; NOTE: Assertions have been autogenerated by utils/update_test_checks.py ; RUN: opt < %s -passes=instsimplify -S | FileCheck %s target datalayout = "p:32:32-p1:64:64" declare void @llvm.assume(i1) define i1 @ptrtoint() { ; CHECK-LABEL: @ptrtoint( ; CHECK-NEXT: ret i1 false ; %a = alloca i8 %tmp = ptrtoint ptr %a to i32 %r = icmp eq i32 %tmp, 0 ret i1 %r } define i1 @bitcast() { ; CHECK-LABEL: @bitcast( ; CHECK-NEXT: ret i1 false ; %a = alloca i32 %b = alloca i64 %cmp = icmp eq ptr %a, %b ret i1 %cmp } define i1 @gep() { ; CHECK-LABEL: @gep( ; CHECK-NEXT: ret i1 false ; %a = alloca [3 x i8], align 8 %cmp = icmp eq ptr %a, null ret i1 %cmp } define i1 @gep2() { ; CHECK-LABEL: @gep2( ; CHECK-NEXT: ret i1 true ; %a = alloca [3 x i8], align 8 %cmp = icmp eq ptr %a, %a ret i1 %cmp } ; PR11238 %gept = type { i32, i32 } @gepy = global %gept zeroinitializer, align 8 @gepz = extern_weak global %gept define i1 @gep3() { ; CHECK-LABEL: @gep3( ; CHECK-NEXT: ret i1 false ; %x = alloca %gept, align 8 %b = getelementptr %gept, ptr %x, i64 0, i32 1 %equal = icmp eq ptr %x, %b ret i1 %equal } define i1 @gep4() { ; CHECK-LABEL: @gep4( ; CHECK-NEXT: ret i1 false ; %x = alloca %gept, align 8 %b = getelementptr %gept, ptr @gepy, i64 0, i32 1 %equal = icmp eq ptr @gepy, %b ret i1 %equal } @a = common global [1 x i32] zeroinitializer, align 4 define i1 @PR31262() { ; CHECK-LABEL: @PR31262( ; CHECK-NEXT: ret i1 true ; %idx = getelementptr inbounds [1 x i32], ptr @a, i64 0, i64 undef %cmp = icmp uge ptr %idx, @a ret i1 %cmp } define i1 @gep5() { ; CHECK-LABEL: @gep5( ; CHECK-NEXT: ret i1 false ; %x = alloca %gept, align 8 %a = getelementptr inbounds %gept, ptr %x, i64 0, i32 1 %equal = icmp eq ptr %a, @gepy ret i1 %equal } define i1 @gep6(ptr %x) { ; Same as @gep3 but potentially null. ; CHECK-LABEL: @gep6( ; CHECK-NEXT: ret i1 false ; %b = getelementptr %gept, ptr %x, i64 0, i32 1 %equal = icmp eq ptr %x, %b ret i1 %equal } define i1 @gep7(ptr %x) { ; CHECK-LABEL: @gep7( ; CHECK-NEXT: [[EQUAL:%.*]] = icmp eq ptr [[X:%.*]], @gepz ; CHECK-NEXT: ret i1 [[EQUAL]] ; %equal = icmp eq ptr %x, @gepz ret i1 %equal } define i1 @gep8(ptr %x) { ; CHECK-LABEL: @gep8( ; CHECK-NEXT: [[A:%.*]] = getelementptr [[GEPT:%.*]], ptr [[X:%.*]], i32 1 ; CHECK-NEXT: [[B:%.*]] = getelementptr [[GEPT]], ptr [[X]], i32 -1 ; CHECK-NEXT: [[EQUAL:%.*]] = icmp ugt ptr [[A]], [[B]] ; CHECK-NEXT: ret i1 [[EQUAL]] ; %a = getelementptr %gept, ptr %x, i32 1 %b = getelementptr %gept, ptr %x, i32 -1 %equal = icmp ugt ptr %a, %b ret i1 %equal } define i1 @gep9(ptr %ptr) { ; CHECK-LABEL: @gep9( ; CHECK-NEXT: entry: ; CHECK-NEXT: ret i1 true ; entry: %first2 = getelementptr inbounds i8, ptr %ptr, i32 1 %first3 = getelementptr inbounds i8, ptr %first2, i32 2 %first4 = getelementptr inbounds i8, ptr %first3, i32 4 %last1 = getelementptr inbounds i8, ptr %first2, i32 48 %last2 = getelementptr inbounds i8, ptr %last1, i32 8 %last3 = getelementptr inbounds i8, ptr %last2, i32 -4 %last4 = getelementptr inbounds i8, ptr %last3, i32 -4 %first.int = ptrtoint ptr %first4 to i32 %last.int = ptrtoint ptr %last4 to i32 %cmp = icmp ne i32 %last.int, %first.int ret i1 %cmp } define i1 @gep10(ptr %ptr) { ; CHECK-LABEL: @gep10( ; CHECK-NEXT: entry: ; CHECK-NEXT: ret i1 true ; entry: %first1 = getelementptr inbounds i8, ptr %ptr, i32 -2 %first2 = getelementptr inbounds i8, ptr %first1, i32 44 %last1 = getelementptr inbounds i8, ptr %ptr, i32 48 %last2 = getelementptr inbounds i8, ptr %last1, i32 -6 %first.int = ptrtoint ptr %first2 to i32 %last.int = ptrtoint ptr %last2 to i32 %cmp = icmp eq i32 %last.int, %first.int ret i1 %cmp } define i1 @gep11(ptr %ptr) { ; CHECK-LABEL: @gep11( ; CHECK-NEXT: entry: ; CHECK-NEXT: ret i1 true ; entry: %first1 = getelementptr inbounds i8, ptr %ptr, i32 -2 %last1 = getelementptr inbounds i8, ptr %ptr, i32 48 %last2 = getelementptr inbounds i8, ptr %last1, i32 -6 %cmp = icmp ult ptr %first1, %last2 ret i1 %cmp } define i1 @gep12(ptr %ptr) { ; CHECK-LABEL: @gep12( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[FIRST1:%.*]] = getelementptr inbounds i8, ptr [[PTR:%.*]], i32 -2 ; CHECK-NEXT: [[LAST1:%.*]] = getelementptr inbounds i8, ptr [[PTR]], i32 48 ; CHECK-NEXT: [[LAST2:%.*]] = getelementptr inbounds i8, ptr [[LAST1]], i32 -6 ; CHECK-NEXT: [[CMP:%.*]] = icmp slt ptr [[FIRST1]], [[LAST2]] ; CHECK-NEXT: ret i1 [[CMP]] ; entry: %first1 = getelementptr inbounds i8, ptr %ptr, i32 -2 %last1 = getelementptr inbounds i8, ptr %ptr, i32 48 %last2 = getelementptr inbounds i8, ptr %last1, i32 -6 %cmp = icmp slt ptr %first1, %last2 ret i1 %cmp } define i1 @gep13(ptr %ptr) { ; CHECK-LABEL: @gep13( ; CHECK-NEXT: ret i1 false ; ; We can prove this GEP is non-null because it is inbounds. %x = getelementptr inbounds i8, ptr %ptr, i32 1 %cmp = icmp eq ptr %x, null ret i1 %cmp } define i1 @gep13_no_null_opt(ptr %ptr) #0 { ; We can't prove this GEP is non-null. ; CHECK-LABEL: @gep13_no_null_opt( ; CHECK-NEXT: [[X:%.*]] = getelementptr inbounds i8, ptr [[PTR:%.*]], i32 1 ; CHECK-NEXT: [[CMP:%.*]] = icmp eq ptr [[X]], null ; CHECK-NEXT: ret i1 [[CMP]] ; %x = getelementptr inbounds i8, ptr %ptr, i32 1 %cmp = icmp eq ptr %x, null ret i1 %cmp } define i1 @gep14(ptr %ptr) { ; CHECK-LABEL: @gep14( ; CHECK-NEXT: [[X:%.*]] = getelementptr inbounds { {}, i8 }, ptr [[PTR:%.*]], i32 0, i32 1 ; CHECK-NEXT: [[CMP:%.*]] = icmp eq ptr [[X]], null ; CHECK-NEXT: ret i1 [[CMP]] ; ; We can't simplify this because the offset of one in the GEP actually doesn't ; move the pointer. %x = getelementptr inbounds { {}, i8 }, ptr %ptr, i32 0, i32 1 %cmp = icmp eq ptr %x, null ret i1 %cmp } define i1 @gep15(ptr %ptr, i32 %y) { ; CHECK-LABEL: @gep15( ; CHECK-NEXT: ret i1 false ; ; We can prove this GEP is non-null even though there is a user value, as we ; would necessarily violate inbounds on one side or the other. %x = getelementptr inbounds { {}, [4 x {i8, i8}]}, ptr %ptr, i32 0, i32 1, i32 %y, i32 1 %cmp = icmp eq ptr %x, null ret i1 %cmp } define i1 @gep15_no_null_opt(ptr %ptr, i32 %y) #0 { ; We can't prove this GEP is non-null. ; CHECK-LABEL: @gep15_no_null_opt( ; CHECK-NEXT: [[X:%.*]] = getelementptr inbounds { {}, [4 x { i8, i8 }] }, ptr [[PTR:%.*]], i32 0, i32 1, i32 [[Y:%.*]], i32 1 ; CHECK-NEXT: [[CMP:%.*]] = icmp eq ptr [[X]], null ; CHECK-NEXT: ret i1 [[CMP]] ; %x = getelementptr inbounds { {}, [4 x {i8, i8}]}, ptr %ptr, i32 0, i32 1, i32 %y, i32 1 %cmp = icmp eq ptr %x, null ret i1 %cmp } define i1 @gep16(ptr %ptr, i32 %a) { ; CHECK-LABEL: @gep16( ; CHECK-NEXT: ret i1 false ; ; We can prove this GEP is non-null because it is inbounds and because we know ; %b is non-zero even though we don't know its value. %b = or i32 %a, 1 %x = getelementptr inbounds i8, ptr %ptr, i32 %b %cmp = icmp eq ptr %x, null ret i1 %cmp } define i1 @gep16_no_null_opt(ptr %ptr, i32 %a) #0 { ; We can't prove this GEP is non-null. ; CHECK-LABEL: @gep16_no_null_opt( ; CHECK-NEXT: [[B:%.*]] = or i32 [[A:%.*]], 1 ; CHECK-NEXT: [[X:%.*]] = getelementptr inbounds i8, ptr [[PTR:%.*]], i32 [[B]] ; CHECK-NEXT: [[CMP:%.*]] = icmp eq ptr [[X]], null ; CHECK-NEXT: ret i1 [[CMP]] ; %b = or i32 %a, 1 %x = getelementptr inbounds i8, ptr %ptr, i32 %b %cmp = icmp eq ptr %x, null ret i1 %cmp } define i1 @gep17() { ; CHECK-LABEL: @gep17( ; CHECK-NEXT: ret i1 true ; %alloca = alloca i32, align 4 %gep1 = getelementptr inbounds i32, ptr %alloca, i32 1 %pti1 = ptrtoint ptr %gep1 to i32 %gep2 = getelementptr inbounds [4 x i8], ptr %alloca, i32 0, i32 1 %pti2 = ptrtoint ptr %gep2 to i32 %cmp = icmp ugt i32 %pti1, %pti2 ret i1 %cmp } ; Negative test: GEP inbounds may cross sign boundary. define i1 @gep_same_base_constant_indices(ptr %a) { ; CHECK-LABEL: @gep_same_base_constant_indices( ; CHECK-NEXT: [[ARRAYIDX1:%.*]] = getelementptr inbounds i8, ptr [[A:%.*]], i64 1 ; CHECK-NEXT: [[ARRAYIDX2:%.*]] = getelementptr inbounds i8, ptr [[A]], i64 10 ; CHECK-NEXT: [[CMP:%.*]] = icmp slt ptr [[ARRAYIDX1]], [[ARRAYIDX2]] ; CHECK-NEXT: ret i1 [[CMP]] ; %arrayidx1 = getelementptr inbounds i8, ptr %a, i64 1 %arrayidx2 = getelementptr inbounds i8, ptr %a, i64 10 %cmp = icmp slt ptr %arrayidx1, %arrayidx2 ret i1 %cmp } define i1 @zext(i32 %x) { ; CHECK-LABEL: @zext( ; CHECK-NEXT: ret i1 true ; %e1 = zext i32 %x to i64 %e2 = zext i32 %x to i64 %r = icmp eq i64 %e1, %e2 ret i1 %r } define i1 @zext2(i1 %x) { ; CHECK-LABEL: @zext2( ; CHECK-NEXT: ret i1 [[X:%.*]] ; %e = zext i1 %x to i32 %c = icmp ne i32 %e, 0 ret i1 %c } define i1 @zext3() { ; CHECK-LABEL: @zext3( ; CHECK-NEXT: ret i1 true ; %e = zext i1 1 to i32 %c = icmp ne i32 %e, 0 ret i1 %c } define i1 @sext(i32 %x) { ; CHECK-LABEL: @sext( ; CHECK-NEXT: ret i1 true ; %e1 = sext i32 %x to i64 %e2 = sext i32 %x to i64 %r = icmp eq i64 %e1, %e2 ret i1 %r } define i1 @sext2(i1 %x) { ; CHECK-LABEL: @sext2( ; CHECK-NEXT: ret i1 [[X:%.