Compiler projects using llvm
//===- llvm/unittest/IR/IRBuilderTest.cpp - IRBuilder tests ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/IntrinsicsAArch64.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/NoFolder.h"
#include "llvm/IR/Verifier.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"

using namespace llvm;
using ::testing::UnorderedElementsAre;

namespace {

class IRBuilderTest : public testing::Test {
protected:
  void SetUp() override {
    M.reset(new Module("MyModule", Ctx));
    FunctionType *FTy = FunctionType::get(Type::getVoidTy(Ctx),
                                          /*isVarArg=*/false);
    F = Function::Create(FTy, Function::ExternalLinkage, "", M.get());
    BB = BasicBlock::Create(Ctx, "", F);
    GV = new GlobalVariable(*M, Type::getFloatTy(Ctx), true,
                            GlobalValue::ExternalLinkage, nullptr);
  }

  void TearDown() override {
    BB = nullptr;
    M.reset();
  }

  LLVMContext Ctx;
  std::unique_ptr<Module> M;
  Function *F;
  BasicBlock *BB;
  GlobalVariable *GV;
};

TEST_F(IRBuilderTest, Intrinsics) {
  IRBuilder<> Builder(BB);
  Value *V;
  Instruction *I;
  CallInst *Call;
  IntrinsicInst *II;

  V = Builder.CreateLoad(GV->getValueType(), GV);
  I = cast<Instruction>(Builder.CreateFAdd(V, V));
  I->setHasNoInfs(true);
  I->setHasNoNaNs(false);

  Call = Builder.CreateMinNum(V, V);
  II = cast<IntrinsicInst>(Call);
  EXPECT_EQ(II->getIntrinsicID(), Intrinsic::minnum);

  Call = Builder.CreateMaxNum(V, V);
  II = cast<IntrinsicInst>(Call);
  EXPECT_EQ(II->getIntrinsicID(), Intrinsic::maxnum);

  Call = Builder.CreateMinimum(V, V);
  II = cast<IntrinsicInst>(Call);
  EXPECT_EQ(II->getIntrinsicID(), Intrinsic::minimum);

  Call = Builder.CreateMaximum(V, V);
  II = cast<IntrinsicInst>(Call);
  EXPECT_EQ(II->getIntrinsicID(), Intrinsic::maximum);

  Call = Builder.CreateIntrinsic(Intrinsic::readcyclecounter, {}, {});
  II = cast<IntrinsicInst>(Call);
  EXPECT_EQ(II->getIntrinsicID(), Intrinsic::readcyclecounter);

  Call = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, V);
  II = cast<IntrinsicInst>(Call);
  EXPECT_EQ(II->getIntrinsicID(), Intrinsic::fabs);
  EXPECT_FALSE(II->hasNoInfs());
  EXPECT_FALSE(II->hasNoNaNs());

  Call = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, V, I);
  II = cast<IntrinsicInst>(Call);
  EXPECT_EQ(II->getIntrinsicID(), Intrinsic::fabs);
  EXPECT_TRUE(II->hasNoInfs());
  EXPECT_FALSE(II->hasNoNaNs());

  Call = Builder.CreateBinaryIntrinsic(Intrinsic::pow, V, V);
  II = cast<IntrinsicInst>(Call);
  EXPECT_EQ(II->getIntrinsicID(), Intrinsic::pow);
  EXPECT_FALSE(II->hasNoInfs());
  EXPECT_FALSE(II->hasNoNaNs());

  Call = Builder.CreateBinaryIntrinsic(Intrinsic::pow, V, V, I);
  II = cast<IntrinsicInst>(Call);
  EXPECT_EQ(II->getIntrinsicID(), Intrinsic::pow);
  EXPECT_TRUE(II->hasNoInfs());
  EXPECT_FALSE(II->hasNoNaNs());

  Call = Builder.CreateIntrinsic(Intrinsic::fma, {V->getType()}, {V, V, V});
  II = cast<IntrinsicInst>(Call);
  EXPECT_EQ(II->getIntrinsicID(), Intrinsic::fma);
  EXPECT_FALSE(II->hasNoInfs());
  EXPECT_FALSE(II->hasNoNaNs());

  Call = Builder.CreateIntrinsic(Intrinsic::fma, {V->getType()}, {V, V, V}, I);
  II = cast<IntrinsicInst>(Call);
  EXPECT_EQ(II->getIntrinsicID(), Intrinsic::fma);
  EXPECT_TRUE(II->hasNoInfs());
  EXPECT_FALSE(II->hasNoNaNs());

