// REQUIRES: x86-registered-target // REQUIRES: nvptx-registered-target // RUN: %clang_cc1 -std=c++14 -triple x86_64-unknown-linux-gnu -fsyntax-only \ // RUN: -verify=host,hostdefer,devdefer,expected %s // RUN: %clang_cc1 -std=c++14 -triple nvptx64-nvidia-cuda -fsyntax-only \ // RUN: -fcuda-is-device -verify=dev,devnodeferonly,hostdefer,devdefer,expected %s // RUN: %clang_cc1 -fgpu-exclude-wrong-side-overloads -fgpu-defer-diag -DDEFER=1 \ // RUN: -std=c++14 -triple x86_64-unknown-linux-gnu -fsyntax-only \ // RUN: -verify=host,hostdefer,expected %s // RUN: %clang_cc1 -fgpu-exclude-wrong-side-overloads -fgpu-defer-diag -DDEFER=1 \ // RUN: -std=c++14 -triple nvptx64-nvidia-cuda -fsyntax-only -fcuda-is-device \ // RUN: -verify=dev,devdeferonly,devdefer,expected %s #include "Inputs/cuda.h" // Opaque return types used to check that we pick the right overloads. struct HostReturnTy {}; struct HostReturnTy2 {}; struct DeviceReturnTy {}; struct DeviceReturnTy2 {}; struct HostDeviceReturnTy {}; struct TemplateReturnTy {}; typedef HostReturnTy (*HostFnPtr)(); typedef DeviceReturnTy (*DeviceFnPtr)(); typedef HostDeviceReturnTy (*HostDeviceFnPtr)(); typedef void (*GlobalFnPtr)(); // __global__ functions must return void. // CurrentReturnTy is {HostReturnTy,DeviceReturnTy} during {host,device} // compilation. #ifdef __CUDA_ARCH__ typedef DeviceReturnTy CurrentReturnTy; #else typedef HostReturnTy CurrentReturnTy; #endif // CurrentFnPtr is a function pointer to a {host,device} function during // {host,device} compilation. typedef CurrentReturnTy (*CurrentFnPtr)(); // Host and unattributed functions can't be overloaded. __host__ void hh() {} // expected-note {{previous definition is here}} void hh() {} // expected-error {{redefinition of 'hh'}} // H/D overloading is OK. __host__ HostReturnTy dh() { return HostReturnTy(); } __device__ DeviceReturnTy dh() { return DeviceReturnTy(); } // H/HD and D/HD are not allowed. __host__ __device__ int hdh() { return 0; } // expected-note {{previous declaration is here}} __host__ int hdh() { return 0; } // expected-error@-1 {{__host__ function 'hdh' cannot overload __host__ __device__ function 'hdh'}} __host__ int hhd() { return 0; } // expected-note {{previous declaration is here}} __host__ __device__ int hhd() { return 0; } // expected-error@-1 {{__host__ __device__ function 'hhd' cannot overload __host__ function 'hhd'}} __host__ __device__ int hdd() { return 0; } // expected-note {{previous declaration is here}} __device__ int hdd() { return 0; } // expected-error@-1 {{__device__ function 'hdd' cannot overload __host__ __device__ function 'hdd'}} __device__ int dhd() { return 0; } // expected-note {{previous declaration is here}} __host__ __device__ int dhd() { return 0; } // expected-error@-1 {{__host__ __device__ function 'dhd' cannot overload __device__ function 'dhd'}} // Same tests for extern "C" functions. extern "C" __host__ int chh() { return 0; } // expected-note {{previous definition is here}} extern "C" int chh() { return 0; } // expected-error {{redefinition of 'chh'}} // H/D overloading is OK. extern "C" __device__ DeviceReturnTy cdh() { return DeviceReturnTy(); } extern "C" __host__ HostReturnTy cdh() { return HostReturnTy(); } // H/HD and D/HD overloading is not allowed. extern "C" __host__ __device__ int chhd1() { return 0; } // expected-note {{previous declaration is here}} extern "C" __host__ int chhd1() { return 0; } // expected-error@-1 {{__host__ function 'chhd1' cannot overload __host__ __device__ function 'chhd1'}} extern "C" __host__ int chhd2() { return 0; } // expected-note {{previous declaration is here}} extern "C" __host__ __device__ int chhd2() { return 0; } // expected-error@-1 {{__host__ __device__ function 'chhd2' cannot overload __host__ function 'chhd2'}} // Helper functions to verify calling restrictions. __device__ DeviceReturnTy d() { return DeviceReturnTy(); } // host-note@-1 1+ {{'d' declared here}} // hostdefer-note@-2 1+ {{candidate function not viable: call to __device__ function from __host__ function}} // expected-note@-3 0+ {{candidate function not viable: call to __device__ function from __host__ __device__ function}} __host__ HostReturnTy h() { return HostReturnTy(); } // dev-note@-1 1+ {{'h' declared here}} // devdefer-note@-2 1+ {{candidate function not viable: call to __host__ function from __device__ function}} // expected-note@-3 0+ {{candidate function not viable: call to __host__ function from __host__ __device__ function}} // devdefer-note@-4 1+ {{candidate function not viable: call to __host__ function from __global__ function}} __global__ void g() {} // dev-note@-1 1+ {{'g' declared here}} // devdefer-note@-2 1+ {{candidate function not viable: call to __global__ function from __device__ function}} // expected-note@-3 0+ {{candidate function not viable: call to __global__ function from __host__ __device__ function}} // devdefer-note@-4 1+ {{candidate function not viable: call to __global__ function from __global__ function}} extern "C" __device__ DeviceReturnTy cd() { return DeviceReturnTy(); } // host-note@-1 1+ {{'cd' declared here}} // hostdefer-note@-2 1+ {{candidate function not viable: call to __device__ function from __host__ function}} // expected-note@-3 0+ {{candidate function not viable: call to __device__ function from __host__ __device__ function}} extern "C" __host__ HostReturnTy ch() { return HostReturnTy(); } // dev-note@-1 1+ {{'ch' declared here}} // devdefer-note@-2 1+ {{candidate function not viable: call to __host__ function from __device__ function}} // expected-note@-3 0+ {{candidate function not viable: call to __host__ function from __host__ __device__ function}} // devdefer-note@-4 1+ {{candidate function not viable: call to __host__ function from __global__ function}} __host__ void hostf() { DeviceFnPtr fp_d = d; // host-error {{reference to __device__ function 'd' in __host__ function}} DeviceReturnTy ret_d = d(); // hostdefer-error {{no matching function for call to 'd'}} DeviceFnPtr fp_cd = cd; // host-error {{reference to __device__ function 'cd' in __host__ function}} DeviceReturnTy ret_cd = cd(); // hostdefer-error {{no matching function for call to 'cd'}} HostFnPtr fp_h = h; HostReturnTy ret_h = h(); HostFnPtr fp_ch = ch; HostReturnTy ret_ch = ch(); HostFnPtr fp_dh = dh; HostReturnTy ret_dh = dh(); HostFnPtr fp_cdh = cdh; HostReturnTy ret_cdh = cdh(); GlobalFnPtr fp_g = g; g(); // expected-error {{call to global function 'g' not configured}} g<<<0, 0>>>(); } __device__ void devicef() { DeviceFnPtr fp_d = d; DeviceReturnTy ret_d = d(); DeviceFnPtr fp_cd = cd; DeviceReturnTy ret_cd = cd(); HostFnPtr fp_h = h; // dev-error {{reference to __host__ function 'h' in __device__ function}} HostReturnTy ret_h = h(); // devdefer-error {{no matching function for call to 'h'}} HostFnPtr fp_ch = ch; // dev-error {{reference to __host__ function 'ch' in __device__ function}} HostReturnTy ret_ch = ch(); // devdefer-error {{no matching function for call to 'ch'}} DeviceFnPtr fp_dh = dh; DeviceReturnTy ret_dh = dh(); DeviceFnPtr fp_cdh = cdh; DeviceReturnTy ret_cdh = cdh(); GlobalFnPtr fp_g = g; // dev-error {{reference to __global__ function 'g' in __device__ function}} g(); // devdefer-error {{no matching function for call to 'g'}} g<<<0,0>>>(); // dev-error {{reference to __global__ function 'g' in __device__ function}} } __global__ void globalf() { DeviceFnPtr fp_d = d; DeviceReturnTy ret_d = d(); DeviceFnPtr fp_cd = cd; DeviceReturnTy ret_cd = cd(); HostFnPtr fp_h = h; // dev-error {{reference to __host__ function 'h' in __global__ function}} HostReturnTy ret_h = h(); // devdefer-error {{no matching function for call to 'h'}} HostFnPtr fp_ch = ch; // dev-error {{reference to __host__ function 'ch' in __global__ function}} HostReturnTy ret_ch = ch(); // devdefer-error {{no matching function