*]] ; %e = sext i1 %x to i32 %c = icmp ne i32 %e, 0 ret i1 %c } define i1 @sext3() { ; CHECK-LABEL: @sext3( ; CHECK-NEXT: ret i1 true ; %e = sext i1 1 to i32 %c = icmp ne i32 %e, 0 ret i1 %c } define i1 @add(i32 %x, i32 %y) { ; CHECK-LABEL: @add( ; CHECK-NEXT: ret i1 false ; %l = lshr i32 %x, 1 %q = lshr i32 %y, 1 %r = or i32 %q, 1 %s = add i32 %l, %r %c = icmp eq i32 %s, 0 ret i1 %c } define i1 @addv(<2 x i32> %x, <2 x i32> %y) { ; CHECK-LABEL: @addv( ; CHECK-NEXT: ret i1 false ; %l = lshr <2 x i32> %x, <i32 1, i32 0> %q = lshr <2 x i32> %y, <i32 1, i32 0> %r = or <2 x i32> %q, <i32 1, i32 0> %s = add <2 x i32> %l, %r %e = extractelement <2 x i32> %s, i32 0 %c = icmp eq i32 %e, 0 ret i1 %c } define i1 @add2(i8 %x, i8 %y) { ; CHECK-LABEL: @add2( ; CHECK-NEXT: ret i1 false ; %l = or i8 %x, 128 %r = or i8 %y, 129 %s = add i8 %l, %r %c = icmp eq i8 %s, 0 ret i1 %c } define i1 @add2v(<2 x i8> %x, <2 x i8> %y) { ; CHECK-LABEL: @add2v( ; CHECK-NEXT: ret i1 false ; %l = or <2 x i8> %x, <i8 0, i8 128> %r = or <2 x i8> %y, <i8 0, i8 129> %s = add <2 x i8> %l, %r %e = extractelement <2 x i8> %s, i32 1 %c = icmp eq i8 %e, 0 ret i1 %c } define i1 @add3(i8 %x, i8 %y) { ; CHECK-LABEL: @add3( ; CHECK-NEXT: [[L:%.*]] = zext i8 [[X:%.*]] to i32 ; CHECK-NEXT: [[R:%.*]] = zext i8 [[Y:%.*]] to i32 ; CHECK-NEXT: [[S:%.*]] = add i32 [[L]], [[R]] ; CHECK-NEXT: [[C:%.*]] = icmp eq i32 [[S]], 0 ; CHECK-NEXT: ret i1 [[C]] ; %l = zext i8 %x to i32 %r = zext i8 %y to i32 %s = add i32 %l, %r %c = icmp eq i32 %s, 0 ret i1 %c } define i1 @add4(i32 %x, i32 %y) { ; CHECK-LABEL: @add4( ; CHECK-NEXT: ret i1 true ; %z = add nsw i32 %y, 1 %s1 = add nsw i32 %x, %y %s2 = add nsw i32 %x, %z %c = icmp slt i32 %s1, %s2 ret i1 %c } define i1 @add5(i32 %x, i32 %y) { ; CHECK-LABEL: @add5( ; CHECK-NEXT: ret i1 true ; %z = add nuw i32 %y, 1 %s1 = add nuw i32 %x, %z %s2 = add nuw i32 %x, %y %c = icmp ugt i32 %s1, %s2 ret i1 %c } define i1 @add6(i64 %A, i64 %B) { ; CHECK-LABEL: @add6( ; CHECK-NEXT: ret i1 true ; %s1 = add i64 %A, %B %s2 = add i64 %B, %A %cmp = icmp eq i64 %s1, %s2 ret i1 %cmp } define i1 @addpowtwo(i32 %x, i32 %y) { ; CHECK-LABEL: @addpowtwo( ; CHECK-NEXT: ret i1 false ; %l = lshr i32 %x, 1 %r = shl i32 1, %y %s = add i32 %l, %r %c = icmp eq i32 %s, 0 ret i1 %c } define i1 @addpowtwov(<2 x i32> %x, <2 x i32> %y) { ; CHECK-LABEL: @addpowtwov( ; CHECK-NEXT: [[L:%.*]] = lshr <2 x i32> [[X:%.*]], <i32 1, i32 0> ; CHECK-NEXT: [[R:%.*]] = shl <2 x i32> <i32 1, i32 0>, [[Y:%.*]] ; CHECK-NEXT: [[S:%.*]] = add <2 x i32> [[L]], [[R]] ; CHECK-NEXT: [[E:%.*]] = extractelement <2 x i32> [[S]], i32 0 ; CHECK-NEXT: [[C:%.*]] = icmp eq i32 [[E]], 0 ; CHECK-NEXT: ret i1 [[C]] ; %l = lshr <2 x i32> %x, <i32 1, i32 0> %r = shl <2 x i32> <i32 1, i32 0>, %y %s = add <2 x i32> %l, %r %e = extractelement <2 x i32> %s, i32 0 %c = icmp eq i32 %e, 0 ret i1 %c } define i1 @or(i32 %x) { ; CHECK-LABEL: @or( ; CHECK-NEXT: ret i1 false ; %o = or i32 %x, 1 %c = icmp eq i32 %o, 0 ret i1 %c } ; Do not simplify if we cannot guarantee that the ConstantExpr is a non-zero ; constant. @GV = common global ptr null define i1 @or_constexp(i32 %x) { ; CHECK-LABEL: @or_constexp( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[O:%.*]] = or i32 [[X:%.*]], and (i32 ptrtoint (ptr @GV to i32), i32 32) ; CHECK-NEXT: [[C:%.*]] = icmp eq i32 [[O]], 0 ; CHECK-NEXT: ret i1 [[C]] ; entry: %0 = and i32 ptrtoint (ptr @GV to i32), 32 %o = or i32 %x, %0 %c = icmp eq i32 %o, 0 ret i1 %c } define i1 @shl1(i32 %x) { ; CHECK-LABEL: @shl1( ; CHECK-NEXT: ret i1 false ; %s = shl i32 1, %x %c = icmp eq i32 %s, 0 ret i1 %c } define i1 @lshr1(i32 %x) { ; CHECK-LABEL: @lshr1( ; CHECK-NEXT: ret i1 false ; %s = lshr i32 -1, %x %c = icmp eq i32 %s, 0 ret i1 %c } define i1 @lshr3(i32 %x) { ; CHECK-LABEL: @lshr3( ; CHECK-NEXT: ret i1 true ; %s = lshr i32 %x, %x %c = icmp eq i32 %s, 0 ret i1 %c } define i1 @lshr4(i32 %X, i32 %Y) { ; CHECK-LABEL: @lshr4( ; CHECK-NEXT: ret i1 true ; %A = lshr i32 %X, %Y %C = icmp ule i32 %A, %X ret i1 %C } define i1 @lshr5(i32 %X, i32 %Y) { ; CHECK-LABEL: @lshr5( ; CHECK-NEXT: ret i1 false ; %A = lshr i32 %X, %Y %C = icmp ugt i32 %A, %X ret i1 %C } define i1 @lshr6(i32 %X, i32 %Y) { ; CHECK-LABEL: @lshr6( ; CHECK-NEXT: ret i1 false ; %A = lshr i32 %X, %Y %C = icmp ult i32 %X, %A ret i1 %C } define i1 @lshr7(i32 %X, i32 %Y) { ; CHECK-LABEL: @lshr7( ; CHECK-NEXT: ret i1 true ; %A = lshr i32 %X, %Y %C = icmp uge i32 %X, %A ret i1 %C } define i1 @lshr_nonzero_eq(i32 %x) { ; CHECK-LABEL: @lshr_nonzero_eq( ; CHECK-NEXT: [[X_NE_0:%.*]] = icmp ne i32 [[X:%.*]], 0 ; CHECK-NEXT: call void @llvm.assume(i1 [[X_NE_0]]) ; CHECK-NEXT: ret i1 false ; %x_ne_0 = icmp ne i32 %x, 0 call void @llvm.assume(i1 %x_ne_0) %lhs = lshr i32 %x, 1 %cmp = icmp eq i32 %lhs, %x ret i1 %cmp } define i1 @lshr_nonzero_uge(i32 %x) { ; CHECK-LABEL: @lshr_nonzero_uge( ; CHECK-NEXT: [[X_NE_0:%.*]] = icmp ne i32 [[X:%.*]], 0 ; CHECK-NEXT: call void @llvm.assume(i1 [[X_NE_0]]) ; CHECK-NEXT: ret i1 false ; %x_ne_0 = icmp ne i32 %x, 0 call void @llvm.assume(i1 %x_ne_0) %lhs = lshr i32 %x, 1 %cmp = icmp uge i32 %lhs, %x ret i1 %cmp } define i1 @lshr_nonzero_ne(i32 %x) { ; CHECK-LABEL: @lshr_nonzero_ne( ; CHECK-NEXT: [[X_NE_0:%.*]] = icmp ne i32 [[X:%.*]], 0 ; CHECK-NEXT: call void @llvm.assume(i1 [[X_NE_0]]) ; CHECK-NEXT: ret i1 true ; %x_ne_0 = icmp ne i32 %x, 0 call void @llvm.assume(i1 %x_ne_0) %lhs = lshr i32 %x, 1 %cmp = icmp ne i32 %lhs, %x ret i1 %cmp } define i1 @lshr_nonzero_ult(i32 %x) { ; CHECK-LABEL: @lshr_nonzero_ult( ; CHECK-NEXT: [[X_NE_0:%.*]] = icmp ne i32 [[X:%.*]], 0 ; CHECK-NEXT: call void @llvm.assume(i1 [[X_NE_0]]) ; CHECK-NEXT: ret i1 true ; %x_ne_0 = icmp ne i32 %x, 0 call void @llvm.assume(i1 %x_ne_0) %lhs = lshr i32 %x, 1 %cmp = icmp ult i32 %lhs, %x ret i1 %cmp } ; Negative test - unknown shift amount define i1 @lshr_nonzero_neg_unknown(i32 %x, i32 %c) { ; CHECK-LABEL: @lshr_nonzero_neg_unknown( ; CHECK-NEXT: [[X_NE_0:%.*]] = icmp ne i32 [[X:%.*]], 0 ; CHECK-NEXT: call void @llvm.assume(i1 [[X_NE_0]]) ; CHECK-NEXT: [[LHS:%.*]] = lshr i32 [[X]], [[C:%.*]] ; CHECK-NEXT: [[CMP:%.*]] = icmp ult i32 [[LHS]], [[X]] ; CHECK-NEXT: ret i1 [[CMP]] ; %x_ne_0 = icmp ne i32 %x, 0 call void @llvm.assume(i1 %x_ne_0) %lhs = lshr i32 %x, %c %cmp = icmp ult i32 %lhs, %x ret i1 %cmp } ; Negative test - x may be zero define i1 @lshr_nonzero_neg_maybe_zero(i32 %x) { ; CHECK-LABEL: @lshr_nonzero_neg_maybe_zero( ; CHECK-NEXT: [[LHS:%.*]] = lshr i32 [[X:%.*]], 1 ; CHECK-NEXT: [[CMP:%.*]] = icmp ult i32 [[LHS]], [[X]] ; CHECK-NEXT: ret i1 [[CMP]] ; %lhs = lshr i32 %x, 1 %cmp = icmp ult i32 %lhs, %x ret i1 %cmp } ; Negative test - signed pred define i1 @lshr_nonzero_neg_signed(i32 %x, i32 %c) { ; CHECK-LABEL: @lshr_nonzero_neg_signed( ; CHECK-NEXT: [[X_NE_0:%.*]] = icmp ne i32 [[X:%.*]], 0 ; CHECK-NEXT: call void @llvm.assume(i1 [[X_NE_0]]) ; CHECK-NEXT: [[LHS:%.*]] = lshr i32 [[X]], 1 ; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[LHS]], [[X]] ; CHECK-NEXT: ret i1 [[CMP]] ; %x_ne_0 = icmp ne i32 %x, 0 call void @llvm.assume(i1 %x_ne_0) %lhs = lshr i32 %x, 1 %cmp = icmp slt i32 %lhs, %x ret i1 %cmp } define i1 @ashr1(i32 %x) { ; CHECK-LABEL: @ashr1( ; CHECK-NEXT: ret i1 false ; %s = ashr i32 -1, %x %c = icmp eq i32 %s, 0 ret i1 %c } define i1 @ashr3(i32 %x) { ; CHECK-LABEL: @ashr3( ; CHECK-NEXT: ret i1 true ; %s = ashr i32 %x, %x %c = icmp eq i32 %s, 0 ret i1 %c } define i1 @select1(i1 %cond) { ; CHECK-LABEL: @select1( ; CHECK-NEXT: ret i1 [[COND:%.*]] ; %s = select i1 %cond, i32 1, i32 0 %c = icmp eq i32 %s, 1 ret i1 %c } define i1 @select2(i1 %cond) { ; CHECK-LABEL: @select2( ; CHECK-NEXT: ret i1 [[COND:%.*]] ; %x = zext i1 %cond to i32 %s = select i1 %cond, i32 %x, i32 0 %c = icmp ne i32 %s, 0 ret i1 %c } define i1 @select3(i1 %cond) { ; CHECK-LABEL: @select3( ; CHECK-NEXT: ret i1 [[COND:%.*]] ; %x = zext i1 %cond to i32 %s = select i1 %cond, i32 1, i32 %x %c = icmp ne i32 %s, 0 ret i1 %c } define i1 @select4(i1 %cond) { ; CHECK-LABEL: @select4( ; CHECK-NEXT: ret i1 [[COND:%.*]] ; %invert = xor i1 %cond, 1 %s = select i1 %invert, i32 0, i32 1 %c = icmp ne i32 %s, 0 ret i1 %c } define i1 @select5(i32 %x) { ; CHECK-LABEL: @select5( ; CHECK-NEXT: ret i1 false ; %c = icmp eq i32 %x, 0 %s = select i1 %c, i32 1, i32 %x %c2 = icmp eq i32 %s, 0 ret i1 %c2 } define i1 @select6(i32 %x) { ; CHECK-LABEL: @select6( ; CHECK-NEXT: [[C:%.*]] = icmp sgt i32 [[X:%.*]], 0 ; CHECK-NEXT: [[S:%.*]] = select i1 [[C]], i32 [[X]], i32 4 ; CHECK-NEXT: [[C2:%.*]] = icmp eq i32 [[S]], 0 ; CHECK-NEXT: ret i1 [[C2]] ; %c = icmp sgt i32 %x, 0 %s = select i1 %c, i32 %x, i32 4 %c2 = icmp eq i32 %s, 0 ret i1 %c2 } define i1 @urem1(i32 %X, i32 %Y) { ; CHECK-LABEL: @urem1( ; CHECK-NEXT: ret i1 true ; %A = urem i32 %X, %Y %B = icmp ult i32 %A, %Y ret i1 %B } define i1 @urem2(i32 %X, i32 %Y) { ; CHECK-LABEL: @urem2( ; CHECK-NEXT: ret i1 false ; %A = urem i32 %X, %Y %B = icmp eq i32 %A, %Y ret i1 %B } define i1 @urem4(i32 %X) { ; CHECK-LABEL: @urem4( ; CHECK-NEXT: [[A:%.*]] = urem i32 [[X:%.*]], 15 ; CHECK-NEXT: [[B:%.