auto *BlockDeclNode = CurNode.get<BlockDecl>()) {
if (InnerMatcher.matches(*BlockDeclNode, Finder, Builder)) {
return true;
}
} else {
llvm::append_range(Stack, Finder->getASTContext().getParents(CurNode));
}
}
return false;
}
/// Matches a declaration that has external formal linkage.
///
/// Example matches only z (matcher = varDecl(hasExternalFormalLinkage()))
/// \code
/// void f() {
/// int x;
/// static int y;
/// }
/// int z;
/// \endcode
///
/// Example matches f() because it has external formal linkage despite being
/// unique to the translation unit as though it has internal likage
/// (matcher = functionDecl(hasExternalFormalLinkage()))
///
/// \code
/// namespace {
/// void f() {}
/// }
/// \endcode
AST_MATCHER(NamedDecl, hasExternalFormalLinkage) {
return Node.hasExternalFormalLinkage();
}
/// Matches a declaration that has default arguments.
///
/// Example matches y (matcher = parmVarDecl(hasDefaultArgument()))
/// \code
/// void x(int val) {}
/// void y(int val = 0) {}
/// \endcode
///
/// Deprecated. Use hasInitializer() instead to be able to
/// match on the contents of the default argument. For example:
///
/// \code
/// void x(int val = 7) {}
/// void y(int val = 42) {}
/// \endcode
/// parmVarDecl(hasInitializer(integerLiteral(equals(42))))
/// matches the parameter of y
///
/// A matcher such as
/// parmVarDecl(hasInitializer(anything()))
/// is equivalent to parmVarDecl(hasDefaultArgument()).
AST_MATCHER(ParmVarDecl, hasDefaultArgument) {
return Node.hasDefaultArg();
}
/// Matches array new expressions.
///
/// Given:
/// \code
/// MyClass *p1 = new MyClass[10];
/// \endcode
/// cxxNewExpr(isArray())
/// matches the expression 'new MyClass[10]'.
AST_MATCHER(CXXNewExpr, isArray) {
return Node.isArray();
}
/// Matches placement new expression arguments.
///
/// Given:
/// \code
/// MyClass *p1 = new (Storage, 16) MyClass();
/// \endcode
/// cxxNewExpr(hasPlacementArg(1, integerLiteral(equals(16))))
/// matches the expression 'new (Storage, 16) MyClass()'.
AST_MATCHER_P2(CXXNewExpr, hasPlacementArg, unsigned, Index,
internal::Matcher<Expr>, InnerMatcher) {
return Node.getNumPlacementArgs() > Index &&
InnerMatcher.matches(*Node.getPlacementArg(Index), Finder, Builder);
}
/// Matches any placement new expression arguments.
///
/// Given:
/// \code
/// MyClass *p1 = new (Storage) MyClass();
/// \endcode
/// cxxNewExpr(hasAnyPlacementArg(anything()))
/// matches the expression 'new (Storage, 16) MyClass()'.
AST_MATCHER_P(CXXNewExpr, hasAnyPlacementArg, internal::Matcher<Expr>,
InnerMatcher) {
return llvm::any_of(Node.placement_arguments(), [&](const Expr *Arg) {
return InnerMatcher.matches(*Arg, Finder, Builder);
});
}
/// Matches array new expressions with a given array size.
///
/// Given:
/// \code
/// MyClass *p1 = new MyClass[10];
/// \endcode
/// cxxNewExpr(hasArraySize(integerLiteral(equals(10))))
/// matches the expression 'new MyClass[10]'.
AST_MATCHER_P(CXXNewExpr, hasArraySize, internal::Matcher<Expr>, InnerMatcher) {
return Node.isArray() && *Node.getArraySize() &&
InnerMatcher.matches(**Node.getArraySize(), Finder, Builder);
}
/// Matches a class declaration that is defined.
///
/// Example matches x (matcher = cxxRecordDecl(hasDefinition()))
/// \code
/// class x {};
/// class y;
/// \endcode
AST_MATCHER(CXXRecordDecl, hasDefinition) {
return Node.hasDefinition();
}
/// Matches C++11 scoped enum declaration.
///
/// Example matches Y (matcher = enumDecl(isScoped()))
/// \code
/// enum X {};
/// enum class Y {};
/// \endcode
AST_MATCHER(EnumDecl, isScoped) {
return Node.isScoped();
}
/// Matches a function declared with a trailing return type.