  Call = Builder.CreateIntrinsic(Intrinsic::fma, {V->getType()}, {V, V, V}, I);
  II = cast<IntrinsicInst>(Call);
  EXPECT_EQ(II->getIntrinsicID(), Intrinsic::fma);
  EXPECT_TRUE(II->hasNoInfs());
  EXPECT_FALSE(II->hasNoNaNs());

  Call = Builder.CreateUnaryIntrinsic(Intrinsic::roundeven, V);
  II = cast<IntrinsicInst>(Call);
  EXPECT_EQ(II->getIntrinsicID(), Intrinsic::roundeven);
  EXPECT_FALSE(II->hasNoInfs());
  EXPECT_FALSE(II->hasNoNaNs());

  Call = Builder.CreateIntrinsic(
      Intrinsic::set_rounding, {},
      {Builder.getInt32(static_cast<uint32_t>(RoundingMode::TowardZero))});
  II = cast<IntrinsicInst>(Call);
  EXPECT_EQ(II->getIntrinsicID(), Intrinsic::set_rounding);
}

TEST_F(IRBuilderTest, IntrinsicsWithScalableVectors) {
  IRBuilder<> Builder(BB);
  CallInst *Call;
  FunctionType *FTy;

  // Test scalable flag isn't dropped for intrinsic that is explicitly defined
  // with scalable vectors, e.g. LLVMType<nxv4i32>.
  Type *SrcVecTy = VectorType::get(Builder.getHalfTy(), 8, true);
  Type *DstVecTy = VectorType::get(Builder.getInt32Ty(), 4, true);
  Type *PredTy = VectorType::get(Builder.getInt1Ty(), 4, true);

  SmallVector<Value*, 3> ArgTys;
  ArgTys.push_back(UndefValue::get(DstVecTy));
  ArgTys.push_back(UndefValue::get(PredTy));
  ArgTys.push_back(UndefValue::get(SrcVecTy));

  Call = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_fcvtzs_i32f16, {},
                                 ArgTys, nullptr, "aarch64.sve.fcvtzs.i32f16");
  FTy = Call->getFunctionType();
  EXPECT_EQ(FTy->getReturnType(), DstVecTy);
  for (unsigned i = 0; i != ArgTys.size(); ++i)
    EXPECT_EQ(FTy->getParamType(i), ArgTys[i]->getType());

  // Test scalable flag isn't dropped for intrinsic defined with
  // LLVMScalarOrSameVectorWidth.

  Type *VecTy = VectorType::get(Builder.getInt32Ty(), 4, true);
  Type *PtrToVecTy = VecTy->getPointerTo();
  PredTy = VectorType::get(Builder.getInt1Ty(), 4, true);

  ArgTys.clear();
  ArgTys.push_back(UndefValue::get(PtrToVecTy));
  ArgTys.push_back(UndefValue::get(Builder.getInt32Ty()));
  ArgTys.push_back(UndefValue::get(PredTy));
  ArgTys.push_back(UndefValue::get(VecTy));

  Call = Builder.CreateIntrinsic(Intrinsic::masked_load,
                                 {VecTy, PtrToVecTy}, ArgTys,
                                 nullptr, "masked.load");
  FTy = Call->getFunctionType();
  EXPECT_EQ(FTy->getReturnType(), VecTy);
  for (unsigned i = 0; i != ArgTys.size(); ++i)
    EXPECT_EQ(FTy->getParamType(i), ArgTys[i]->getType());
}

TEST_F(IRBuilderTest, CreateVScale) {
  IRBuilder<> Builder(BB);

  Constant *Zero = Builder.getInt32(0);
  Value *VScale = Builder.CreateVScale(Zero);
  EXPECT_TRUE(isa<ConstantInt>(VScale) && cast<ConstantInt>(VScale)->isZero());
}

TEST_F(IRBuilderTest, CreateStepVector) {
  IRBuilder<> Builder(BB);

  // Fixed width vectors
  Type *DstVecTy = VectorType::get(Builder.getInt32Ty(), 4, false);
  Value *StepVec = Builder.CreateStepVector(DstVecTy);
  EXPECT_TRUE(isa<Constant>(StepVec));
  EXPECT_EQ(StepVec->getType(), DstVecTy);

  const auto *VectorValue = cast<Constant>(StepVec);
  for (unsigned i = 0; i < 4; i++) {
    EXPECT_TRUE(isa<ConstantInt>(VectorValue->getAggregateElement(i)));
    ConstantInt *El = cast<ConstantInt>(VectorValue->getAggregateElement(i));
    EXPECT_EQ(El->getValue(), i);
  }