*]] = icmp ult i32 [[A]], 10 ; CHECK-NEXT: ret i1 [[B]] ; %A = urem i32 %X, 15 %B = icmp ult i32 %A, 10 ret i1 %B } define i1 @urem5(i16 %X, i32 %Y) { ; CHECK-LABEL: @urem5( ; CHECK-NEXT: [[A:%.*]] = zext i16 [[X:%.*]] to i32 ; CHECK-NEXT: [[B:%.*]] = urem i32 [[A]], [[Y:%.*]] ; CHECK-NEXT: [[C:%.*]] = icmp slt i32 [[B]], [[Y]] ; CHECK-NEXT: ret i1 [[C]] ; %A = zext i16 %X to i32 %B = urem i32 %A, %Y %C = icmp slt i32 %B, %Y ret i1 %C } define i1 @urem6(i32 %X, i32 %Y) { ; CHECK-LABEL: @urem6( ; CHECK-NEXT: ret i1 true ; %A = urem i32 %X, %Y %B = icmp ugt i32 %Y, %A ret i1 %B } define i1 @urem7(i32 %X) { ; CHECK-LABEL: @urem7( ; CHECK-NEXT: [[A:%.*]] = urem i32 1, [[X:%.*]] ; CHECK-NEXT: [[B:%.*]] = icmp sgt i32 [[A]], [[X]] ; CHECK-NEXT: ret i1 [[B]] ; %A = urem i32 1, %X %B = icmp sgt i32 %A, %X ret i1 %B } define i1 @urem8(i8 %X, i8 %Y) { ; CHECK-LABEL: @urem8( ; CHECK-NEXT: ret i1 true ; %A = urem i8 %X, %Y %B = icmp ule i8 %A, %X ret i1 %B } define i1 @urem9(i8 %X, i8 %Y) { ; CHECK-LABEL: @urem9( ; CHECK-NEXT: ret i1 false ; %A = urem i8 %X, %Y %B = icmp ugt i8 %A, %X ret i1 %B } define i1 @urem10(i8 %X, i8 %Y) { ; CHECK-LABEL: @urem10( ; CHECK-NEXT: ret i1 true ; %A = urem i8 %X, %Y %B = icmp uge i8 %X, %A ret i1 %B } define i1 @urem11(i8 %X, i8 %Y) { ; CHECK-LABEL: @urem11( ; CHECK-NEXT: ret i1 false ; %A = urem i8 %X, %Y %B = icmp ult i8 %X, %A ret i1 %B } ; PR9343 #15 define i1 @srem2(i16 %X, i32 %Y) { ; CHECK-LABEL: @srem2( ; CHECK-NEXT: ret i1 false ; %A = zext i16 %X to i32 %B = add nsw i32 %A, 1 %C = srem i32 %B, %Y %D = icmp slt i32 %C, 0 ret i1 %D } define i1 @srem2v(<2 x i16> %X, <2 x i32> %Y) { ; CHECK-LABEL: @srem2v( ; CHECK-NEXT: ret i1 false ; %A = zext <2 x i16> %X to <2 x i32> %B = add nsw <2 x i32> %A, <i32 1, i32 0> %C = srem <2 x i32> %B, %Y %D = extractelement <2 x i32> %C, i32 0 %E = icmp slt i32 %D, 0 ret i1 %E } define i1 @srem3(i16 %X, i32 %Y) { ; CHECK-LABEL: @srem3( ; CHECK-NEXT: ret i1 false ; %A = zext i16 %X to i32 %B = or i32 2147483648, %A %C = sub nsw i32 1, %B %D = srem i32 %C, %Y %E = icmp slt i32 %D, 0 ret i1 %E } define i1 @srem3v(<2 x i16> %X, <2 x i32> %Y) { ; CHECK-LABEL: @srem3v( ; CHECK-NEXT: ret i1 false ; %A = zext <2 x i16> %X to <2 x i32> %B = or <2 x i32> <i32 1, i32 2147483648>, %A %C = sub nsw <2 x i32> <i32 0, i32 1>, %B %D = srem <2 x i32> %C, %Y %E = extractelement <2 x i32> %C, i32 1 %F = icmp slt i32 %E, 0 ret i1 %F } define i1 @udiv2(i32 %Z) { ; CHECK-LABEL: @udiv2( ; CHECK-NEXT: ret i1 true ; %A = udiv exact i32 10, %Z %B = udiv exact i32 20, %Z %C = icmp ult i32 %A, %B ret i1 %C } ; Exact sdiv and equality preds can simplify. define i1 @sdiv_exact_equality(i32 %Z) { ; CHECK-LABEL: @sdiv_exact_equality( ; CHECK-NEXT: ret i1 false ; %A = sdiv exact i32 10, %Z %B = sdiv exact i32 20, %Z %C = icmp eq i32 %A, %B ret i1 %C } ; But not other preds: PR32949 - https://bugs.llvm.org/show_bug.cgi?id=32949 define i1 @sdiv_exact_not_equality(i32 %Z) { ; CHECK-LABEL: @sdiv_exact_not_equality( ; CHECK-NEXT: [[A:%.*]] = sdiv exact i32 10, [[Z:%.*]] ; CHECK-NEXT: [[B:%.*]] = sdiv exact i32 20, [[Z]] ; CHECK-NEXT: [[C:%.*]] = icmp ult i32 [[A]], [[B]] ; CHECK-NEXT: ret i1 [[C]] ; %A = sdiv exact i32 10, %Z %B = sdiv exact i32 20, %Z %C = icmp ult i32 %A, %B ret i1 %C } define i1 @udiv3(i32 %X, i32 %Y) { ; CHECK-LABEL: @udiv3( ; CHECK-NEXT: ret i1 false ; %A = udiv i32 %X, %Y %C = icmp ugt i32 %A, %X ret i1 %C } define i1 @udiv4(i32 %X, i32 %Y) { ; CHECK-LABEL: @udiv4( ; CHECK-NEXT: ret i1 true ; %A = udiv i32 %X, %Y %C = icmp ule i32 %A, %X ret i1 %C } ; PR11340 define i1 @udiv6(i32 %X) nounwind { ; CHECK-LABEL: @udiv6( ; CHECK-NEXT: [[A:%.*]] = udiv i32 1, [[X:%.*]] ; CHECK-NEXT: [[C:%.*]] = icmp eq i32 [[A]], 0 ; CHECK-NEXT: ret i1 [[C]] ; %A = udiv i32 1, %X %C = icmp eq i32 %A, 0 ret i1 %C } define i1 @udiv7(i32 %X, i32 %Y) { ; CHECK-LABEL: @udiv7( ; CHECK-NEXT: ret i1 false ; %A = udiv i32 %X, %Y %C = icmp ult i32 %X, %A ret i1 %C } define i1 @udiv8(i32 %X, i32 %Y) { ; CHECK-LABEL: @udiv8( ; CHECK-NEXT: ret i1 true ; %A = udiv i32 %X, %Y %C = icmp uge i32 %X, %A ret i1 %C } define i1 @udiv_nonzero_eq(i32 %x) { ; CHECK-LABEL: @udiv_nonzero_eq( ; CHECK-NEXT: [[X_NE_0:%.*]] = icmp ne i32 [[X:%.*]], 0 ; CHECK-NEXT: call void @llvm.assume(i1 [[X_NE_0]]) ; CHECK-NEXT: ret i1 false ; %x_ne_0 = icmp ne i32 %x, 0 call void @llvm.assume(i1 %x_ne_0) %lhs = udiv i32 %x, 3 %cmp = icmp eq i32 %lhs, %x ret i1 %cmp } define i1 @udiv_nonzero_uge(i32 %x) { ; CHECK-LABEL: @udiv_nonzero_uge( ; CHECK-NEXT: [[X_NE_0:%.*]] = icmp ne i32 [[X:%.*]], 0 ; CHECK-NEXT: call void @llvm.assume(i1 [[X_NE_0]]) ; CHECK-NEXT: ret i1 false ; %x_ne_0 = icmp ne i32 %x, 0 call void @llvm.assume(i1 %x_ne_0) %lhs = udiv i32 %x, 3 %cmp = icmp uge i32 %lhs, %x ret i1 %cmp } define i1 @udiv_nonzero_ne(i32 %x) { ; CHECK-LABEL: @udiv_nonzero_ne( ; CHECK-NEXT: [[X_NE_0:%.*]] = icmp ne i32 [[X:%.*]], 0 ; CHECK-NEXT: call void @llvm.assume(i1 [[X_NE_0]]) ; CHECK-NEXT: ret i1 true ; %x_ne_0 = icmp ne i32 %x, 0 call void @llvm.assume(i1 %x_ne_0) %lhs = udiv i32 %x, 3 %cmp = icmp ne i32 %lhs, %x ret i1 %cmp } define i1 @udiv_nonzero_ult(i32 %x) { ; CHECK-LABEL: @udiv_nonzero_ult( ; CHECK-NEXT: [[X_NE_0:%.*]] = icmp ne i32 [[X:%.*]], 0 ; CHECK-NEXT: call void @llvm.assume(i1 [[X_NE_0]]) ; CHECK-NEXT: ret i1 true ; %x_ne_0 = icmp ne i32 %x, 0 call void @llvm.assume(i1 %x_ne_0) %lhs = udiv i32 %x, 3 %cmp = icmp ult i32 %lhs, %x ret i1 %cmp } ; Negative test - unknown divisor define i1 @udiv_nonzero_neg_unknown(i32 %x, i32 %c) { ; CHECK-LABEL: @udiv_nonzero_neg_unknown( ; CHECK-NEXT: [[X_NE_0:%.*]] = icmp ne i32 [[X:%.*]], 0 ; CHECK-NEXT: call void @llvm.assume(i1 [[X_NE_0]]) ; CHECK-NEXT: [[LHS:%.*]] = udiv i32 [[X]], [[C:%.*]] ; CHECK-NEXT: [[CMP:%.*]] = icmp ult i32 [[LHS]], [[X]] ; CHECK-NEXT: ret i1 [[CMP]] ; %x_ne_0 = icmp ne i32 %x, 0 call void @llvm.assume(i1 %x_ne_0) %lhs = udiv i32 %x, %c %cmp = icmp ult i32 %lhs, %x ret i1 %cmp } ; Negative test - x may be zero define i1 @udiv_nonzero_neg_maybe_zero(i32 %x) { ; CHECK-LABEL: @udiv_nonzero_neg_maybe_zero( ; CHECK-NEXT: [[LHS:%.*]] = udiv i32 [[X:%.*]], 3 ; CHECK-NEXT: [[CMP:%.*]] = icmp ult i32 [[LHS]], [[X]] ; CHECK-NEXT: ret i1 [[CMP]] ; %lhs = udiv i32 %x, 3 %cmp = icmp ult i32 %lhs, %x ret i1 %cmp } ; Negative test - signed pred define i1 @udiv_nonzero_neg_signed(i32 %x) { ; CHECK-LABEL: @udiv_nonzero_neg_signed( ; CHECK-NEXT: [[X_NE_0:%.*]] = icmp ne i32 [[X:%.*]], 0 ; CHECK-NEXT: call void @llvm.assume(i1 [[X_NE_0]]) ; CHECK-NEXT: [[LHS:%.*]] = udiv i32 [[X]], 3 ; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[LHS]], [[X]] ; CHECK-NEXT: ret i1 [[CMP]] ; %x_ne_0 = icmp ne i32 %x, 0 call void @llvm.assume(i1 %x_ne_0) %lhs = udiv i32 %x, 3 %cmp = icmp slt i32 %lhs, %x ret i1 %cmp } ; Square of a non-zero number is non-zero if there is no overflow. define i1 @mul1(i32 %X) { ; CHECK-LABEL: @mul1( ; CHECK-NEXT: ret i1 false ; %Y = or i32 %X, 1 %M = mul nuw i32 %Y, %Y %C = icmp eq i32 %M, 0 ret i1 %C } define i1 @mul1v(<2 x i32> %X) { ; CHECK-LABEL: @mul1v( ; CHECK-NEXT: ret i1 false ; %Y = or <2 x i32> %X, <i32 1, i32 0> %M = mul nuw <2 x i32> %Y, %Y %E = extractelement <2 x i32> %M, i32 0 %C = icmp eq i32 %E, 0 ret i1 %C } ; Square of a non-zero number is positive if there is no signed overflow. define i1 @mul2(i32 %X) { ; CHECK-LABEL: @mul2( ; CHECK-NEXT: ret i1 true ; %Y = or i32 %X, 1 %M = mul nsw i32 %Y, %Y %C = icmp sgt i32 %M, 0 ret i1 %C } define i1 @mul2v(<2 x i32> %X) { ; CHECK-LABEL: @mul2v( ; CHECK-NEXT: ret i1 true ; %Y = or <2 x i32> %X, <i32 0, i32 1> %M = mul nsw <2 x i32> %Y, %Y %E = extractelement <2 x i32> %M, i32 1 %C = icmp sgt i32 %E, 0 ret i1 %C } ; Product of non-negative numbers is non-negative if there is no signed overflow. define i1 @mul3(i32 %X, i32 %Y) { ; CHECK-LABEL: @mul3( ; CHECK-NEXT: ret i1 true ; %XX = mul nsw i32 %X, %X %YY = mul nsw i32 %Y, %Y %M = mul nsw i32 %XX, %YY %C = icmp sge i32 %M, 0 ret i1 %C } define <2 x i1> @mul3v(<2 x i32> %X, <2 x i32> %Y) { ; CHECK-LABEL: @mul3v( ; CHECK-NEXT: ret <2 x i1> <i1 true, i1 true> ; %XX = mul nsw <2 x i32> %X, %X %YY = mul nsw <2 x i32> %Y, %Y %M = mul nsw <2 x i32> %XX, %YY %C = icmp sge <2 x i32> %M, zeroinitializer ret <2 x i1> %C } define <2 x i1> @vectorselect1(<2 x i1> %cond) { ; CHECK-LABEL: @vectorselect1( ; CHECK-NEXT: ret <2 x i1> [[COND:%.*]] ; %invert = xor <2 x i1> %cond, <i1 1, i1 1> %s = select <2 x i1> %invert, <2 x i32> <i32 0, i32 0>, <2 x i32> <i32 1, i32 1> %c = icmp ne <2 x i32> %s, <i32 0, i32 0> ret <2 x i1> %c } ; PR11948 define <2 x i1> @vectorselectcrash(i32 %arg1) { ; CHECK-LABEL: @vectorselectcrash( ; CHECK-NEXT: [[TOBOOL40:%.*]] = icmp ne i32 [[ARG1:%.*]], 0 ; CHECK-NEXT: [[COND43:%.*]] = select i1 [[TOBOOL40]], <2 x i16> <i16 -5, i16 66>, <2 x i16> <i16 46, i16 1> ; CHECK-NEXT: [[CMP45:%.