///
/// Example matches Y (matcher = functionDecl(hasTrailingReturn()))
/// \code
/// int X() {}
/// auto Y() -> int {}
/// \endcode
AST_MATCHER(FunctionDecl, hasTrailingReturn) {
if (const auto *F = Node.getType()->getAs<FunctionProtoType>())
return F->hasTrailingReturn();
return false;
}
/// Matches expressions that match InnerMatcher that are possibly wrapped in an
/// elidable constructor and other corresponding bookkeeping nodes.
///
/// In C++17, elidable copy constructors are no longer being generated in the
/// AST as it is not permitted by the standard. They are, however, part of the
/// AST in C++14 and earlier. So, a matcher must abstract over these differences
/// to work in all language modes. This matcher skips elidable constructor-call
/// AST nodes, `ExprWithCleanups` nodes wrapping elidable constructor-calls and
/// various implicit nodes inside the constructor calls, all of which will not
/// appear in the C++17 AST.
///
/// Given
///
/// \code
/// struct H {};
/// H G();
/// void f() {
/// H D = G();
/// }
/// \endcode
///
/// ``varDecl(hasInitializer(ignoringElidableConstructorCall(callExpr())))``
/// matches ``H D = G()`` in C++11 through C++17 (and beyond).
AST_MATCHER_P(Expr, ignoringElidableConstructorCall,
ast_matchers::internal::Matcher<Expr>, InnerMatcher) {
// E tracks the node that we are examining.
const Expr *E = &Node;
// If present, remove an outer `ExprWithCleanups` corresponding to the
// underlying `CXXConstructExpr`. This check won't cover all cases of added
// `ExprWithCleanups` corresponding to `CXXConstructExpr` nodes (because the
// EWC is placed on the outermost node of the expression, which this may not
// be), but, it still improves the coverage of this matcher.
if (const auto *CleanupsExpr = dyn_cast<ExprWithCleanups>(&Node))
E = CleanupsExpr->getSubExpr();
if (const auto *CtorExpr = dyn_cast<CXXConstructExpr>(E)) {
if (CtorExpr->isElidable()) {
if (const auto *MaterializeTemp =
dyn_cast<MaterializeTemporaryExpr>(CtorExpr->getArg(0))) {
return InnerMatcher.matches(*MaterializeTemp->getSubExpr(), Finder,
Builder);
}
}
}
return InnerMatcher.matches(Node, Finder, Builder);
}
//----------------------------------------------------------------------------//
// OpenMP handling.
//----------------------------------------------------------------------------//
/// Matches any ``#pragma omp`` executable directive.
///
/// Given
///
/// \code
/// #pragma omp parallel
/// #pragma omp parallel default(none)
/// #pragma omp taskyield
/// \endcode
///
/// ``ompExecutableDirective()`` matches ``omp parallel``,
/// ``omp parallel default(none)`` and ``omp taskyield``.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, OMPExecutableDirective>
ompExecutableDirective;
/// Matches standalone OpenMP directives,
/// i.e., directives that can't have a structured block.
///
/// Given
///
/// \code
/// #pragma omp parallel
/// {}
/// #pragma omp taskyield
/// \endcode
///
/// ``ompExecutableDirective(isStandaloneDirective()))`` matches
/// ``omp taskyield``.
AST_MATCHER(OMPExecutableDirective, isStandaloneDirective) {
return Node.isStandaloneDirective();
}
/// Matches the structured-block of the OpenMP executable directive
///
/// Prerequisite: the executable directive must not be standalone directive.
/// If it is, it will never match.
///
/// Given
///
/// \code
/// #pragma omp parallel
/// ;
/// #pragma omp parallel
/// {}
/// \endcode
///
/// ``ompExecutableDirective(hasStructuredBlock(nullStmt()))`` will match ``;``
AST_MATCHER_P(OMPExecutableDirective, hasStructuredBlock,
internal::Matcher<Stmt>, InnerMatcher) {
if (Node.isStandaloneDirective())
return false; // Standalone directives have no structured blocks.
return InnerMatcher.matches(*Node.getStructuredBlock(), Finder, Builder);
}
/// Matches any clause in an OpenMP directive.
///
/// Given
///
/// \code
/// #pragma omp parallel
/// #pragma omp parallel default(none)
/// \endcode
///
/// ``ompExecutableDirective(hasAnyClause(anything()))`` matches
/// ``omp parallel default(none)``.