  // Scalable vectors
  DstVecTy = VectorType::get(Builder.getInt32Ty(), 4, true);
  StepVec = Builder.CreateStepVector(DstVecTy);
  EXPECT_TRUE(isa<CallInst>(StepVec));
  CallInst *Call = cast<CallInst>(StepVec);
  FunctionType *FTy = Call->getFunctionType();
  EXPECT_EQ(FTy->getReturnType(), DstVecTy);
  EXPECT_EQ(Call->getIntrinsicID(), Intrinsic::experimental_stepvector);
}

TEST_F(IRBuilderTest, CreateStepVectorI3) {
  IRBuilder<> Builder(BB);

  // Scalable vectors
  Type *DstVecTy = VectorType::get(IntegerType::get(Ctx, 3), 2, true);
  Type *VecI8Ty = VectorType::get(Builder.getInt8Ty(), 2, true);
  Value *StepVec = Builder.CreateStepVector(DstVecTy);
  EXPECT_TRUE(isa<TruncInst>(StepVec));
  TruncInst *Trunc = cast<TruncInst>(StepVec);
  EXPECT_EQ(Trunc->getDestTy(), DstVecTy);
  EXPECT_EQ(Trunc->getSrcTy(), VecI8Ty);
  EXPECT_TRUE(isa<CallInst>(Trunc->getOperand(0)));

  CallInst *Call = cast<CallInst>(Trunc->getOperand(0));
  FunctionType *FTy = Call->getFunctionType();
  EXPECT_EQ(FTy->getReturnType(), VecI8Ty);
  EXPECT_EQ(Call->getIntrinsicID(), Intrinsic::experimental_stepvector);
}

TEST_F(IRBuilderTest, ConstrainedFP) {
  IRBuilder<> Builder(BB);
  Value *V;
  Value *VDouble;
  Value *VInt;
  CallInst *Call;
  IntrinsicInst *II;
  GlobalVariable *GVDouble = new GlobalVariable(*M, Type::getDoubleTy(Ctx),
                            true, GlobalValue::ExternalLinkage, nullptr);

  V = Builder.CreateLoad(GV->getValueType(), GV);
  VDouble = Builder.CreateLoad(GVDouble->getValueType(), GVDouble);

  // See if we get constrained intrinsics instead of non-constrained
  // instructions.
  Builder.setIsFPConstrained(true);
  auto Parent = BB->getParent();
  Parent->addFnAttr(Attribute::StrictFP);

  V = Builder.CreateFAdd(V, V);
  ASSERT_TRUE(isa<IntrinsicInst>(V));
  II = cast<IntrinsicInst>(V);
  EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_fadd);

  V = Builder.CreateFSub(V, V);
  ASSERT_TRUE(isa<IntrinsicInst>(V));
  II = cast<IntrinsicInst>(V);
  EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_fsub);

  V = Builder.CreateFMul(V, V);
  ASSERT_TRUE(isa<IntrinsicInst>(V));
  II = cast<IntrinsicInst>(V);
  EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_fmul);
  
  V = Builder.CreateFDiv(V, V);
  ASSERT_TRUE(isa<IntrinsicInst>(V));
  II = cast<IntrinsicInst>(V);
  EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_fdiv);
  
  V = Builder.CreateFRem(V, V);
  ASSERT_TRUE(isa<IntrinsicInst>(V));
  II = cast<IntrinsicInst>(V);
  EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_frem);

  VInt = Builder.CreateFPToUI(VDouble, Builder.getInt32Ty());
  ASSERT_TRUE(isa<IntrinsicInst>(VInt));
  II = cast<IntrinsicInst>(VInt);
  EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_fptoui);

  VInt = Builder.CreateFPToSI(VDouble, Builder.getInt32Ty());
  ASSERT_TRUE(isa<IntrinsicInst>(VInt));
  II = cast<IntrinsicInst>(VInt);
  EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_fptosi);

  VDouble = Builder.CreateUIToFP(VInt, Builder.getDoubleTy());
  ASSERT_TRUE(isa<IntrinsicInst>(VDouble));
  II = cast<IntrinsicInst>(VDouble);
  EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_uitofp);

  VDouble = Builder.CreateSIToFP(VInt, Builder.getDoubleTy());
  ASSERT_TRUE(isa<IntrinsicInst>(VDouble));
  II = cast<IntrinsicInst>(VDouble);
  EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_sitofp);