*]] = icmp ugt <2 x i16> [[COND43]], <i16 73, i16 21> ; CHECK-NEXT: ret <2 x i1> [[CMP45]] ; %tobool40 = icmp ne i32 %arg1, 0 %cond43 = select i1 %tobool40, <2 x i16> <i16 -5, i16 66>, <2 x i16> <i16 46, i16 1> %cmp45 = icmp ugt <2 x i16> %cond43, <i16 73, i16 21> ret <2 x i1> %cmp45 } ; PR12013 define i1 @alloca_compare(i64 %idx) { ; CHECK-LABEL: @alloca_compare( ; CHECK-NEXT: ret i1 false ; %sv = alloca { i32, i32, [124 x i32] } %1 = getelementptr inbounds { i32, i32, [124 x i32] }, ptr %sv, i32 0, i32 2, i64 %idx %2 = icmp eq ptr %1, null ret i1 %2 } define i1 @alloca_compare_no_null_opt(i64 %idx) #0 { ; CHECK-LABEL: @alloca_compare_no_null_opt( ; CHECK-NEXT: [[SV:%.*]] = alloca { i32, i32, [124 x i32] }, align 8 ; CHECK-NEXT: [[CMP:%.*]] = getelementptr inbounds { i32, i32, [124 x i32] }, ptr [[SV]], i32 0, i32 2, i64 [[IDX:%.*]] ; CHECK-NEXT: [[X:%.*]] = icmp eq ptr [[CMP]], null ; CHECK-NEXT: ret i1 [[X]] ; %sv = alloca { i32, i32, [124 x i32] } %cmp = getelementptr inbounds { i32, i32, [124 x i32] }, ptr %sv, i32 0, i32 2, i64 %idx %X = icmp eq ptr %cmp, null ret i1 %X } ; PR12075 define i1 @infinite_gep() { ; CHECK-LABEL: @infinite_gep( ; CHECK-NEXT: ret i1 true ; CHECK: unreachableblock: ; CHECK-NEXT: [[X:%.*]] = getelementptr i32, ptr [[X]], i32 1 ; CHECK-NEXT: [[Y:%.*]] = icmp eq ptr [[X]], null ; CHECK-NEXT: ret i1 [[Y]] ; ret i1 1 unreachableblock: %X = getelementptr i32, ptr%X, i32 1 %Y = icmp eq ptr %X, null ret i1 %Y } ; It's not valid to fold a comparison of an argument with an alloca, even though ; that's tempting. An argument can't *alias* an alloca, however the aliasing rule ; relies on restrictions against guessing an object's address and dereferencing. ; There are no restrictions against guessing an object's address and comparing. define i1 @alloca_argument_compare(ptr %arg) { ; CHECK-LABEL: @alloca_argument_compare( ; CHECK-NEXT: [[ALLOC:%.*]] = alloca i64, align 8 ; CHECK-NEXT: [[CMP:%.*]] = icmp eq ptr [[ARG:%.*]], [[ALLOC]] ; CHECK-NEXT: ret i1 [[CMP]] ; %alloc = alloca i64 %cmp = icmp eq ptr %arg, %alloc ret i1 %cmp } ; As above, but with the operands reversed. define i1 @alloca_argument_compare_swapped(ptr %arg) { ; CHECK-LABEL: @alloca_argument_compare_swapped( ; CHECK-NEXT: [[ALLOC:%.*]] = alloca i64, align 8 ; CHECK-NEXT: [[CMP:%.*]] = icmp eq ptr [[ALLOC]], [[ARG:%.*]] ; CHECK-NEXT: ret i1 [[CMP]] ; %alloc = alloca i64 %cmp = icmp eq ptr %alloc, %arg ret i1 %cmp } ; Don't assume that a noalias argument isn't equal to a global variable's ; address. This is an example where AliasAnalysis' NoAlias concept is ; different from actual pointer inequality. @y = external global i32 define zeroext i1 @external_compare(ptr noalias %x) { ; CHECK-LABEL: @external_compare( ; CHECK-NEXT: [[CMP:%.*]] = icmp eq ptr [[X:%.*]], @y ; CHECK-NEXT: ret i1 [[CMP]] ; %cmp = icmp eq ptr %x, @y ret i1 %cmp } define i1 @alloca_gep(i64 %a, i64 %b) { ; CHECK-LABEL: @alloca_gep( ; CHECK-NEXT: ret i1 false ; ; We can prove this GEP is non-null because it is inbounds and the pointer ; is non-null. %strs = alloca [1000 x [1001 x i8]], align 16 %x = getelementptr inbounds [1000 x [1001 x i8]], ptr %strs, i64 0, i64 %a, i64 %b %cmp = icmp eq ptr %x, null ret i1 %cmp } define i1 @alloca_gep_no_null_opt(i64 %a, i64 %b) #0 { ; CHECK-LABEL: @alloca_gep_no_null_opt( ; CHECK-NEXT: [[STRS:%.*]] = alloca [1000 x [1001 x i8]], align 16 ; CHECK-NEXT: [[X:%.*]] = getelementptr inbounds [1000 x [1001 x i8]], ptr [[STRS]], i64 0, i64 [[A:%.*]], i64 [[B:%.*]] ; CHECK-NEXT: [[CMP:%.*]] = icmp eq ptr [[X]], null ; CHECK-NEXT: ret i1 [[CMP]] ; ; We can't prove this GEP is non-null. %strs = alloca [1000 x [1001 x i8]], align 16 %x = getelementptr inbounds [1000 x [1001 x i8]], ptr %strs, i64 0, i64 %a, i64 %b %cmp = icmp eq ptr %x, null ret i1 %cmp } define i1 @non_inbounds_gep_compare(ptr %a) { ; CHECK-LABEL: @non_inbounds_gep_compare( ; CHECK-NEXT: ret i1 true ; ; Equality compares with non-inbounds GEPs can be folded. %x = getelementptr i64, ptr %a, i64 42 %y = getelementptr inbounds i64, ptr %x, i64 -42 %z = getelementptr i64, ptr %a, i64 -42 %w = getelementptr inbounds i64, ptr %z, i64 42 %cmp = icmp eq ptr %y, %w ret i1 %cmp } define i1 @non_inbounds_gep_compare2(ptr %a) { ; CHECK-LABEL: @non_inbounds_gep_compare2( ; CHECK-NEXT: ret i1 true ; ; Equality compares with non-inbounds GEPs can be folded. %x = getelementptr i64, ptr %a, i64 4294967297 %y = getelementptr i64, ptr %a, i64 1 %cmp = icmp eq ptr %y, %y ret i1 %cmp } define i1 @compare_always_true_slt(i16 %a) { ; CHECK-LABEL: @compare_always_true_slt( ; CHECK-NEXT: ret i1 true ; %t1 = zext i16 %a to i32 %t2 = sub i32 0, %t1 %t3 = icmp slt i32 %t2, 1 ret i1 %t3 } define <2 x i1> @compare_always_true_slt_splat(<2 x i16> %a) { ; CHECK-LABEL: @compare_always_true_slt_splat( ; CHECK-NEXT: ret <2 x i1> <i1 true, i1 true> ; %t1 = zext <2 x i16> %a to <2 x i32> %t2 = sub <2 x i32> zeroinitializer, %t1 %t3 = icmp slt <2 x i32> %t2, <i32 1, i32 1> ret <2 x i1> %t3 } define i1 @compare_always_true_sle(i16 %a) { ; CHECK-LABEL: @compare_always_true_sle( ; CHECK-NEXT: ret i1 true ; %t1 = zext i16 %a to i32 %t2 = sub i32 0, %t1 %t3 = icmp sle i32 %t2, 0 ret i1 %t3 } define <2 x i1> @compare_always_true_sle_splat(<2 x i16> %a) { ; CHECK-LABEL: @compare_always_true_sle_splat( ; CHECK-NEXT: ret <2 x i1> <i1 true, i1 true> ; %t1 = zext <2 x i16> %a to <2 x i32> %t2 = sub <2 x i32> zeroinitializer, %t1 %t3 = icmp sle <2 x i32> %t2, zeroinitializer ret <2 x i1> %t3 } define i1 @compare_always_false_sgt(i16 %a) { ; CHECK-LABEL: @compare_always_false_sgt( ; CHECK-NEXT: ret i1 false ; %t1 = zext i16 %a to i32 %t2 = sub i32 0, %t1 %t3 = icmp sgt i32 %t2, 0 ret i1 %t3 } define <2 x i1> @compare_always_false_sgt_splat(<2 x i16> %a) { ; CHECK-LABEL: @compare_always_false_sgt_splat( ; CHECK-NEXT: ret <2 x i1> zeroinitializer ; %t1 = zext <2 x i16> %a to <2 x i32> %t2 = sub <2 x i32> zeroinitializer, %t1 %t3 = icmp sgt <2 x i32> %t2, zeroinitializer ret <2 x i1> %t3 } define i1 @compare_always_false_sge(i16 %a) { ; CHECK-LABEL: @compare_always_false_sge( ; CHECK-NEXT: ret i1 false ; %t1 = zext i16 %a to i32 %t2 = sub i32 0, %t1 %t3 = icmp sge i32 %t2, 1 ret i1 %t3 } define <2 x i1> @compare_always_false_sge_splat(<2 x i16> %a) { ; CHECK-LABEL: @compare_always_false_sge_splat( ; CHECK-NEXT: ret <2 x i1> zeroinitializer ; %t1 = zext <2 x i16> %a to <2 x i32> %t2 = sub <2 x i32> zeroinitializer, %t1 %t3 = icmp sge <2 x i32> %t2, <i32 1, i32 1> ret <2 x i1> %t3 } define i1 @compare_always_false_eq(i16 %a) { ; CHECK-LABEL: @compare_always_false_eq( ; CHECK-NEXT: ret i1 false ; %t1 = zext i16 %a to i32 %t2 = sub i32 0, %t1 %t3 = icmp eq i32 %t2, 1 ret i1 %t3 } define <2 x i1> @compare_always_false_eq_splat(<2 x i16> %a) { ; CHECK-LABEL: @compare_always_false_eq_splat( ; CHECK-NEXT: ret <2 x i1> zeroinitializer ; %t1 = zext <2 x i16> %a to <2 x i32> %t2 = sub <2 x i32> zeroinitializer, %t1 %t3 = icmp eq <2 x i32> %t2, <i32 1, i32 1> ret <2 x i1> %t3 } define i1 @compare_always_true_ne(i16 %a) { ; CHECK-LABEL: @compare_always_true_ne( ; CHECK-NEXT: ret i1 true ; %t1 = zext i16 %a to i32 %t2 = sub i32 0, %t1 %t3 = icmp ne i32 %t2, 1 ret i1 %t3 } define <2 x i1> @compare_always_true_ne_splat(<2 x i16> %a) { ; CHECK-LABEL: @compare_always_true_ne_splat( ; CHECK-NEXT: ret <2 x i1> <i1 true, i1 true> ; %t1 = zext <2 x i16> %a to <2 x i32> %t2 = sub <2 x i32> zeroinitializer, %t1 %t3 = icmp ne <2 x i32> %t2, <i32 1, i32 1> ret <2 x i1> %t3 } define i1 @lshr_ugt_false(i32 %a) { ; CHECK-LABEL: @lshr_ugt_false( ; CHECK-NEXT: ret i1 false ; %shr = lshr i32 1, %a %cmp = icmp ugt i32 %shr, 1 ret i1 %cmp } define i1 @nonnull_arg(ptr nonnull %i) { ; CHECK-LABEL: @nonnull_arg( ; CHECK-NEXT: ret i1 false ; %cmp = icmp eq ptr %i, null ret i1 %cmp } define i1 @nonnull_arg_no_null_opt(ptr nonnull %i) #0 { ; CHECK-LABEL: @nonnull_arg_no_null_opt( ; CHECK-NEXT: ret i1 false ; %cmp = icmp eq ptr %i, null ret i1 %cmp } define i1 @nonnull_deref_arg(ptr dereferenceable(4) %i) { ; CHECK-LABEL: @nonnull_deref_arg( ; CHECK-NEXT: ret i1 false ; %cmp = icmp eq ptr %i, null ret i1 %cmp } define i1 @nonnull_deref_arg_no_null_opt(ptr dereferenceable(4) %i) #0 { ; CHECK-LABEL: @nonnull_deref_arg_no_null_opt( ; CHECK-NEXT: [[CMP:%.*]] = icmp eq ptr [[I:%.*]], null ; CHECK-NEXT: ret i1 [[CMP]] ; %cmp = icmp eq ptr %i, null ret i1 %cmp } define i1 @nonnull_deref_as_arg(ptr addrspace(1) dereferenceable(4) %i) { ; CHECK-LABEL: @nonnull_deref_as_arg( ; CHECK-NEXT: [[CMP:%.*]] = icmp eq ptr addrspace(1) [[I:%.*]], null ; CHECK-NEXT: ret i1 [[CMP]] ; %cmp = icmp eq ptr addrspace(1) %i, null ret i1 %cmp } declare nonnull ptr @returns_nonnull_helper() define i1 @returns_nonnull() { ; CHECK-LABEL: @returns_nonnull( ; CHECK-NEXT: [[CALL:%.*]] = call nonnull ptr @returns_nonnull_helper() ; CHECK-NEXT: ret i1 false ; %call = call nonnull ptr @returns_nonnull_helper() %cmp = icmp eq ptr %call, null ret i1 %cmp } declare dereferenceable(4) ptr @returns_nonnull_deref_helper() define i1 @returns_nonnull_deref() { ; CHECK-LABEL: @returns_nonnull_deref( ; CHECK-NEXT: [[CALL:%.