AST_MATCHER_P(OMPExecutableDirective, hasAnyClause,
internal::Matcher<OMPClause>, InnerMatcher) {
ArrayRef<OMPClause *> Clauses = Node.clauses();
return matchesFirstInPointerRange(InnerMatcher, Clauses.begin(),
Clauses.end(), Finder,
Builder) != Clauses.end();
}
/// Matches OpenMP ``default`` clause.
///
/// Given
///
/// \code
/// #pragma omp parallel default(none)
/// #pragma omp parallel default(shared)
/// #pragma omp parallel default(private)
/// #pragma omp parallel default(firstprivate)
/// #pragma omp parallel
/// \endcode
///
/// ``ompDefaultClause()`` matches ``default(none)``, ``default(shared)``,
/// `` default(private)`` and ``default(firstprivate)``
extern const internal::VariadicDynCastAllOfMatcher<OMPClause, OMPDefaultClause>
ompDefaultClause;
/// Matches if the OpenMP ``default`` clause has ``none`` kind specified.
///
/// Given
///
/// \code
/// #pragma omp parallel
/// #pragma omp parallel default(none)
/// #pragma omp parallel default(shared)
/// #pragma omp parallel default(private)
/// #pragma omp parallel default(firstprivate)
/// \endcode
///
/// ``ompDefaultClause(isNoneKind())`` matches only ``default(none)``.
AST_MATCHER(OMPDefaultClause, isNoneKind) {
return Node.getDefaultKind() == llvm::omp::OMP_DEFAULT_none;
}
/// Matches if the OpenMP ``default`` clause has ``shared`` kind specified.
///
/// Given
///
/// \code
/// #pragma omp parallel
/// #pragma omp parallel default(none)
/// #pragma omp parallel default(shared)
/// #pragma omp parallel default(private)
/// #pragma omp parallel default(firstprivate)
/// \endcode
///
/// ``ompDefaultClause(isSharedKind())`` matches only ``default(shared)``.
AST_MATCHER(OMPDefaultClause, isSharedKind) {
return Node.getDefaultKind() == llvm::omp::OMP_DEFAULT_shared;
}
/// Matches if the OpenMP ``default`` clause has ``private`` kind
/// specified.
///
/// Given
///
/// \code
/// #pragma omp parallel
/// #pragma omp parallel default(none)
/// #pragma omp parallel default(shared)
/// #pragma omp parallel default(private)
/// #pragma omp parallel default(firstprivate)
/// \endcode
///
/// ``ompDefaultClause(isPrivateKind())`` matches only
/// ``default(private)``.
AST_MATCHER(OMPDefaultClause, isPrivateKind) {
return Node.getDefaultKind() == llvm::omp::OMP_DEFAULT_private;
}
/// Matches if the OpenMP ``default`` clause has ``firstprivate`` kind
/// specified.
///
/// Given
///
/// \code
/// #pragma omp parallel
/// #pragma omp parallel default(none)
/// #pragma omp parallel default(shared)
/// #pragma omp parallel default(private)
/// #pragma omp parallel default(firstprivate)
/// \endcode
///
/// ``ompDefaultClause(isFirstPrivateKind())`` matches only
/// ``default(firstprivate)``.
AST_MATCHER(OMPDefaultClause, isFirstPrivateKind) {
return Node.getDefaultKind() == llvm::omp::OMP_DEFAULT_firstprivate;
}
/// Matches if the OpenMP directive is allowed to contain the specified OpenMP
/// clause kind.
///
/// Given
///
/// \code
/// #pragma omp parallel
/// #pragma omp parallel for
/// #pragma omp for
/// \endcode
///
/// `ompExecutableDirective(isAllowedToContainClause(OMPC_default))`` matches
/// ``omp parallel`` and ``omp parallel for``.
///
/// If the matcher is use from clang-query, ``OpenMPClauseKind`` parameter
/// should be passed as a quoted string. e.g.,
/// ``isAllowedToContainClauseKind("OMPC_default").``
AST_MATCHER_P(OMPExecutableDirective, isAllowedToContainClauseKind,
OpenMPClauseKind, CKind) {
return llvm::omp::isAllowedClauseForDirective(
Node.getDirectiveKind(), CKind,
Finder->getASTContext().getLangOpts().OpenMP);
}
//----------------------------------------------------------------------------//
// End OpenMP handling.
//----------------------------------------------------------------------------//
} // namespace ast_matchers
} // namespace clang
#endif // LLVM_CLANG_ASTMATCHERS_ASTMATCHERS_H