  V = Builder.CreateFPTrunc(VDouble, Type::getFloatTy(Ctx));
  ASSERT_TRUE(isa<IntrinsicInst>(V));
  II = cast<IntrinsicInst>(V);
  EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_fptrunc);

  VDouble = Builder.CreateFPExt(V, Type::getDoubleTy(Ctx));
  ASSERT_TRUE(isa<IntrinsicInst>(VDouble));
  II = cast<IntrinsicInst>(VDouble);
  EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_fpext);

  // Verify attributes on the call are created automatically.
  AttributeSet CallAttrs = II->getAttributes().getFnAttrs();
  EXPECT_EQ(CallAttrs.hasAttribute(Attribute::StrictFP), true);

  // Verify attributes on the containing function are created when requested.
  Builder.setConstrainedFPFunctionAttr();
  AttributeList Attrs = BB->getParent()->getAttributes();
  AttributeSet FnAttrs = Attrs.getFnAttrs();
  EXPECT_EQ(FnAttrs.hasAttribute(Attribute::StrictFP), true);

  // Verify the codepaths for setting and overriding the default metadata.
  V = Builder.CreateFAdd(V, V);
  ASSERT_TRUE(isa<ConstrainedFPIntrinsic>(V));
  auto *CII = cast<ConstrainedFPIntrinsic>(V);
  EXPECT_EQ(fp::ebStrict, CII->getExceptionBehavior());
  EXPECT_EQ(RoundingMode::Dynamic, CII->getRoundingMode());

  Builder.setDefaultConstrainedExcept(fp::ebIgnore);
  Builder.setDefaultConstrainedRounding(RoundingMode::TowardPositive);
  V = Builder.CreateFAdd(V, V);
  CII = cast<ConstrainedFPIntrinsic>(V);
  EXPECT_EQ(fp::ebIgnore, CII->getExceptionBehavior());
  EXPECT_EQ(CII->getRoundingMode(), RoundingMode::TowardPositive);

  Builder.setDefaultConstrainedExcept(fp::ebIgnore);
  Builder.setDefaultConstrainedRounding(RoundingMode::NearestTiesToEven);
  V = Builder.CreateFAdd(V, V);
  CII = cast<ConstrainedFPIntrinsic>(V);
  EXPECT_EQ(fp::ebIgnore, CII->getExceptionBehavior());
  EXPECT_EQ(RoundingMode::NearestTiesToEven, CII->getRoundingMode());

  Builder.setDefaultConstrainedExcept(fp::ebMayTrap);
  Builder.setDefaultConstrainedRounding(RoundingMode::TowardNegative);
  V = Builder.CreateFAdd(V, V);
  CII = cast<ConstrainedFPIntrinsic>(V);
  EXPECT_EQ(fp::ebMayTrap, CII->getExceptionBehavior());
  EXPECT_EQ(RoundingMode::TowardNegative, CII->getRoundingMode());

  Builder.setDefaultConstrainedExcept(fp::ebStrict);
  Builder.setDefaultConstrainedRounding(RoundingMode::TowardZero);
  V = Builder.CreateFAdd(V, V);
  CII = cast<ConstrainedFPIntrinsic>(V);
  EXPECT_EQ(fp::ebStrict, CII->getExceptionBehavior());
  EXPECT_EQ(RoundingMode::TowardZero, CII->getRoundingMode());

  Builder.setDefaultConstrainedExcept(fp::ebIgnore);
  Builder.setDefaultConstrainedRounding(RoundingMode::Dynamic);
  V = Builder.CreateFAdd(V, V);
  CII = cast<ConstrainedFPIntrinsic>(V);
  EXPECT_EQ(fp::ebIgnore, CII->getExceptionBehavior());
  EXPECT_EQ(RoundingMode::Dynamic, CII->getRoundingMode());

  // Now override the defaults.
  Call = Builder.CreateConstrainedFPBinOp(
        Intrinsic::experimental_constrained_fadd, V, V, nullptr, "", nullptr,
        RoundingMode::TowardNegative, fp::ebMayTrap);
  CII = cast<ConstrainedFPIntrinsic>(Call);
  EXPECT_EQ(CII->getIntrinsicID(), Intrinsic::experimental_constrained_fadd);
  EXPECT_EQ(fp::ebMayTrap, CII->getExceptionBehavior());
  EXPECT_EQ(RoundingMode::TowardNegative, CII->getRoundingMode());