*]] = call dereferenceable(4) ptr @returns_nonnull_deref_helper() ; CHECK-NEXT: ret i1 false ; %call = call dereferenceable(4) ptr @returns_nonnull_deref_helper() %cmp = icmp eq ptr %call, null ret i1 %cmp } define i1 @returns_nonnull_deref_no_null_opt () #0 { ; CHECK-LABEL: @returns_nonnull_deref_no_null_opt( ; CHECK-NEXT: [[CALL:%.*]] = call dereferenceable(4) ptr @returns_nonnull_deref_helper() ; CHECK-NEXT: [[CMP:%.*]] = icmp eq ptr [[CALL]], null ; CHECK-NEXT: ret i1 [[CMP]] ; %call = call dereferenceable(4) ptr @returns_nonnull_deref_helper() %cmp = icmp eq ptr %call, null ret i1 %cmp } declare dereferenceable(4) ptr addrspace(1) @returns_nonnull_deref_as_helper() define i1 @returns_nonnull_as_deref() { ; CHECK-LABEL: @returns_nonnull_as_deref( ; CHECK-NEXT: [[CALL:%.*]] = call dereferenceable(4) ptr addrspace(1) @returns_nonnull_deref_as_helper() ; CHECK-NEXT: [[CMP:%.*]] = icmp eq ptr addrspace(1) [[CALL]], null ; CHECK-NEXT: ret i1 [[CMP]] ; %call = call dereferenceable(4) ptr addrspace(1) @returns_nonnull_deref_as_helper() %cmp = icmp eq ptr addrspace(1) %call, null ret i1 %cmp } define i1 @nonnull_load(ptr %addr) { ; CHECK-LABEL: @nonnull_load( ; CHECK-NEXT: ret i1 false ; %ptr = load ptr, ptr %addr, !nonnull !{} %cmp = icmp eq ptr %ptr, null ret i1 %cmp } define i1 @nonnull_load_as_outer(ptr addrspace(1) %addr) { ; CHECK-LABEL: @nonnull_load_as_outer( ; CHECK-NEXT: ret i1 false ; %ptr = load ptr, ptr addrspace(1) %addr, !nonnull !{} %cmp = icmp eq ptr %ptr, null ret i1 %cmp } define i1 @nonnull_load_as_inner(ptr %addr) { ; CHECK-LABEL: @nonnull_load_as_inner( ; CHECK-NEXT: ret i1 false ; %ptr = load ptr addrspace(1), ptr %addr, !nonnull !{} %cmp = icmp eq ptr addrspace(1) %ptr, null ret i1 %cmp } ; If a bit is known to be zero for A and known to be one for B, ; then A and B cannot be equal. define i1 @icmp_eq_const(i32 %a) { ; CHECK-LABEL: @icmp_eq_const( ; CHECK-NEXT: ret i1 false ; %b = mul nsw i32 %a, -2 %c = icmp eq i32 %b, 1 ret i1 %c } define <2 x i1> @icmp_eq_const_vec(<2 x i32> %a) { ; CHECK-LABEL: @icmp_eq_const_vec( ; CHECK-NEXT: ret <2 x i1> zeroinitializer ; %b = mul nsw <2 x i32> %a, <i32 -2, i32 -2> %c = icmp eq <2 x i32> %b, <i32 1, i32 1> ret <2 x i1> %c } define i1 @icmp_ne_const(i32 %a) { ; CHECK-LABEL: @icmp_ne_const( ; CHECK-NEXT: ret i1 true ; %b = mul nsw i32 %a, -2 %c = icmp ne i32 %b, 1 ret i1 %c } define <2 x i1> @icmp_ne_const_vec(<2 x i32> %a) { ; CHECK-LABEL: @icmp_ne_const_vec( ; CHECK-NEXT: ret <2 x i1> <i1 true, i1 true> ; %b = mul nsw <2 x i32> %a, <i32 -2, i32 -2> %c = icmp ne <2 x i32> %b, <i32 1, i32 1> ret <2 x i1> %c } define i1 @icmp_sdiv_int_min(i32 %a) { ; CHECK-LABEL: @icmp_sdiv_int_min( ; CHECK-NEXT: [[DIV:%.*]] = sdiv i32 -2147483648, [[A:%.*]] ; CHECK-NEXT: [[CMP:%.*]] = icmp ne i32 [[DIV]], -1073741824 ; CHECK-NEXT: ret i1 [[CMP]] ; %div = sdiv i32 -2147483648, %a %cmp = icmp ne i32 %div, -1073741824 ret i1 %cmp } define i1 @icmp_sdiv_pr20288(i64 %a) { ; CHECK-LABEL: @icmp_sdiv_pr20288( ; CHECK-NEXT: [[DIV:%.*]] = sdiv i64 [[A:%.*]], -8589934592 ; CHECK-NEXT: [[CMP:%.*]] = icmp ne i64 [[DIV]], 1073741824 ; CHECK-NEXT: ret i1 [[CMP]] ; %div = sdiv i64 %a, -8589934592 %cmp = icmp ne i64 %div, 1073741824 ret i1 %cmp } define i1 @icmp_sdiv_neg1(i64 %a) { ; CHECK-LABEL: @icmp_sdiv_neg1( ; CHECK-NEXT: [[DIV:%.*]] = sdiv i64 [[A:%.*]], -1 ; CHECK-NEXT: [[CMP:%.*]] = icmp ne i64 [[DIV]], 1073741824 ; CHECK-NEXT: ret i1 [[CMP]] ; %div = sdiv i64 %a, -1 %cmp = icmp ne i64 %div, 1073741824 ret i1 %cmp } define i1 @icmp_known_bits(i4 %x, i4 %y) { ; CHECK-LABEL: @icmp_known_bits( ; CHECK-NEXT: ret i1 false ; %and1 = and i4 %y, -7 %and2 = and i4 %x, -7 %or1 = or i4 %and1, 2 %or2 = or i4 %and2, 2 %add = add i4 %or1, %or2 %cmp = icmp eq i4 %add, 0 ret i1 %cmp } define i1 @icmp_known_bits_vec(<2 x i4> %x, <2 x i4> %y) { ; CHECK-LABEL: @icmp_known_bits_vec( ; CHECK-NEXT: ret i1 false ; %and1 = and <2 x i4> %y, <i4 -7, i4 -1> %and2 = and <2 x i4> %x, <i4 -7, i4 -1> %or1 = or <2 x i4> %and1, <i4 2, i4 2> %or2 = or <2 x i4> %and2, <i4 2, i4 2> %add = add <2 x i4> %or1, %or2 %ext = extractelement <2 x i4> %add,i32 0 %cmp = icmp eq i4 %ext, 0 ret i1 %cmp } define i1 @icmp_shl_nuw_1(i64 %a) { ; CHECK-LABEL: @icmp_shl_nuw_1( ; CHECK-NEXT: ret i1 true ; %shl = shl nuw i64 1, %a %cmp = icmp ne i64 %shl, 0 ret i1 %cmp } define i1 @icmp_shl_1_V_ugt_2147483648(i32 %V) { ; CHECK-LABEL: @icmp_shl_1_V_ugt_2147483648( ; CHECK-NEXT: ret i1 false ; %shl = shl i32 1, %V %cmp = icmp ugt i32 %shl, 2147483648 ret i1 %cmp } define <2 x i1> @icmp_shl_1_ugt_signmask(<2 x i8> %V) { ; CHECK-LABEL: @icmp_shl_1_ugt_signmask( ; CHECK-NEXT: ret <2 x i1> zeroinitializer ; %shl = shl <2 x i8> <i8 1, i8 1>, %V %cmp = icmp ugt <2 x i8> %shl, <i8 128, i8 128> ret <2 x i1> %cmp } define <2 x i1> @icmp_shl_1_ugt_signmask_undef(<2 x i8> %V) { ; CHECK-LABEL: @icmp_shl_1_ugt_signmask_undef( ; CHECK-NEXT: ret <2 x i1> zeroinitializer ; %shl = shl <2 x i8> <i8 1, i8 1>, %V %cmp = icmp ugt <2 x i8> %shl, <i8 128, i8 undef> ret <2 x i1> %cmp } define <2 x i1> @icmp_shl_1_ugt_signmask_undef2(<2 x i8> %V) { ; CHECK-LABEL: @icmp_shl_1_ugt_signmask_undef2( ; CHECK-NEXT: ret <2 x i1> zeroinitializer ; %shl = shl <2 x i8> <i8 1, i8 undef>, %V %cmp = icmp ugt <2 x i8> %shl, <i8 undef, i8 128> ret <2 x i1> %cmp } define i1 @icmp_shl_1_V_ule_2147483648(i32 %V) { ; CHECK-LABEL: @icmp_shl_1_V_ule_2147483648( ; CHECK-NEXT: ret i1 true ; %shl = shl i32 1, %V %cmp = icmp ule i32 %shl, 2147483648 ret i1 %cmp } define <2 x i1> @icmp_shl_1_ule_signmask(<2 x i8> %V) { ; CHECK-LABEL: @icmp_shl_1_ule_signmask( ; CHECK-NEXT: ret <2 x i1> <i1 true, i1 true> ; %shl = shl <2 x i8> <i8 1, i8 1>, %V %cmp = icmp ule <2 x i8> %shl, <i8 128, i8 128> ret <2 x i1> %cmp } define <2 x i1> @icmp_shl_1_ule_signmask_undef(<2 x i8> %V) { ; CHECK-LABEL: @icmp_shl_1_ule_signmask_undef( ; CHECK-NEXT: ret <2 x i1> <i1 true, i1 true> ; %shl = shl <2 x i8> <i8 1, i8 1>, %V %cmp = icmp ule <2 x i8> %shl, <i8 128, i8 undef> ret <2 x i1> %cmp } define <2 x i1> @icmp_shl_1_ule_signmask_undef2(<2 x i8> %V) { ; CHECK-LABEL: @icmp_shl_1_ule_signmask_undef2( ; CHECK-NEXT: ret <2 x i1> <i1 true, i1 true> ; %shl = shl <2 x i8> <i8 1, i8 undef>, %V %cmp = icmp ule <2 x i8> %shl, <i8 undef, i8 128> ret <2 x i1> %cmp } define i1 @shl_1_cmp_eq_nonpow2(i32 %x) { ; CHECK-LABEL: @shl_1_cmp_eq_nonpow2( ; CHECK-NEXT: ret i1 false ; %s = shl i32 1, %x %c = icmp eq i32 %s, 31 ret i1 %c } define <2 x i1> @shl_1_cmp_eq_nonpow2_splat(<2 x i32> %x) { ; CHECK-LABEL: @shl_1_cmp_eq_nonpow2_splat( ; CHECK-NEXT: ret <2 x i1> zeroinitializer ; %s = shl <2 x i32> <i32 1, i32 1>, %x %c = icmp eq <2 x i32> %s, <i32 31, i32 31> ret <2 x i1> %c } define <2 x i1> @shl_1_cmp_eq_nonpow2_splat_undef(<2 x i32> %x) { ; CHECK-LABEL: @shl_1_cmp_eq_nonpow2_splat_undef( ; CHECK-NEXT: ret <2 x i1> zeroinitializer ; %s = shl <2 x i32> <i32 1, i32 1>, %x %c = icmp eq <2 x i32> %s, <i32 31, i32 undef> ret <2 x i1> %c } define i1 @shl_1_cmp_ne_nonpow2(i32 %x) { ; CHECK-LABEL: @shl_1_cmp_ne_nonpow2( ; CHECK-NEXT: ret i1 true ; %s = shl i32 1, %x %c = icmp ne i32 %s, 42 ret i1 %c } define <2 x i1> @shl_1_cmp_ne_nonpow2_splat(<2 x i32> %x) { ; CHECK-LABEL: @shl_1_cmp_ne_nonpow2_splat( ; CHECK-NEXT: ret <2 x i1> <i1 true, i1 true> ; %s = shl <2 x i32> <i32 1, i32 1>, %x %c = icmp ne <2 x i32> %s, <i32 42, i32 42> ret <2 x i1> %c } define <2 x i1> @shl_1_cmp_ne_nonpow2_splat_undef(<2 x i32> %x) { ; CHECK-LABEL: @shl_1_cmp_ne_nonpow2_splat_undef( ; CHECK-NEXT: ret <2 x i1> <i1 true, i1 true> ; %s = shl <2 x i32> <i32 undef, i32 1>, %x %c = icmp ne <2 x i32> %s, <i32 42, i32 undef> ret <2 x i1> %c } define i1 @shl_pow2_cmp_eq_nonpow2(i32 %x) { ; CHECK-LABEL: @shl_pow2_cmp_eq_nonpow2( ; CHECK-NEXT: ret i1 false ; %s = shl i32 4, %x %c = icmp eq i32 %s, 31 ret i1 %c } define <2 x i1> @shl_pow21_cmp_ne_nonpow2_splat_undef(<2 x i32> %x) { ; CHECK-LABEL: @shl_pow21_cmp_ne_nonpow2_splat_undef( ; CHECK-NEXT: ret <2 x i1> <i1 true, i1 true> ; %s = shl <2 x i32> <i32 undef, i32 4>, %x %c = icmp ne <2 x i32> %s, <i32 31, i32 undef> ret <2 x i1> %c } ; Negative test - overflowing shift could be zero. define i1 @shl_pow2_cmp_ne_zero(i32 %x) { ; CHECK-LABEL: @shl_pow2_cmp_ne_zero( ; CHECK-NEXT: [[S:%.*]] = shl i32 16, [[X:%.*]] ; CHECK-NEXT: [[C:%.*]] = icmp ne i32 [[S]], 0 ; CHECK-NEXT: ret i1 [[C]] ; %s = shl i32 16, %x %c = icmp ne i32 %s, 0 ret i1 %c } ; Negative test - overflowing shift could be zero. define <2 x i1> @shl_pow2_cmp_ne_zero_splat(<2 x i32> %x) { ; CHECK-LABEL: @shl_pow2_cmp_ne_zero_splat( ; CHECK-NEXT: [[S:%.*]] = shl <2 x i32> <i32 16, i32 16>, [[X:%.*]] ; CHECK-NEXT: [[C:%.