for call to 'ch'}} DeviceFnPtr fp_dh = dh; DeviceReturnTy ret_dh = dh(); DeviceFnPtr fp_cdh = cdh; DeviceReturnTy ret_cdh = cdh(); GlobalFnPtr fp_g = g; // dev-error {{reference to __global__ function 'g' in __global__ function}} g(); // devdefer-error {{no matching function for call to 'g'}} g<<<0,0>>>(); // dev-error {{reference to __global__ function 'g' in __global__ function}} } __host__ __device__ void hostdevicef() { DeviceFnPtr fp_d = d; DeviceReturnTy ret_d = d(); DeviceFnPtr fp_cd = cd; DeviceReturnTy ret_cd = cd(); #if !defined(__CUDA_ARCH__) // expected-error@-5 {{reference to __device__ function 'd' in __host__ __device__ function}} // expected-error@-5 {{reference to __device__ function 'd' in __host__ __device__ function}} // expected-error@-5 {{reference to __device__ function 'cd' in __host__ __device__ function}} // expected-error@-5 {{reference to __device__ function 'cd' in __host__ __device__ function}} #endif HostFnPtr fp_h = h; HostReturnTy ret_h = h(); HostFnPtr fp_ch = ch; HostReturnTy ret_ch = ch(); #if defined(__CUDA_ARCH__) // expected-error@-5 {{reference to __host__ function 'h' in __host__ __device__ function}} // expected-error@-5 {{reference to __host__ function 'h' in __host__ __device__ function}} // devdefer-error@-5 {{reference to __host__ function 'ch' in __host__ __device__ function}} // expected-error@-5 {{reference to __host__ function 'ch' in __host__ __device__ function}} #endif CurrentFnPtr fp_dh = dh; CurrentReturnTy ret_dh = dh(); CurrentFnPtr fp_cdh = cdh; CurrentReturnTy ret_cdh = cdh(); GlobalFnPtr fp_g = g; #if defined(__CUDA_ARCH__) // expected-error@-2 {{reference to __global__ function 'g' in __host__ __device__ function}} #endif g(); #if defined (__CUDA_ARCH__) // expected-error@-2 {{reference to __global__ function 'g' in __host__ __device__ function}} #else // expected-error@-4 {{call to global function 'g' not configured}} #endif g<<<0,0>>>(); #if defined(__CUDA_ARCH__) // expected-error@-2 {{reference to __global__ function 'g' in __host__ __device__ function}} #endif } // Test for address of overloaded function resolution in the global context. HostFnPtr fp_h = h; HostFnPtr fp_ch = ch; CurrentFnPtr fp_dh = dh; CurrentFnPtr fp_cdh = cdh; GlobalFnPtr fp_g = g; // Test overloading of destructors // Can't mix H and unattributed destructors struct d_h { ~d_h() {} // expected-note {{previous definition is here}} __host__ ~d_h() {} // expected-error {{destructor cannot be redeclared}} }; // HD is OK struct d_hd { __host__ __device__ ~d_hd() {} }; // Test overloading of member functions struct m_h { void operator delete(void *ptr); // expected-note {{previous declaration is here}} __host__ void operator delete(void *ptr); // expected-error {{class member cannot be redeclared}} }; // D/H overloading is OK struct m_dh { __device__ void operator delete(void *ptr); __host__ void operator delete(void *ptr); }; // HD by itself is OK struct m_hd { __device__ __host__ void operator delete(void *ptr); }; struct m_hhd { __host__ void operator delete(void *ptr) {} // expected-note {{previous declaration is here}} __host__ __device__ void operator delete(void *ptr) {} // expected-error@-1 {{__host__ __device__ function 'operator delete' cannot overload __host__ function 'operator delete'}} }; struct m_hdh { __host__ __device__ void operator delete(void *ptr) {} // expected-note {{previous declaration is here}} __host__ void operator delete(void *ptr) {} // expected-error@-1 {{__host__ function 'operator delete' cannot overload __host__ __device__ function 'operator delete'}} }; struct m_dhd { __device__ void operator delete(void *ptr) {} // expected-note {{previous declaration is here}} __host__ __device__ void operator delete(void *ptr) {} // expected-error@-1 {{__host__ __device__ function 'operator delete' cannot overload __device__ function 'operator delete'}} }; struct m_hdd { __host__ __device__ void operator delete(void *ptr) {} // expected-note {{previous declaration is here}} __device__ void operator delete(void *ptr) {} // expected-error@-1 {{__device__ function 'operator delete' cannot overload __host__ __device__ function 'operator delete'}} }; // __global__ functions can't be overloaded based on attribute // difference. struct G { friend void friend_of_g(G &arg); // expected-note {{previous declaration is here}} private: int x; // expected-note {{declared private here}} }; __global__ void friend_of_g(G &arg) { int x = arg.x; } // expected-error@-1 {{__global__ function 'friend_of_g' cannot overload __host__ function 'friend_of_g'}} // expected-error@-2 {{'x' is a private member of 'G'}} void friend_of_g(G &arg) { int x = arg.x; } // HD functions are sometimes allowed to call H or D functions -- this // is an artifact of the source-to-source splitting performed by nvcc // that we need to mimic. During device mode compilation in nvcc, host // functions aren't present at all, so don't participate in // overloading. But in clang, H and D functions are present in both // compilation modes. Clang normally uses the target attribute as a // tiebreaker between overloads with otherwise identical priority, but // in order to match nvcc's behavior, we sometimes need to wholly // discard overloads that would not be present during compilation // under nvcc. template <typename T> TemplateReturnTy template_vs_function(T arg) { return TemplateReturnTy(); } __device__ DeviceReturnTy template_vs_function(float arg) { return DeviceReturnTy(); } // Here we expect to call the templated function during host compilation, even // if -fcuda-disable-target-call-checks is passed, and even though C++ overload // rules prefer the non-templated function. __host__ __device__ void test_host_device_calls_template(void) { #ifdef __CUDA_ARCH__ typedef DeviceReturnTy ExpectedReturnTy; #else typedef TemplateReturnTy ExpectedReturnTy; #endif ExpectedReturnTy ret1 = template_vs_function(1.0f); ExpectedReturnTy ret2 = template_vs_function(2.0); } // Calls from __host__ and __device__ functions should always call the // overloaded function that matches their mode. __host__ void test_host_calls_template_fn() { TemplateReturnTy ret1 = template_vs_function(1.0f); TemplateReturnTy ret2 = template_vs_function(2.0); } __device__ void test_device_calls_template_fn() { DeviceReturnTy ret1 = template_vs_function(1.0f); DeviceReturnTy ret2 = template_vs_function(2.0); } // If we have a mix of HD and H-only or D-only candidates in the overload set, // normal C++ overload resolution rules apply first. template <typename T> TemplateReturnTy template_vs_hd_function(T arg) // devnodeferonly-note@-1{{'template_vs_hd_function<int>' declared here}} { return TemplateReturnTy(); } __host__ __device__ HostDeviceReturnTy template_vs_hd_function(float arg) { return HostDeviceReturnTy(); } __host__ __device__ void test_host_device_calls_hd_template() { #if __CUDA_ARCH__ && DEFER typedef HostDeviceReturnTy ExpectedReturnTy; #else typedef TemplateReturnTy ExpectedReturnTy; #endif HostDeviceReturnTy ret1 = template_vs_hd_function(1.0f); ExpectedReturnTy ret2 = template_vs_hd_function(1); // devnodeferonly-error@-1{{reference to __host__ function 'template_vs_hd_function<int>' in __host__ __device__ function}} } __host__ void test_host_calls_hd_template() { HostDeviceReturnTy ret1 = template_vs_hd_function(1.0f); TemplateReturnTy ret2 = template_vs_hd_function(1); } __device__ void test_device_calls_hd_template() { HostDeviceReturnTy ret1 = template_vs_hd_function(1.0f); // Host-only function template is not callable with strict call checks, // so for device side HD function will be the only choice. HostDeviceReturnTy ret2 = template_vs_hd_function(1); } // Check that overloads still work the same way on both host and // device side when the overload set contains only functions from one // side of