Compiler projects using llvm
; RUN: opt < %s -passes=sroa -S | FileCheck %s
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-n8:16:32:64"

define { i32, i32 } @test0(i32 %x, i32 %y, { i32, i32 } %v) {
; CHECK-LABEL: @test0(
; CHECK-NOT: alloca
; CHECK: insertvalue { i32, i32 }
; CHECK: insertvalue { i32, i32 }
; CHECK: ret { i32, i32 }

entry:
  %a = alloca { i32, i32 }

  store { i32, i32 } %v, ptr %a

  %gep1 = getelementptr inbounds { i32, i32 }, ptr %a, i32 0, i32 0
  store i32 %x, ptr %gep1
  %gep2 = getelementptr inbounds { i32, i32 }, ptr %a, i32 0, i32 1
  store i32 %y, ptr %gep2

  %result = load { i32, i32 }, ptr %a
  ret { i32, i32 } %result
}

define { i32, i32 } @test1(i32 %x, i32 %y) {
; FIXME: This may be too conservative. Duncan argues that we are allowed to
; split the volatile load and store here but must produce volatile scalar loads
; and stores from them.
; CHECK-LABEL: @test1(
; CHECK: alloca
; CHECK: alloca
; CHECK: load volatile { i32, i32 }, ptr
; CHECK: store volatile { i32, i32 }
; CHECK: ret { i32, i32 }

entry:
  %a = alloca { i32, i32 }
  %b = alloca { i32, i32 }

  %gep1 = getelementptr inbounds { i32, i32 }, ptr %a, i32 0, i32 0
  store i32 %x, ptr %gep1
  %gep2 = getelementptr inbounds { i32, i32 }, ptr %a, i32 0, i32 1
  store i32 %y, ptr %gep2

  %result = load volatile { i32, i32 }, ptr %a
  store volatile { i32, i32 } %result, ptr %b
  ret { i32, i32 } %result
}