*]] = icmp ne <2 x i32> [[S]], zeroinitializer ; CHECK-NEXT: ret <2 x i1> [[C]] ; %s = shl <2 x i32> <i32 16, i32 16>, %x %c = icmp ne <2 x i32> %s, zeroinitializer ret <2 x i1> %c } define i1 @shl_pow2_cmp_eq_zero_nuw(i32 %x) { ; CHECK-LABEL: @shl_pow2_cmp_eq_zero_nuw( ; CHECK-NEXT: ret i1 false ; %s = shl nuw i32 16, %x %c = icmp eq i32 %s, 0 ret i1 %c } define <2 x i1> @shl_pow2_cmp_ne_zero_nuw_splat_undef(<2 x i32> %x) { ; CHECK-LABEL: @shl_pow2_cmp_ne_zero_nuw_splat_undef( ; CHECK-NEXT: ret <2 x i1> <i1 true, i1 true> ; %s = shl nuw <2 x i32> <i32 16, i32 undef>, %x %c = icmp ne <2 x i32> %s, <i32 undef, i32 0> ret <2 x i1> %c } define i1 @shl_pow2_cmp_ne_zero_nsw(i32 %x) { ; CHECK-LABEL: @shl_pow2_cmp_ne_zero_nsw( ; CHECK-NEXT: ret i1 true ; %s = shl nsw i32 16, %x %c = icmp ne i32 %s, 0 ret i1 %c } define <2 x i1> @shl_pow2_cmp_eq_zero_nsw_splat_undef(<2 x i32> %x) { ; CHECK-LABEL: @shl_pow2_cmp_eq_zero_nsw_splat_undef( ; CHECK-NEXT: ret <2 x i1> zeroinitializer ; %s = shl nsw <2 x i32> <i32 undef, i32 16>, %x %c = icmp eq <2 x i32> %s, <i32 0, i32 undef> ret <2 x i1> %c } define i1 @tautological1(i32 %A, i32 %B) { ; CHECK-LABEL: @tautological1( ; CHECK-NEXT: ret i1 false ; %C = and i32 %A, %B %D = icmp ugt i32 %C, %A ret i1 %D } define i1 @tautological2(i32 %A, i32 %B) { ; CHECK-LABEL: @tautological2( ; CHECK-NEXT: ret i1 true ; %C = and i32 %A, %B %D = icmp ule i32 %C, %A ret i1 %D } define i1 @tautological3(i32 %A, i32 %B) { ; CHECK-LABEL: @tautological3( ; CHECK-NEXT: ret i1 true ; %C = or i32 %A, %B %D = icmp ule i32 %A, %C ret i1 %D } define i1 @tautological4(i32 %A, i32 %B) { ; CHECK-LABEL: @tautological4( ; CHECK-NEXT: ret i1 false ; %C = or i32 %A, %B %D = icmp ugt i32 %A, %C ret i1 %D } define i1 @tautological5(i32 %A, i32 %B) { ; CHECK-LABEL: @tautological5( ; CHECK-NEXT: ret i1 false ; %C = or i32 %A, %B %D = icmp ult i32 %C, %A ret i1 %D } define i1 @tautological6(i32 %A, i32 %B) { ; CHECK-LABEL: @tautological6( ; CHECK-NEXT: ret i1 true ; %C = or i32 %A, %B %D = icmp uge i32 %C, %A ret i1 %D } define i1 @tautological7(i32 %A, i32 %B) { ; CHECK-LABEL: @tautological7( ; CHECK-NEXT: ret i1 true ; %C = and i32 %A, %B %D = icmp uge i32 %A, %C ret i1 %D } define i1 @tautological8(i32 %A, i32 %B) { ; CHECK-LABEL: @tautological8( ; CHECK-NEXT: ret i1 false ; %C = and i32 %A, %B %D = icmp ult i32 %A, %C ret i1 %D } declare void @helper_i1(i1) ; Series of tests for icmp s[lt|ge] (or A, B), A and icmp s[gt|le] A, (or A, B) define void @icmp_slt_sge_or(i32 %Ax, i32 %Bx) { ; 'p' for positive, 'n' for negative, 'x' for potentially either. ; %D is 'icmp slt (or A, B), A' ; %E is 'icmp sge (or A, B), A' making it the not of %D ; %F is 'icmp sgt A, (or A, B)' making it the same as %D ; %G is 'icmp sle A, (or A, B)' making it the not of %D ; CHECK-LABEL: @icmp_slt_sge_or( ; CHECK-NEXT: [[APOS:%.*]] = and i32 [[AX:%.*]], 2147483647 ; CHECK-NEXT: [[BNEG:%.*]] = or i32 [[BX:%.*]], -2147483648 ; CHECK-NEXT: [[CPX:%.*]] = or i32 [[APOS]], [[BX]] ; CHECK-NEXT: [[DPX:%.*]] = icmp slt i32 [[CPX]], [[APOS]] ; CHECK-NEXT: [[EPX:%.*]] = icmp sge i32 [[CPX]], [[APOS]] ; CHECK-NEXT: [[FPX:%.*]] = icmp sgt i32 [[APOS]], [[CPX]] ; CHECK-NEXT: [[GPX:%.*]] = icmp sle i32 [[APOS]], [[CPX]] ; CHECK-NEXT: [[CXX:%.*]] = or i32 [[AX]], [[BX]] ; CHECK-NEXT: [[DXX:%.*]] = icmp slt i32 [[CXX]], [[AX]] ; CHECK-NEXT: [[EXX:%.*]] = icmp sge i32 [[CXX]], [[AX]] ; CHECK-NEXT: [[FXX:%.*]] = icmp sgt i32 [[AX]], [[CXX]] ; CHECK-NEXT: [[GXX:%.*]] = icmp sle i32 [[AX]], [[CXX]] ; CHECK-NEXT: [[CXN:%.*]] = or i32 [[AX]], [[BNEG]] ; CHECK-NEXT: [[DXN:%.*]] = icmp slt i32 [[CXN]], [[AX]] ; CHECK-NEXT: [[EXN:%.*]] = icmp sge i32 [[CXN]], [[AX]] ; CHECK-NEXT: [[FXN:%.*]] = icmp sgt i32 [[AX]], [[CXN]] ; CHECK-NEXT: [[GXN:%.*]] = icmp sle i32 [[AX]], [[CXN]] ; CHECK-NEXT: call void @helper_i1(i1 false) ; CHECK-NEXT: call void @helper_i1(i1 true) ; CHECK-NEXT: call void @helper_i1(i1 false) ; CHECK-NEXT: call void @helper_i1(i1 true) ; CHECK-NEXT: call void @helper_i1(i1 [[DPX]]) ; CHECK-NEXT: call void @helper_i1(i1 [[EPX]]) ; CHECK-NEXT: call void @helper_i1(i1 [[FPX]]) ; CHECK-NEXT: call void @helper_i1(i1 [[GPX]]) ; CHECK-NEXT: call void @helper_i1(i1 true) ; CHECK-NEXT: call void @helper_i1(i1 false) ; CHECK-NEXT: call void @helper_i1(i1 true) ; CHECK-NEXT: call void @helper_i1(i1 false) ; CHECK-NEXT: call void @helper_i1(i1 false) ; CHECK-NEXT: call void @helper_i1(i1 true) ; CHECK-NEXT: call void @helper_i1(i1 false) ; CHECK-NEXT: call void @helper_i1(i1 true) ; CHECK-NEXT: call void @helper_i1(i1 [[DXX]]) ; CHECK-NEXT: call void @helper_i1(i1 [[EXX]]) ; CHECK-NEXT: call void @helper_i1(i1 [[FXX]]) ; CHECK-NEXT: call void @helper_i1(i1 [[GXX]]) ; CHECK-NEXT: call void @helper_i1(i1 [[DXN]]) ; CHECK-NEXT: call void @helper_i1(i1 [[EXN]]) ; CHECK-NEXT: call void @helper_i1(i1 [[FXN]]) ; CHECK-NEXT: call void @helper_i1(i1 [[GXN]]) ; CHECK-NEXT: call void @helper_i1(i1 false) ; CHECK-NEXT: call void @helper_i1(i1 true) ; CHECK-NEXT: call void @helper_i1(i1 false) ; CHECK-NEXT: call void @helper_i1(i1 true) ; CHECK-NEXT: call void @helper_i1(i1 false) ; CHECK-NEXT: call void @helper_i1(i1 true) ; CHECK-NEXT: call void @helper_i1(i1 false) ; CHECK-NEXT: call void @helper_i1(i1 true) ; CHECK-NEXT: call void @helper_i1(i1 false) ; CHECK-NEXT: call void @helper_i1(i1 true) ; CHECK-NEXT: call void @helper_i1(i1 false) ; CHECK-NEXT: call void @helper_i1(i1 true) ; CHECK-NEXT: ret void ; %Aneg = or i32 %Ax, 2147483648 %Apos = and i32 %Ax, 2147483647 %Bneg = or i32 %Bx, 2147483648 %Bpos = and i32 %Bx, 2147483647 %Cpp = or i32 %Apos, %Bpos %Dpp = icmp slt i32 %Cpp, %Apos %Epp = icmp sge i32 %Cpp, %Apos %Fpp = icmp sgt i32 %Apos, %Cpp %Gpp = icmp sle i32 %Apos, %Cpp %Cpx = or i32 %Apos, %Bx %Dpx = icmp slt i32 %Cpx, %Apos %Epx = icmp sge i32 %Cpx, %Apos %Fpx = icmp sgt i32 %Apos, %Cpx %Gpx = icmp sle i32 %Apos, %Cpx %Cpn = or i32 %Apos, %Bneg %Dpn = icmp slt i32 %Cpn, %Apos %Epn = icmp sge i32 %Cpn, %Apos %Fpn = icmp sgt i32 %Apos, %Cpn %Gpn = icmp sle i32 %Apos, %Cpn %Cxp = or i32 %Ax, %Bpos %Dxp = icmp slt i32 %Cxp, %Ax %Exp = icmp sge i32 %Cxp, %Ax %Fxp = icmp sgt i32 %Ax, %Cxp %Gxp = icmp sle i32 %Ax, %Cxp %Cxx = or i32 %Ax, %Bx %Dxx = icmp slt i32 %Cxx, %Ax %Exx = icmp sge i32 %Cxx, %Ax %Fxx = icmp sgt i32 %Ax, %Cxx %Gxx = icmp sle i32 %Ax, %Cxx %Cxn = or i32 %Ax, %Bneg %Dxn = icmp slt i32 %Cxn, %Ax %Exn = icmp sge i32 %Cxn, %Ax %Fxn = icmp sgt i32 %Ax, %Cxn %Gxn = icmp sle i32 %Ax, %Cxn %Cnp = or i32 %Aneg, %Bpos %Dnp = icmp slt i32 %Cnp, %Aneg %Enp = icmp sge i32 %Cnp, %Aneg %Fnp = icmp sgt i32 %Aneg, %Cnp %Gnp = icmp sle i32 %Aneg, %Cnp %Cnx = or i32 %Aneg, %Bx %Dnx = icmp slt i32 %Cnx, %Aneg %Enx = icmp sge i32 %Cnx, %Aneg %Fnx = icmp sgt i32 %Aneg, %Cnx %Gnx = icmp sle i32 %Aneg, %Cnx %Cnn = or i32 %Aneg, %Bneg %Dnn = icmp slt i32 %Cnn, %Aneg %Enn = icmp sge i32 %Cnn, %Aneg %Fnn = icmp sgt i32 %Aneg, %Cnn %Gnn = icmp sle i32 %Aneg, %Cnn call void @helper_i1(i1 %Dpp) call void @helper_i1(i1 %Epp) call void @helper_i1(i1 %Fpp) call void @helper_i1(i1 %Gpp) call void @helper_i1(i1 %Dpx) call void @helper_i1(i1 %Epx) call void @helper_i1(i1 %Fpx) call void @helper_i1(i1 %Gpx) call void @helper_i1(i1 %Dpn) call void @helper_i1(i1 %Epn) call void @helper_i1(i1 %Fpn) call void @helper_i1(i1 %Gpn) call void @helper_i1(i1 %Dxp) call void @helper_i1(i1 %Exp) call void @helper_i1(i1 %Fxp) call void @helper_i1(i1 %Gxp) call void @helper_i1(i1 %Dxx) call void @helper_i1(i1 %Exx) call void @helper_i1(i1 %Fxx) call void @helper_i1(i1 %Gxx) call void @helper_i1(i1 %Dxn) call void @helper_i1(i1 %Exn) call void @helper_i1(i1 %Fxn) call void @helper_i1(i1 %Gxn) call void @helper_i1(i1 %Dnp) call void @helper_i1(i1 %Enp) call void @helper_i1(i1 %Fnp) call void @helper_i1(i1 %Gnp) call void @helper_i1(i1 %Dnx) call void @helper_i1(i1 %Enx) call void @helper_i1(i1 %Fnx) call void @helper_i1(i1 %Gnx) call void @helper_i1(i1 %Dnn) call void @helper_i1(i1 %Enn) call void @helper_i1(i1 %Fnn) call void @helper_i1(i1 %Gnn) ret void } define i1 @constant_fold_inttoptr_null() { ; CHECK-LABEL: @constant_fold_inttoptr_null( ; CHECK-NEXT: ret i1 false ; %x = icmp eq ptr inttoptr (i64 32 to ptr), null ret i1 %x } define i1 @constant_fold_null_inttoptr() { ; CHECK-LABEL: @constant_fold_null_inttoptr( ; CHECK-NEXT: ret i1 false ; %x = icmp eq ptr null, inttoptr (i64 32 to ptr) ret i1 %x } define i1 @cmp_through_addrspacecast(ptr addrspace(1) %p1) { ; CHECK-LABEL: @cmp_through_addrspacecast( ; CHECK-NEXT: ret i1 true ; %p0 = addrspacecast ptr addrspace(1) %p1 to ptr %p0.1 = getelementptr inbounds i32, ptr %p0, i64 1 %cmp = icmp ne ptr %p0, %p0.1 ret i1 %cmp } ; Test simplifications for: icmp (X+Y), (X+Z) -> icmp Y,Z ; Test the overflow check when the RHS has NSW set and constant Z is greater ; than Y, then we know X+Y also can't overflow. define i1 @icmp_nsw_1(i32 %V) { ; CHECK-LABEL: @icmp_nsw_1( ; CHECK-NEXT: ret i1 true ; %add5 = add i32 %V, 5 %add6 = add nsw i32 %V, 6 %s1 = sext i32 %add5 to i64 %s2 = sext i32 %add6 to i64 %cmp = icmp slt i64 %s1, %s2 ret i1 %cmp } define i1 @icmp_nsw_2(i32 %V) { ; CHECK-LABEL: @icmp_nsw_2( ; CHECK-NEXT: ret i1 true ; %add5 = add i32 %V, 5 %add6 = add nsw i32 %V, 6 %cmp = icmp slt i32 %add5, %add6 ret i1 %cmp } define i1 @icmp_nsw_commute(i32 %V) { ; CHECK-LABEL: @icmp_nsw_commute( ; CHECK-NEXT: ret i1 true ; %add5 = add i32 5, %V %add6 = add nsw i32 %V, 6 %cmp = icmp slt i32 %add5, %add6 ret i1 %cmp } define i1 @icmp_nsw_commute2(i32 %V) { ; CHECK-LABEL: @icmp_nsw_commute2( ; CHECK-NEXT: ret i1 true ; %add5 = add i32 %V, 5 %add6 = add nsw i32 6, %V %cmp = icmp slt i32 %add5, %add6 ret i1 %cmp } define i1 @icmp_nsw_commute3(i32 %V) { ; CHECK-LABEL: @icmp_nsw_commute3( ; CHECK-NEXT: ret i1 true ; %add5 = add i32 5, %V %add6 = add nsw i32 6, %V %cmp = icmp slt i32 %add5, %add6 ret i1 %cmp } define i1 @icmp_nsw_22(i32 %V) { ; CHECK-LABEL: @icmp_nsw_22( ; CHECK-NEXT: ret i1 true ; %add5 = add nsw i32 %V, 5 %add6 = add nsw i32 %V, 6 %cmp = icmp slt i32 %add5, %add6 ret i1 %cmp } define i1 @icmp_nsw_23(i32 %V) { ; CHECK-LABEL: @icmp_nsw_23( ; CHECK-NEXT: [[ADD5:%.