compilation. __device__ DeviceReturnTy device_only_function(int arg) { return DeviceReturnTy(); } __device__ DeviceReturnTy2 device_only_function(float arg) { return DeviceReturnTy2(); } #ifndef __CUDA_ARCH__ // expected-note@-3 2{{'device_only_function' declared here}} // expected-note@-3 2{{'device_only_function' declared here}} #endif __host__ HostReturnTy host_only_function(int arg) { return HostReturnTy(); } __host__ HostReturnTy2 host_only_function(float arg) { return HostReturnTy2(); } #ifdef __CUDA_ARCH__ // expected-note@-3 2{{'host_only_function' declared here}} // expected-note@-3 2{{'host_only_function' declared here}} #endif __host__ __device__ void test_host_device_single_side_overloading() { DeviceReturnTy ret1 = device_only_function(1); DeviceReturnTy2 ret2 = device_only_function(1.0f); #ifndef __CUDA_ARCH__ // expected-error@-3 {{reference to __device__ function 'device_only_function' in __host__ __device__ function}} // expected-error@-3 {{reference to __device__ function 'device_only_function' in __host__ __device__ function}} #endif HostReturnTy ret3 = host_only_function(1); HostReturnTy2 ret4 = host_only_function(1.0f); #ifdef __CUDA_ARCH__ // expected-error@-3 {{reference to __host__ function 'host_only_function' in __host__ __device__ function}} // expected-error@-3 {{reference to __host__ function 'host_only_function' in __host__ __device__ function}} #endif } // wrong-sided overloading should not cause diagnostic unless it is emitted. // This inline function is not emitted. inline __host__ __device__ void test_host_device_wrong_side_overloading_inline_no_diag() { DeviceReturnTy ret1 = device_only_function(1); DeviceReturnTy2 ret2 = device_only_function(1.0f); HostReturnTy ret3 = host_only_function(1); HostReturnTy2 ret4 = host_only_function(1.0f); } // wrong-sided overloading should cause diagnostic if it is emitted. // This inline function is emitted since it is called by an emitted function. inline __host__ __device__ void test_host_device_wrong_side_overloading_inline_diag() { DeviceReturnTy ret1 = device_only_function(1); DeviceReturnTy2 ret2 = device_only_function(1.0f); #ifndef __CUDA_ARCH__ // expected-error@-3 {{reference to __device__ function 'device_only_function' in __host__ __device__ function}} // expected-error@-3 {{reference to __device__ function 'device_only_function' in __host__ __device__ function}} #endif HostReturnTy ret3 = host_only_function(1); HostReturnTy2 ret4 = host_only_function(1.0f); #ifdef __CUDA_ARCH__ // expected-error@-3 {{reference to __host__ function 'host_only_function' in __host__ __device__ function}} // expected-error@-3 {{reference to __host__ function 'host_only_function' in __host__ __device__ function}} #endif } __host__ __device__ void test_host_device_wrong_side_overloading_inline_diag_caller() { test_host_device_wrong_side_overloading_inline_diag(); // expected-note@-1 {{called by 'test_host_device_wrong_side_overloading_inline_diag_caller'}} } // Verify that we allow overloading function templates. template <typename T> __host__ T template_overload(const T &a) { return a; }; template <typename T> __device__ T template_overload(const T &a) { return a; }; __host__ void test_host_template_overload() { template_overload(1); // OK. Attribute-based overloading picks __host__ variant. } __device__ void test_device_template_overload() { template_overload(1); // OK. Attribute-based overloading picks __device__ variant. } // Two classes with `operator-` defined. One of them is device only. struct C1; struct C2; __device__ int operator-(const C1 &x, const C1 &y); int operator-(const C2 &x, const C2 &y); template <typename T> __host__ __device__ int constexpr_overload(const T &x, const T &y) { return x - y; } // Verify that function overloading doesn't prune candidate wrongly. int test_constexpr_overload(C2 &x, C2 &y) { return constexpr_overload(x, y); } // Verify no ambiguity for new operator. void *a = new int; __device__ void *b = new int; // expected-error@-1{{dynamic initialization is not supported for __device__, __constant__, __shared__, and __managed__ variables.