  Builder.CreateRetVoid();
  EXPECT_FALSE(verifyModule(*M));
}

TEST_F(IRBuilderTest, ConstrainedFPIntrinsics) {
  IRBuilder<> Builder(BB);
  Value *V;
  Value *VDouble;
  ConstrainedFPIntrinsic *CII;
  GlobalVariable *GVDouble = new GlobalVariable(
      *M, Type::getDoubleTy(Ctx), true, GlobalValue::ExternalLinkage, nullptr);
  VDouble = Builder.CreateLoad(GVDouble->getValueType(), GVDouble);

  Builder.setDefaultConstrainedExcept(fp::ebStrict);
  Builder.setDefaultConstrainedRounding(RoundingMode::TowardZero);
  Function *Fn = Intrinsic::getDeclaration(M.get(),
      Intrinsic::experimental_constrained_roundeven, { Type::getDoubleTy(Ctx) });
  V = Builder.CreateConstrainedFPCall(Fn, { VDouble });
  CII = cast<ConstrainedFPIntrinsic>(V);
  EXPECT_EQ(Intrinsic::experimental_constrained_roundeven, CII->getIntrinsicID());
  EXPECT_EQ(fp::ebStrict, CII->getExceptionBehavior());
}

TEST_F(IRBuilderTest, ConstrainedFPFunctionCall) {
  IRBuilder<> Builder(BB);

  // Create an empty constrained FP function.
  FunctionType *FTy = FunctionType::get(Type::getVoidTy(Ctx),
                                        /*isVarArg=*/false);
  Function *Callee =
      Function::Create(FTy, Function::ExternalLinkage, "", M.get());
  BasicBlock *CalleeBB = BasicBlock::Create(Ctx, "", Callee);
  IRBuilder<> CalleeBuilder(CalleeBB);
  CalleeBuilder.setIsFPConstrained(true);
  CalleeBuilder.setConstrainedFPFunctionAttr();
  CalleeBuilder.CreateRetVoid();

  // Now call the empty constrained FP function.
  Builder.setIsFPConstrained(true);
  Builder.setConstrainedFPFunctionAttr();
  CallInst *FCall = Builder.CreateCall(Callee, None);

  // Check the attributes to verify the strictfp attribute is on the call.
  EXPECT_TRUE(
      FCall->getAttributes().getFnAttrs().hasAttribute(Attribute::StrictFP));

  Builder.CreateRetVoid();
  EXPECT_FALSE(verifyModule(*M));
}

TEST_F(IRBuilderTest, Lifetime) {
  IRBuilder<> Builder(BB);
  AllocaInst *Var1 = Builder.CreateAlloca(Builder.getInt8Ty());
  AllocaInst *Var2 = Builder.CreateAlloca(Builder.getInt32Ty());
  AllocaInst *Var3 = Builder.CreateAlloca(Builder.getInt8Ty(),
                                          Builder.getInt32(123));

  CallInst *Start1 = Builder.CreateLifetimeStart(Var1);
  CallInst *Start2 = Builder.CreateLifetimeStart(Var2);
  CallInst *Start3 = Builder.CreateLifetimeStart(Var3, Builder.getInt64(100));

  EXPECT_EQ(Start1->getArgOperand(0), Builder.getInt64(-1));
  EXPECT_EQ(Start2->getArgOperand(0), Builder.getInt64(-1));
  EXPECT_EQ(Start3->getArgOperand(0), Builder.getInt64(100));

  EXPECT_EQ(Start1->getArgOperand(1), Var1);
  EXPECT_EQ(Start2->getArgOperand(1)->stripPointerCasts(), Var2);
  EXPECT_EQ(Start3->getArgOperand(1), Var3);

  Value *End1 = Builder.CreateLifetimeEnd(Var1);
  Builder.CreateLifetimeEnd(Var2);
  Builder.CreateLifetimeEnd(Var3);

  IntrinsicInst *II_Start1 = dyn_cast<IntrinsicInst>(Start1);
  IntrinsicInst *II_End1 = dyn_cast<IntrinsicInst>(End1);
  ASSERT_TRUE(II_Start1 != nullptr);
  EXPECT_EQ(II_Start1->getIntrinsicID(), Intrinsic::lifetime_start);
  ASSERT_TRUE(II_End1 != nullptr);
  EXPECT_EQ(II_End1->getIntrinsicID(), Intrinsic::lifetime_end);
}

TEST_F(IRBuilderTest, CreateCondBr) {
  IRBuilder<> Builder(BB);
  BasicBlock *TBB = BasicBlock::Create(Ctx, "", F);
  BasicBlock *FBB = BasicBlock::Create(Ctx, "", F);