*]] = add nsw i32 [[V:%.*]], 5 ; CHECK-NEXT: [[ADD6:%.*]] = add i32 [[V]], 6 ; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[ADD5]], [[ADD6]] ; CHECK-NEXT: ret i1 [[CMP]] ; %add5 = add nsw i32 %V, 5 %add6 = add i32 %V, 6 %cmp = icmp slt i32 %add5, %add6 ret i1 %cmp } define i1 @icmp_nsw_false(i32 %V) { ; CHECK-LABEL: @icmp_nsw_false( ; CHECK-NEXT: ret i1 false ; %add5 = add nsw i32 %V, 6 %add6 = add i32 %V, 5 %cmp = icmp slt i32 %add5, %add6 ret i1 %cmp } define i1 @icmp_nsw_false_2(i32 %V) { ; CHECK-LABEL: @icmp_nsw_false_2( ; CHECK-NEXT: ret i1 false ; %add5 = add nsw i32 %V, 6 %add6 = add nsw i32 %V, 5 %cmp = icmp slt i32 %add5, %add6 ret i1 %cmp } define i1 @icmp_nsw_false_3(i32 %V) { ; CHECK-LABEL: @icmp_nsw_false_3( ; CHECK-NEXT: [[ADD5:%.*]] = add nsw i32 [[V:%.*]], 5 ; CHECK-NEXT: [[ADD6:%.*]] = add i32 [[V]], 5 ; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[ADD5]], [[ADD6]] ; CHECK-NEXT: ret i1 [[CMP]] ; %add5 = add nsw i32 %V, 5 %add6 = add i32 %V, 5 %cmp = icmp slt i32 %add5, %add6 ret i1 %cmp } define i1 @icmp_nsw_false_4(i32 %V) { ; CHECK-LABEL: @icmp_nsw_false_4( ; CHECK-NEXT: [[ADD5:%.*]] = add i32 [[V:%.*]], 6 ; CHECK-NEXT: [[ADD6:%.*]] = add nsw i32 [[V]], 5 ; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[ADD5]], [[ADD6]] ; CHECK-NEXT: ret i1 [[CMP]] ; %add5 = add i32 %V, 6 %add6 = add nsw i32 %V, 5 %cmp = icmp slt i32 %add5, %add6 ret i1 %cmp } define i1 @icmp_nsw_false_5(i8 %V) { ; CHECK-LABEL: @icmp_nsw_false_5( ; CHECK-NEXT: [[ADD:%.*]] = add i8 [[V:%.*]], 121 ; CHECK-NEXT: [[ADDNSW:%.*]] = add nsw i8 [[V]], -104 ; CHECK-NEXT: [[CMP:%.*]] = icmp slt i8 [[ADD]], [[ADDNSW]] ; CHECK-NEXT: ret i1 [[CMP]] ; %add = add i8 %V, 121 %addnsw = add nsw i8 %V, -104 %cmp = icmp slt i8 %add, %addnsw ret i1 %cmp } define i1 @icmp_nsw_i8(i8 %V) { ; CHECK-LABEL: @icmp_nsw_i8( ; CHECK-NEXT: ret i1 true ; %add5 = add i8 %V, 5 %add6 = add nsw i8 %V, 6 %cmp = icmp slt i8 %add5, %add6 ret i1 %cmp } define i1 @icmp_nsw_i16(i16 %V) { ; CHECK-LABEL: @icmp_nsw_i16( ; CHECK-NEXT: ret i1 true ; %add5 = add i16 %V, 0 %add6 = add nsw i16 %V, 1 %cmp = icmp slt i16 %add5, %add6 ret i1 %cmp } define i1 @icmp_nsw_i64(i64 %V) { ; CHECK-LABEL: @icmp_nsw_i64( ; CHECK-NEXT: ret i1 true ; %add5 = add i64 %V, 5 %add6 = add nsw i64 %V, 6 %cmp = icmp slt i64 %add5, %add6 ret i1 %cmp } define <4 x i1> @icmp_nsw_vec(<4 x i32> %V) { ; CHECK-LABEL: @icmp_nsw_vec( ; CHECK-NEXT: ret <4 x i1> <i1 true, i1 true, i1 true, i1 true> ; %add5 = add <4 x i32> %V, <i32 5, i32 5, i32 5, i32 5> %add6 = add nsw <4 x i32> %V, <i32 6, i32 6, i32 6, i32 6> %cmp = icmp slt <4 x i32> %add5, %add6 ret <4 x i1> %cmp } define i1 @icmp_nsw_3(i32 %V) { ; CHECK-LABEL: @icmp_nsw_3( ; CHECK-NEXT: [[ADD5:%.*]] = add i32 [[V:%.*]], 5 ; CHECK-NEXT: [[ADD5_2:%.*]] = add nsw i32 [[V]], 5 ; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[ADD5]], [[ADD5_2]] ; CHECK-NEXT: ret i1 [[CMP]] ; %add5 = add i32 %V, 5 %add5_2 = add nsw i32 %V, 5 %cmp = icmp slt i32 %add5, %add5_2 ret i1 %cmp } define i1 @icmp_nsw_4(i32 %V) { ; CHECK-LABEL: @icmp_nsw_4( ; CHECK-NEXT: [[ADD5:%.*]] = add i32 [[V:%.*]], 5 ; CHECK-NEXT: [[ADD4:%.*]] = add nsw i32 [[V]], 4 ; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[ADD5]], [[ADD4]] ; CHECK-NEXT: ret i1 [[CMP]] ; %add5 = add i32 %V, 5 %add4 = add nsw i32 %V, 4 %cmp = icmp slt i32 %add5, %add4 ret i1 %cmp } define i1 @icmp_nsw_5(i32 %V) { ; CHECK-LABEL: @icmp_nsw_5( ; CHECK-NEXT: [[ADD5:%.*]] = add nsw i32 [[V:%.*]], 5 ; CHECK-NEXT: [[ADD6:%.*]] = add i32 [[V]], 6 ; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[ADD5]], [[ADD6]] ; CHECK-NEXT: ret i1 [[CMP]] ; %add5 = add nsw i32 %V, 5 %add6 = add i32 %V, 6 %cmp = icmp slt i32 %add5, %add6 ret i1 %cmp } define i1 @icmp_nsw_7(i32 %V, i32 %arg) { ; CHECK-LABEL: @icmp_nsw_7( ; CHECK-NEXT: [[ADD5:%.*]] = add i32 [[V:%.*]], 5 ; CHECK-NEXT: [[ADDARG:%.*]] = add nsw i32 [[V]], [[ARG:%.*]] ; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[ADD5]], [[ADDARG]] ; CHECK-NEXT: ret i1 [[CMP]] ; %add5 = add i32 %V, 5 %addarg = add nsw i32 %V, %arg %cmp = icmp slt i32 %add5, %addarg ret i1 %cmp } define i1 @icmp_nsw_8(i32 %V, i32 %arg) { ; CHECK-LABEL: @icmp_nsw_8( ; CHECK-NEXT: [[ADDARG:%.*]] = add i32 [[V:%.*]], [[ARG:%.*]] ; CHECK-NEXT: [[ADD6:%.*]] = add nsw i32 [[V]], 5 ; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[ADDARG]], [[ADD6]] ; CHECK-NEXT: ret i1 [[CMP]] ; %addarg = add i32 %V, %arg %add6 = add nsw i32 %V, 5 %cmp = icmp slt i32 %addarg, %add6 ret i1 %cmp } define i1 @icmp_nsw_9(i32 %V1, i32 %V2) { ; CHECK-LABEL: @icmp_nsw_9( ; CHECK-NEXT: [[ADD_V1:%.*]] = add i32 [[V1:%.*]], 5 ; CHECK-NEXT: [[ADD_V2:%.*]] = add nsw i32 [[V2:%.*]], 6 ; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[ADD_V1]], [[ADD_V2]] ; CHECK-NEXT: ret i1 [[CMP]] ; %add_V1 = add i32 %V1, 5 %add_V2 = add nsw i32 %V2, 6 %cmp = icmp slt i32 %add_V1, %add_V2 ret i1 %cmp } define i1 @icmp_nsw_10(i32 %V) { ; CHECK-LABEL: @icmp_nsw_10( ; CHECK-NEXT: [[ADD5:%.*]] = add i32 [[V:%.*]], 5 ; CHECK-NEXT: [[ADD6:%.*]] = add nsw i32 [[V]], 6 ; CHECK-NEXT: [[CMP:%.*]] = icmp sgt i32 [[ADD6]], [[ADD5]] ; CHECK-NEXT: ret i1 [[CMP]] ; %add5 = add i32 %V, 5 %add6 = add nsw i32 %V, 6 %cmp = icmp sgt i32 %add6, %add5 ret i1 %cmp } define i1 @icmp_nsw_11(i32 %V) { ; CHECK-LABEL: @icmp_nsw_11( ; CHECK-NEXT: [[ADD5:%.*]] = add i32 [[V:%.*]], -125 ; CHECK-NEXT: [[ADD6:%.*]] = add nsw i32 [[V]], -99 ; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[ADD5]], [[ADD6]] ; CHECK-NEXT: ret i1 [[CMP]] ; %add5 = add i32 %V, -125 %add6 = add nsw i32 %V, -99 %cmp = icmp slt i32 %add5, %add6 ret i1 %cmp } define i1 @icmp_nsw_nonpos(i32 %V) { ; CHECK-LABEL: @icmp_nsw_nonpos( ; CHECK-NEXT: ret i1 false ; %add5 = add i32 %V, 0 %add6 = add nsw i32 %V, -1 %cmp = icmp slt i32 %add5, %add6 ret i1 %cmp } define i1 @icmp_nsw_nonpos2(i32 %V) { ; CHECK-LABEL: @icmp_nsw_nonpos2( ; CHECK-NEXT: [[ADD5:%.*]] = add i32 [[V:%.*]], 1 ; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[ADD5]], [[V]] ; CHECK-NEXT: ret i1 [[CMP]] ; %add5 = add i32 %V, 1 %add6 = add nsw i32 %V, 0 %cmp = icmp slt i32 %add5, %add6 ret i1 %cmp } declare i11 @llvm.ctpop.i11(i11) declare i73 @llvm.ctpop.i73(i73) declare <2 x i13> @llvm.ctpop.v2i13(<2 x i13>) define i1 @ctpop_sgt_bitwidth(i11 %x) { ; CHECK-LABEL: @ctpop_sgt_bitwidth( ; CHECK-NEXT: ret i1 false ; %pop = call i11 @llvm.ctpop.i11(i11 %x) %cmp = icmp sgt i11 %pop, 11 ret i1 %cmp } define i1 @ctpop_sle_minus1(i11 %x) { ; CHECK-LABEL: @ctpop_sle_minus1( ; CHECK-NEXT: ret i1 false ; %pop = call i11 @llvm.ctpop.i11(i11 %x) %cmp = icmp sle i11 %pop, -1 ret i1 %cmp } define i1 @ctpop_ugt_bitwidth(i73 %x) { ; CHECK-LABEL: @ctpop_ugt_bitwidth( ; CHECK-NEXT: ret i1 false ; %pop = call i73 @llvm.ctpop.i73(i73 %x) %cmp = icmp ugt i73 %pop, 73 ret i1 %cmp } ; Negative test - does not simplify, but instcombine could reduce this. define i1 @ctpop_ugt_bitwidth_minus1(i73 %x) { ; CHECK-LABEL: @ctpop_ugt_bitwidth_minus1( ; CHECK-NEXT: [[POP:%.*]] = call i73 @llvm.ctpop.i73(i73 [[X:%.*]]) ; CHECK-NEXT: [[CMP:%.*]] = icmp ugt i73 [[POP]], 72 ; CHECK-NEXT: ret i1 [[CMP]] ; %pop = call i73 @llvm.ctpop.i73(i73 %x) %cmp = icmp ugt i73 %pop, 72 ret i1 %cmp } define <2 x i1> @ctpop_sgt_bitwidth_splat(<2 x i13> %x) { ; CHECK-LABEL: @ctpop_sgt_bitwidth_splat( ; CHECK-NEXT: ret <2 x i1> zeroinitializer ; %pop = call <2 x i13> @llvm.ctpop.v2i13(<2 x i13> %x) %cmp = icmp sgt <2 x i13> %pop, <i13 13, i13 13> ret <2 x i1> %cmp } define i1 @ctpop_ult_plus1_bitwidth(i11 %x) { ; CHECK-LABEL: @ctpop_ult_plus1_bitwidth( ; CHECK-NEXT: ret i1 true ; %pop = call i11 @llvm.ctpop.i11(i11 %x) %cmp = icmp ult i11 %pop, 12 ret i1 %cmp } define i1 @ctpop_ne_big_bitwidth(i73 %x) { ; CHECK-LABEL: @ctpop_ne_big_bitwidth( ; CHECK-NEXT: ret i1 true ; %pop = call i73 @llvm.ctpop.i73(i73 %x) %cmp = icmp ne i73 %pop, 75 ret i1 %cmp } define <2 x i1> @ctpop_slt_bitwidth_plus1_splat(<2 x i13> %x) { ; CHECK-LABEL: @ctpop_slt_bitwidth_plus1_splat( ; CHECK-NEXT: ret <2 x i1> <i1 true, i1 true> ; %pop = call <2 x i13> @llvm.ctpop.v2i13(<2 x i13> %x) %cmp = icmp slt <2 x i13> %pop, <i13 14, i13 14> ret <2 x i1> %cmp } ; Negative test - does not simplify, but instcombine could reduce this. define <2 x i1> @ctpop_slt_bitwidth_splat(<2 x i13> %x) { ; CHECK-LABEL: @ctpop_slt_bitwidth_splat( ; CHECK-NEXT: [[POP:%.