}} // Verify no ambiguity for new operator. template<typename _Tp> _Tp&& f(); template<typename _Tp, typename = decltype(new _Tp(f<_Tp>()))> void __test(); void foo() { __test<int>(); } // Test resolving implicit host device candidate vs wrong-sided candidate. // In device compilation, implicit host device caller choose implicit host // device candidate and wrong-sided candidate with equal preference. // Resolution result should not change with/without pragma. namespace ImplicitHostDeviceVsWrongSided { HostReturnTy callee(double x); #pragma clang force_cuda_host_device begin HostDeviceReturnTy callee(int x); inline HostReturnTy implicit_hd_caller() { return callee(1.0); } #pragma clang force_cuda_host_device end } // Test resolving implicit host device candidate vs same-sided candidate. // In host compilation, implicit host device caller choose implicit host // device candidate and same-sided candidate with equal preference. // Resolution result should not change with/without pragma. namespace ImplicitHostDeviceVsSameSide { HostReturnTy callee(int x); #pragma clang force_cuda_host_device begin HostDeviceReturnTy callee(double x); inline HostDeviceReturnTy implicit_hd_caller() { return callee(1.0); } #pragma clang force_cuda_host_device end } // Test resolving explicit host device candidate vs. wrong-sided candidate. // When -fgpu-defer-diag is off, wrong-sided candidate is not excluded, therefore // the first callee is chosen. // When -fgpu-defer-diag is on, wrong-sided candidate is excluded, therefore // the second callee is chosen. namespace ExplicitHostDeviceVsWrongSided { HostReturnTy callee(double x); __host__ __device__ HostDeviceReturnTy callee(int x); #if __CUDA_ARCH__ && DEFER typedef HostDeviceReturnTy ExpectedRetTy; #else typedef HostReturnTy ExpectedRetTy; #endif inline __host__ __device__ ExpectedRetTy explicit_hd_caller() { return callee(1.0); } } // In the implicit host device function 'caller', the second 'callee' should be // chosen since it has better match, even though it is an implicit host device // function whereas the first 'callee' is a host function. A diagnostic will be // emitted if the first 'callee' is chosen since deduced return type cannot be // used before it is defined. namespace ImplicitHostDeviceByConstExpr { template <class a> a b; auto callee(...); template <class d> constexpr auto callee(d) -> decltype(0); struct e { template <class ad, class... f> static auto g(ad, f...) { return h<e, decltype(b<f>)...>; } struct i { template <class, class... f> static constexpr auto caller(f... k) { return callee(k...); } }; template <class, class... f> static auto h() { return i::caller<int, f...>; } }; class l { l() { e::g([] {}, this); } }; } // Implicit HD candidate competes with device candidate. // a and b have implicit HD copy ctor. In copy ctor of b, ctor of a is resolved. // copy ctor of a should win over a(short), otherwise there will be ambiguity // due to conversion operator. namespace TestImplicitHDWithD { struct a { __device__ a(short); __device__ operator unsigned() const; __device__ operator int() const; }; struct b { a d; }; void f(b g) { b e = g; } } // Implicit HD candidate competes with host candidate. // a and b have implicit HD copy ctor. In copy ctor of b, ctor of a is resolved. // copy ctor of a should win over a(short), otherwise there will be ambiguity // due to conversion operator. namespace TestImplicitHDWithH { struct a { a(short); __device__ operator unsigned() const; __device__ operator int() const; }; struct b { a d; }; void f(b g) { b e = g; } } // Implicit HD candidate competes with HD candidate. // a and b have implicit HD copy ctor. In copy ctor of b, ctor of a is resolved. // copy ctor of a should win