  BranchInst *BI = Builder.CreateCondBr(Builder.getTrue(), TBB, FBB);
  Instruction *TI = BB->getTerminator();
  EXPECT_EQ(BI, TI);
  EXPECT_EQ(2u, TI->getNumSuccessors());
  EXPECT_EQ(TBB, TI->getSuccessor(0));
  EXPECT_EQ(FBB, TI->getSuccessor(1));

  BI->eraseFromParent();
  MDNode *Weights = MDBuilder(Ctx).createBranchWeights(42, 13);
  BI = Builder.CreateCondBr(Builder.getTrue(), TBB, FBB, Weights);
  TI = BB->getTerminator();
  EXPECT_EQ(BI, TI);
  EXPECT_EQ(2u, TI->getNumSuccessors());
  EXPECT_EQ(TBB, TI->getSuccessor(0));
  EXPECT_EQ(FBB, TI->getSuccessor(1));
  EXPECT_EQ(Weights, TI->getMetadata(LLVMContext::MD_prof));
}

TEST_F(IRBuilderTest, LandingPadName) {
  IRBuilder<> Builder(BB);
  LandingPadInst *LP = Builder.CreateLandingPad(Builder.getInt32Ty(), 0, "LP");
  EXPECT_EQ(LP->getName(), "LP");
}

TEST_F(IRBuilderTest, DataLayout) {
  std::unique_ptr<Module> M(new Module("test", Ctx));
  M->setDataLayout("e-n32");
  EXPECT_TRUE(M->getDataLayout().isLegalInteger(32));
  M->setDataLayout("e");
  EXPECT_FALSE(M->getDataLayout().isLegalInteger(32));
}

TEST_F(IRBuilderTest, GetIntTy) {
  IRBuilder<> Builder(BB);
  IntegerType *Ty1 = Builder.getInt1Ty();
  EXPECT_EQ(Ty1, IntegerType::get(Ctx, 1));

  DataLayout* DL = new DataLayout(M.get());
  IntegerType *IntPtrTy = Builder.getIntPtrTy(*DL);
  unsigned IntPtrBitSize =  DL->getPointerSizeInBits(0);
  EXPECT_EQ(IntPtrTy, IntegerType::get(Ctx, IntPtrBitSize));
  delete DL;
}

TEST_F(IRBuilderTest, UnaryOperators) {
  IRBuilder<NoFolder> Builder(BB);
  Value *V = Builder.CreateLoad(GV->getValueType(), GV);

  // Test CreateUnOp(X)
  Value *U = Builder.CreateUnOp(Instruction::FNeg, V);
  ASSERT_TRUE(isa<Instruction>(U));
  ASSERT_TRUE(isa<FPMathOperator>(U));
  ASSERT_TRUE(isa<UnaryOperator>(U));
  ASSERT_FALSE(isa<BinaryOperator>(U));

  // Test CreateFNegFMF(X)
  Instruction *I = cast<Instruction>(U);
  I->setHasNoSignedZeros(true);
  I->setHasNoNaNs(true);
  Value *VFMF = Builder.CreateFNegFMF(V, I);
  Instruction *IFMF = cast<Instruction>(VFMF);
  EXPECT_TRUE(IFMF->hasNoSignedZeros());
  EXPECT_TRUE(IFMF->hasNoNaNs());
  EXPECT_FALSE(IFMF->hasAllowReassoc());
}

TEST_F(IRBuilderTest, FastMathFlags) {
  IRBuilder<> Builder(BB);
  Value *F, *FC;
  Instruction *FDiv, *FAdd, *FCmp, *FCall;

  F = Builder.CreateLoad(GV->getValueType(), GV);
  F = Builder.CreateFAdd(F, F);

  EXPECT_FALSE(Builder.getFastMathFlags().any());
  ASSERT_TRUE(isa<Instruction>(F));
  FAdd = cast<Instruction>(F);
  EXPECT_FALSE(FAdd->hasNoNaNs());

  FastMathFlags FMF;
  Builder.setFastMathFlags(FMF);

  // By default, no flags are set.
  F = Builder.CreateFAdd(F, F);
  EXPECT_FALSE(Builder.getFastMathFlags().any());
  ASSERT_TRUE(isa<Instruction>(F));
  FAdd = cast<Instruction>(F);
  EXPECT_FALSE(FAdd->hasNoNaNs());
  EXPECT_FALSE(FAdd->hasNoInfs());
  EXPECT_FALSE(FAdd->hasNoSignedZeros());
  EXPECT_FALSE(FAdd->hasAllowReciprocal());
  EXPECT_FALSE(FAdd->hasAllowContract());
  EXPECT_FALSE(FAdd->hasAllowReassoc());
  EXPECT_FALSE(FAdd->hasApproxFunc());