*]] = call <2 x i13> @llvm.ctpop.v2i13(<2 x i13> [[X:%.*]]) ; CHECK-NEXT: [[CMP:%.*]] = icmp slt <2 x i13> [[POP]], <i13 13, i13 13> ; CHECK-NEXT: ret <2 x i1> [[CMP]] ; %pop = call <2 x i13> @llvm.ctpop.v2i13(<2 x i13> %x) %cmp = icmp slt <2 x i13> %pop, <i13 13, i13 13> ret <2 x i1> %cmp } declare i11 @llvm.ctlz.i11(i11) declare i73 @llvm.ctlz.i73(i73) declare <2 x i13> @llvm.ctlz.v2i13(<2 x i13>) define i1 @ctlz_sgt_bitwidth(i11 %x) { ; CHECK-LABEL: @ctlz_sgt_bitwidth( ; CHECK-NEXT: ret i1 false ; %pop = call i11 @llvm.ctlz.i11(i11 %x) %cmp = icmp sgt i11 %pop, 11 ret i1 %cmp } define i1 @ctlz_sle_minus1(i11 %x) { ; CHECK-LABEL: @ctlz_sle_minus1( ; CHECK-NEXT: ret i1 false ; %pop = call i11 @llvm.ctlz.i11(i11 %x) %cmp = icmp sle i11 %pop, -1 ret i1 %cmp } define i1 @ctlz_ugt_bitwidth(i73 %x) { ; CHECK-LABEL: @ctlz_ugt_bitwidth( ; CHECK-NEXT: ret i1 false ; %pop = call i73 @llvm.ctlz.i73(i73 %x) %cmp = icmp ugt i73 %pop, 73 ret i1 %cmp } ; Negative test - does not simplify, but instcombine could reduce this. define i1 @ctlz_ugt_bitwidth_minus1(i73 %x) { ; CHECK-LABEL: @ctlz_ugt_bitwidth_minus1( ; CHECK-NEXT: [[POP:%.*]] = call i73 @llvm.ctlz.i73(i73 [[X:%.*]], i1 false) ; CHECK-NEXT: [[CMP:%.*]] = icmp ugt i73 [[POP]], 72 ; CHECK-NEXT: ret i1 [[CMP]] ; %pop = call i73 @llvm.ctlz.i73(i73 %x) %cmp = icmp ugt i73 %pop, 72 ret i1 %cmp } define <2 x i1> @ctlz_sgt_bitwidth_splat(<2 x i13> %x) { ; CHECK-LABEL: @ctlz_sgt_bitwidth_splat( ; CHECK-NEXT: ret <2 x i1> zeroinitializer ; %pop = call <2 x i13> @llvm.ctlz.v2i13(<2 x i13> %x) %cmp = icmp sgt <2 x i13> %pop, <i13 13, i13 13> ret <2 x i1> %cmp } define i1 @ctlz_ult_plus1_bitwidth(i11 %x) { ; CHECK-LABEL: @ctlz_ult_plus1_bitwidth( ; CHECK-NEXT: ret i1 true ; %pop = call i11 @llvm.ctlz.i11(i11 %x) %cmp = icmp ult i11 %pop, 12 ret i1 %cmp } define i1 @ctlz_ne_big_bitwidth(i73 %x) { ; CHECK-LABEL: @ctlz_ne_big_bitwidth( ; CHECK-NEXT: ret i1 true ; %pop = call i73 @llvm.ctlz.i73(i73 %x) %cmp = icmp ne i73 %pop, 75 ret i1 %cmp } define <2 x i1> @ctlz_slt_bitwidth_plus1_splat(<2 x i13> %x) { ; CHECK-LABEL: @ctlz_slt_bitwidth_plus1_splat( ; CHECK-NEXT: ret <2 x i1> <i1 true, i1 true> ; %pop = call <2 x i13> @llvm.ctlz.v2i13(<2 x i13> %x) %cmp = icmp slt <2 x i13> %pop, <i13 14, i13 14> ret <2 x i1> %cmp } ; Negative test - does not simplify, but instcombine could reduce this. define <2 x i1> @ctlz_slt_bitwidth_splat(<2 x i13> %x) { ; CHECK-LABEL: @ctlz_slt_bitwidth_splat( ; CHECK-NEXT: [[POP:%.*]] = call <2 x i13> @llvm.ctlz.v2i13(<2 x i13> [[X:%.*]], i1 false) ; CHECK-NEXT: [[CMP:%.*]] = icmp slt <2 x i13> [[POP]], <i13 13, i13 13> ; CHECK-NEXT: ret <2 x i1> [[CMP]] ; %pop = call <2 x i13> @llvm.ctlz.v2i13(<2 x i13> %x) %cmp = icmp slt <2 x i13> %pop, <i13 13, i13 13> ret <2 x i1> %cmp } declare i11 @llvm.cttz.i11(i11) declare i73 @llvm.cttz.i73(i73) declare <2 x i13> @llvm.cttz.v2i13(<2 x i13>) define i1 @cttz_sgt_bitwidth(i11 %x) { ; CHECK-LABEL: @cttz_sgt_bitwidth( ; CHECK-NEXT: ret i1 false ; %pop = call i11 @llvm.cttz.i11(i11 %x) %cmp = icmp sgt i11 %pop, 11 ret i1 %cmp } define i1 @cttz_sle_minus1(i11 %x) { ; CHECK-LABEL: @cttz_sle_minus1( ; CHECK-NEXT: ret i1 false ; %pop = call i11 @llvm.cttz.i11(i11 %x) %cmp = icmp sle i11 %pop, -1 ret i1 %cmp } define i1 @cttz_ugt_bitwidth(i73 %x) { ; CHECK-LABEL: @cttz_ugt_bitwidth( ; CHECK-NEXT: ret i1 false ; %pop = call i73 @llvm.cttz.i73(i73 %x) %cmp = icmp ugt i73 %pop, 73 ret i1 %cmp } ; Negative test - does not simplify, but instcombine could reduce this. define i1 @cttz_ugt_bitwidth_minus1(i73 %x) { ; CHECK-LABEL: @cttz_ugt_bitwidth_minus1( ; CHECK-NEXT: [[POP:%.*]] = call i73 @llvm.cttz.i73(i73 [[X:%.*]], i1 false) ; CHECK-NEXT: [[CMP:%.*]] = icmp ugt i73 [[POP]], 72 ; CHECK-NEXT: ret i1 [[CMP]] ; %pop = call i73 @llvm.cttz.i73(i73 %x) %cmp = icmp ugt i73 %pop, 72 ret i1 %cmp } define <2 x i1> @cttz_sgt_bitwidth_splat(<2 x i13> %x) { ; CHECK-LABEL: @cttz_sgt_bitwidth_splat( ; CHECK-NEXT: ret <2 x i1> zeroinitializer ; %pop = call <2 x i13> @llvm.cttz.v2i13(<2 x i13> %x) %cmp = icmp sgt <2 x i13> %pop, <i13 13, i13 13> ret <2 x i1> %cmp } define i1 @cttz_ult_plus1_bitwidth(i11 %x) { ; CHECK-LABEL: @cttz_ult_plus1_bitwidth( ; CHECK-NEXT: ret i1 true ; %pop = call i11 @llvm.cttz.i11(i11 %x) %cmp = icmp ult i11 %pop, 12 ret i1 %cmp } define i1 @cttz_ne_big_bitwidth(i73 %x) { ; CHECK-LABEL: @cttz_ne_big_bitwidth( ; CHECK-NEXT: ret i1 true ; %pop = call i73 @llvm.cttz.i73(i73 %x) %cmp = icmp ne i73 %pop, 75 ret i1 %cmp } define <2 x i1> @cttz_slt_bitwidth_plus1_splat(<2 x i13> %x) { ; CHECK-LABEL: @cttz_slt_bitwidth_plus1_splat( ; CHECK-NEXT: ret <2 x i1> <i1 true, i1 true> ; %pop = call <2 x i13> @llvm.cttz.v2i13(<2 x i13> %x) %cmp = icmp slt <2 x i13> %pop, <i13 14, i13 14> ret <2 x i1> %cmp } ; Negative test - does not simplify, but instcombine could reduce this. define <2 x i1> @cttz_slt_bitwidth_splat(<2 x i13> %x) { ; CHECK-LABEL: @cttz_slt_bitwidth_splat( ; CHECK-NEXT: [[POP:%.*]] = call <2 x i13> @llvm.cttz.v2i13(<2 x i13> [[X:%.*]], i1 false) ; CHECK-NEXT: [[CMP:%.*]] = icmp slt <2 x i13> [[POP]], <i13 13, i13 13> ; CHECK-NEXT: ret <2 x i1> [[CMP]] ; %pop = call <2 x i13> @llvm.cttz.v2i13(<2 x i13> %x) %cmp = icmp slt <2 x i13> %pop, <i13 13, i13 13> ret <2 x i1> %cmp } ; A zero sized alloca *can* be equal to another alloca define i1 @zero_sized_alloca1() { ; CHECK-LABEL: @zero_sized_alloca1( ; CHECK-NEXT: [[A:%.*]] = alloca i32, i32 0, align 4 ; CHECK-NEXT: [[B:%.*]] = alloca i32, i32 0, align 4 ; CHECK-NEXT: [[RES:%.*]] = icmp ne ptr [[A]], [[B]] ; CHECK-NEXT: ret i1 [[RES]] ; %a = alloca i32, i32 0 %b = alloca i32, i32 0 %res = icmp ne ptr %a, %b ret i1 %res } define i1 @zero_sized_alloca2() { ; CHECK-LABEL: @zero_sized_alloca2( ; CHECK-NEXT: [[A:%.*]] = alloca i32, i32 0, align 4 ; CHECK-NEXT: [[B:%.*]] = alloca i32, align 4 ; CHECK-NEXT: [[RES:%.*]] = icmp ne ptr [[A]], [[B]] ; CHECK-NEXT: ret i1 [[RES]] ; %a = alloca i32, i32 0 %b = alloca i32 %res = icmp ne ptr %a, %b ret i1 %res } define i1 @scalar_vectors_are_non_empty() { ; CHECK-LABEL: @scalar_vectors_are_non_empty( ; CHECK-NEXT: ret i1 true ; %a = alloca <vscale x 2 x i32> %b = alloca <vscale x 2 x i32> %res = icmp ne ptr %a, %b ret i1 %res } ; Never equal define i1 @byval_args_inequal(ptr byval(i32) %a, ptr byval(i32) %b) { ; CHECK-LABEL: @byval_args_inequal( ; CHECK-NEXT: ret i1 true ; %res = icmp ne ptr %a, %b ret i1 %res } ; Arguments can be adjacent on the stack define i1 @neg_args_adjacent(ptr byval(i32) %a, ptr byval(i32) %b) { ; CHECK-LABEL: @neg_args_adjacent( ; CHECK-NEXT: [[A_OFF:%.*]] = getelementptr i32, ptr [[A:%.*]], i32 1 ; CHECK-NEXT: [[RES:%.*]] = icmp ne ptr [[A_OFF]], [[B:%.*]] ; CHECK-NEXT: ret i1 [[RES]] ; %a.off = getelementptr i32, ptr %a, i32 1 %res = icmp ne ptr %a.off, %b ret i1 %res } ; Never equal define i1 @test_byval_alloca_inequal(ptr byval(i32) %a) { ; CHECK-LABEL: @test_byval_alloca_inequal( ; CHECK-NEXT: ret i1 true ; %b = alloca i32 %res = icmp ne ptr %a, %b ret i1 %res } ; Byval argument can be immediately before alloca, and crossing ; over is allowed. define i1 @neg_byval_alloca_adjacent(ptr byval(i32) %a) { ; CHECK-LABEL: @neg_byval_alloca_adjacent( ; CHECK-NEXT: [[B:%.*]] = alloca i32, align 4 ; CHECK-NEXT: [[A_OFF:%.*]] = getelementptr i32, ptr [[A:%.*]], i32 1 ; CHECK-NEXT: [[RES:%.*]] = icmp ne ptr [[A_OFF]], [[B]] ; CHECK-NEXT: ret i1 [[RES]] ; %b = alloca i32 %a.off = getelementptr i32, ptr %a, i32 1 %res = icmp ne ptr %a.off, %b ret i1 %res } @A = global i32 0 @B = global i32 0 @A.alias = alias i32, ptr @A define i1 @globals_inequal() { ; CHECK-LABEL: @globals_inequal( ; CHECK-NEXT: ret i1 true ; %res = icmp ne ptr @A, @B ret i1 %res } ; TODO: Never equal define i1 @globals_offset_inequal() { ; CHECK-LABEL: @globals_offset_inequal( ; CHECK-NEXT: ret i1 icmp ne (ptr getelementptr inbounds (i8, ptr @A, i32 1), ptr getelementptr inbounds (i8, ptr @B, i32 1)) ; %a.off = getelementptr i8, ptr @A, i32 1 %b.off = getelementptr i8, ptr @B, i32 1 %res = icmp ne ptr %a.off, %b.off ret i1 %res } ; Never equal define i1 @test_byval_global_inequal(ptr byval(i32) %a) { ; CHECK-LABEL: @test_byval_global_inequal( ; CHECK-NEXT: ret i1 true ; %b = alloca i32 %res = icmp ne ptr %a, @B ret i1 %res } define i1 @neg_global_alias() { ; CHECK-LABEL: @neg_global_alias( ; CHECK-NEXT: ret i1 icmp ne (ptr @A, ptr @A.alias) ; %res = icmp ne ptr @A, @A.alias ret i1 %res } ; TODO: Add coverage for global aliases, link once, etc.. attributes #0 = { null_pointer_is_valid }