over a(short), otherwise there will be ambiguity // due to conversion operator. namespace TestImplicitHDWithHD { struct a { __host__ __device__ a(short); __device__ operator unsigned() const; __device__ operator int() const; }; struct b { a d; }; void f(b g) { b e = g; } } // HD candidate competes with H candidate. // HD has type mismatch whereas H has type match. // In device compilation, H wins when -fgpu-defer-diag is off and HD wins // when -fgpu-defer-diags is on. In both cases the diagnostic should be // deferred. namespace TestDeferNoMatchingFuncNotEmitted { template <typename> struct a {}; namespace b { struct c : a<int> {}; template <typename d> void ag(d); } // namespace b template <typename ae> __host__ __device__ void ag(a<ae>) { ae e; ag(e); } void f() { (void)ag<b::c>; } } namespace TestDeferNoMatchingFuncEmitted { template <typename> struct a {}; namespace b { struct c : a<int> {}; template <typename d> void ag(d); // devnodeferonly-note@-1{{'ag<TestDeferNoMatchingFuncEmitted::b::c>' declared here}} } // namespace b template <typename ae> __host__ __device__ void ag(a<ae>) { ae e; ag(e); // devnodeferonly-error@-1{{reference to __host__ function 'ag<TestDeferNoMatchingFuncEmitted::b::c>' in __host__ __device__ function}} // devdeferonly-error@-2{{no matching function for call to 'ag'}} // devdeferonly-note@-3{{called by 'ag<TestDeferNoMatchingFuncEmitted::b::c>'}} } __host__ __device__ void f() { (void)ag<b::c>; } // devnodeferonly-note@-1{{called by 'f'}} // devdeferonly-note@-2{{called by 'f'}} } // Two HD candidates compete with H candidate. // HDs have type mismatch whereas H has type match. // In device compilation, H wins when -fgpu-defer-diag is off and two HD win // when -fgpu-defer-diags is on. In both cases the diagnostic should be // deferred. namespace TestDeferAmbiguityNotEmitted { template <typename> struct a {}; namespace b { struct c : a<int> {}; template <typename d> void ag(d, int); } // namespace b template <typename ae> __host__ __device__ void ag(a<ae>, float) { ae e; ag(e, 1); } template <typename ae> __host__ __device__ void ag(a<ae>, double) { } void f() { b::c x; ag(x, 1); } } namespace TestDeferAmbiguityEmitted { template <typename> struct a {}; namespace b { struct c : a<int> {}; template <typename d> void ag(d, int); // devnodeferonly-note@-1{{'ag<TestDeferAmbiguityEmitted::b::c>' declared here}} } // namespace b template <typename ae> __host__ __device__ void ag(a<ae>, float) { // devdeferonly-note@-1{{candidate function [with ae = int]}} ae e; ag(e, 1); } template <typename ae> __host__ __device__ void ag(a<ae>, double) { // devdeferonly-note@-1{{candidate function [with ae = int]}} } __host__ __device__ void f() { b::c x; ag(x, 1); // devnodeferonly-error@-1{{reference to __host__ function 'ag<TestDeferAmbiguityEmitted::b::c>' in __host__ __device__ function}} // devdeferonly-error@-2{{call to 'ag' is ambiguous}} } } // Implicit HD functions compute with H function and D function. // In host compilation, foo(0.0, 2) should resolve to X::foo<double, int>. // In device compilation, foo(0.0, 2) should resolve to foo(double, int). // In either case there should be no ambiguity. namespace TestImplicitHDWithHAndD { namespace X { inline double foo(double, double) { return 0;} inline constexpr float foo(float, float) { return 1;} inline constexpr long double foo(long double, long double) { return 2;} template<typename _Tp, typename _Up> inline constexpr double foo(_Tp, _Up) { return 3;} }; using X::foo; inline __device__ double foo(double, double) { return 4;} inline __device__ float foo(float, int) { return 5;} inline __device__ float foo(int, int) { return 6;} inline __device__ double foo(double, int) { return 7;} inline __device__ float foo(float, float) { return 9;} template<typename _Tp, typename _Up> inline __device__ double foo(_Tp, _Up) { return 10;} int g() { return [](){ return foo(0.0, 2); }(); } }