  // Set all flags in the instruction.
  FAdd->setFast(true);
  EXPECT_TRUE(FAdd->hasNoNaNs());
  EXPECT_TRUE(FAdd->hasNoInfs());
  EXPECT_TRUE(FAdd->hasNoSignedZeros());
  EXPECT_TRUE(FAdd->hasAllowReciprocal());
  EXPECT_TRUE(FAdd->hasAllowContract());
  EXPECT_TRUE(FAdd->hasAllowReassoc());
  EXPECT_TRUE(FAdd->hasApproxFunc());

  // All flags are set in the builder.
  FMF.setFast();
  Builder.setFastMathFlags(FMF);

  F = Builder.CreateFAdd(F, F);
  EXPECT_TRUE(Builder.getFastMathFlags().any());
  EXPECT_TRUE(Builder.getFastMathFlags().all());
  ASSERT_TRUE(isa<Instruction>(F));
  FAdd = cast<Instruction>(F);
  EXPECT_TRUE(FAdd->hasNoNaNs());
  EXPECT_TRUE(FAdd->isFast());

  // Now, try it with CreateBinOp
  F = Builder.CreateBinOp(Instruction::FAdd, F, F);
  EXPECT_TRUE(Builder.getFastMathFlags().any());
  ASSERT_TRUE(isa<Instruction>(F));
  FAdd = cast<Instruction>(F);
  EXPECT_TRUE(FAdd->hasNoNaNs());
  EXPECT_TRUE(FAdd->isFast());

  F = Builder.CreateFDiv(F, F);
  EXPECT_TRUE(Builder.getFastMathFlags().all());
  ASSERT_TRUE(isa<Instruction>(F));
  FDiv = cast<Instruction>(F);
  EXPECT_TRUE(FDiv->hasAllowReciprocal());

  // Clear all FMF in the builder.
  Builder.clearFastMathFlags();

  F = Builder.CreateFDiv(F, F);
  ASSERT_TRUE(isa<Instruction>(F));
  FDiv = cast<Instruction>(F);
  EXPECT_FALSE(FDiv->hasAllowReciprocal());
 
  // Try individual flags.
  FMF.clear();
  FMF.setAllowReciprocal();
  Builder.setFastMathFlags(FMF);

  F = Builder.CreateFDiv(F, F);
  EXPECT_TRUE(Builder.getFastMathFlags().any());
  EXPECT_TRUE(Builder.getFastMathFlags().AllowReciprocal);
  ASSERT_TRUE(isa<Instruction>(F));
  FDiv = cast<Instruction>(F);
  EXPECT_TRUE(FDiv->hasAllowReciprocal());

  Builder.clearFastMathFlags();

  FC = Builder.CreateFCmpOEQ(F, F);
  ASSERT_TRUE(isa<Instruction>(FC));
  FCmp = cast<Instruction>(FC);
  EXPECT_FALSE(FCmp->hasAllowReciprocal());

  FMF.clear();
  FMF.setAllowReciprocal();
  Builder.setFastMathFlags(FMF);

  FC = Builder.CreateFCmpOEQ(F, F);
  EXPECT_TRUE(Builder.getFastMathFlags().any());
  EXPECT_TRUE(Builder.getFastMathFlags().AllowReciprocal);
  ASSERT_TRUE(isa<Instruction>(FC));
  FCmp = cast<Instruction>(FC);
  EXPECT_TRUE(FCmp->hasAllowReciprocal());

  Builder.clearFastMathFlags();

  // Test FP-contract
  FC = Builder.CreateFAdd(F, F);
  ASSERT_TRUE(isa<Instruction>(FC));
  FAdd = cast<Instruction>(FC);
  EXPECT_FALSE(FAdd->hasAllowContract());

  FMF.clear();
  FMF.setAllowContract(true);
  Builder.setFastMathFlags(FMF);

  FC = Builder.CreateFAdd(F, F);
  EXPECT_TRUE(Builder.getFastMathFlags().any());
  EXPECT_TRUE(Builder.getFastMathFlags().AllowContract);
  ASSERT_TRUE(isa<Instruction>(FC));
  FAdd = cast<Instruction>(FC);
  EXPECT_TRUE(FAdd->hasAllowContract());

  FMF.setApproxFunc();
  Builder.clearFastMathFlags();
  Builder.setFastMathFlags(FMF);
  // Now 'aml' and 'contract' are set.
  F = Builder.CreateFMul(F, F);
  FAdd = cast<Instruction>(F);
  EXPECT_TRUE(FAdd->hasApproxFunc());
  EXPECT_TRUE(FAdd->hasAllowContract());
  EXPECT_FALSE(FAdd->hasAllowReassoc());
  
  FMF.setAllowReassoc();
  Builder.clearFastMathFlags();
  Builder.setFastMathFlags(FMF);
  // Now 'aml' and 'contract' and 'reassoc' are set.
  F = Builder.CreateFMul(F, F);
  FAdd = cast<Instruction>(F);
  EXPECT_TRUE(FAdd->hasApproxFunc());
  EXPECT_TRUE(FAdd->hasAllowContract());
  EXPECT_TRUE(FAdd->hasAllowReassoc());

  // Test a call with FMF.
  auto CalleeTy = FunctionType::get(Type::getFloatTy(Ctx),
                                    /*isVarArg=*/false);
  auto Callee =
      Function::Create(CalleeTy, Function::ExternalLinkage, "", M.get());

  FCall = Builder.CreateCall(Callee, None);
  EXPECT_FALSE(FCall->hasNoNaNs());

  Function *V =
      Function::Create(CalleeTy, Function::ExternalLinkage, "", M.get());
  FCall = Builder.CreateCall(V, None);
  EXPECT_FALSE(FCall->hasNoNaNs());

  FMF.clear();
  FMF.setNoNaNs();
  Builder.setFastMathFlags(FMF);

  FCall = Builder.CreateCall(Callee, None);
  EXPECT_TRUE(Builder.getFastMathFlags().any());
  EXPECT_TRUE(Builder.getFastMathFlags().NoNaNs);
  EXPECT_TRUE(FCall->hasNoNaNs());

  FCall = Builder.CreateCall(V, None);
  EXPECT_TRUE(Builder.getFastMathFlags().any());
  EXPECT_TRUE(Builder.getFastMathFlags().NoNaNs);
  EXPECT_TRUE(FCall->hasNoNaNs());

  Builder.clearFastMathFlags();

  // To test a copy, make sure that a '0' and a '1' change state.
  F = Builder.CreateFDiv(F, F);
  ASSERT_TRUE(isa<Instruction>(F));
  FDiv = cast<Instruction>(F);
  EXPECT_FALSE(FDiv->getFastMathFlags().any());
  FDiv->setHasAllowReciprocal(true);
  FAdd->setHasAllowReciprocal(false);
  FAdd->setHasNoNaNs(true);
  FDiv->copyFastMathFlags(FAdd);
  EXPECT_TRUE(FDiv->hasNoNaNs());
  EXPECT_FALSE(FDiv->hasAllowReciprocal());

}

TEST_F(IRBuilderTest, WrapFlags) {
  IRBuilder<NoFolder> Builder(BB);

  // Test instructions.
  GlobalVariable *G = new GlobalVariable(*M, Builder.getInt32Ty(), true,
                                         GlobalValue::ExternalLinkage, nullptr);
  Value *V = Builder.CreateLoad(G->getValueType(), G);
  EXPECT_TRUE(
      cast<BinaryOperator>(Builder.CreateNSWAdd(V, V))->hasNoSignedWrap());
  EXPECT_TRUE(
      cast<BinaryOperator>(Builder.CreateNSWMul(V, V))->hasNoSignedWrap());
  EXPECT_TRUE(
      cast<BinaryOperator>(Builder.CreateNSWSub(V, V))->hasNoSignedWrap());
  EXPECT_TRUE(cast<BinaryOperator>(
                  Builder.CreateShl(V, V, "", /* NUW */ false, /* NSW */ true))
                  ->hasNoSignedWrap());

  EXPECT_TRUE(
      cast<BinaryOperator>(Builder.CreateNUWAdd(V, V))->hasNoUnsignedWrap());
  EXPECT_TRUE(
      cast<BinaryOperator>(Builder.CreateNUWMul(V, V))->hasNoUnsignedWrap());
  EXPECT_TRUE(
      cast<BinaryOperator>(Builder.CreateNUWSub(V, V))->hasNoUnsignedWrap());
  EXPECT_TRUE(cast<BinaryOperator>(
                  Builder.CreateShl(V, V, "", /* NUW */ true, /* NSW */ false))
                  ->hasNoUnsignedWrap());

  // Test operators created with constants.
  Constant *C = Builder.getInt32(42);
  EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNSWAdd(C, C))
                  ->hasNoSignedWrap());
  EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNSWSub(C, C))
                  ->hasNoSignedWrap());
  EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNSWMul(C, C))
                  ->hasNoSignedWrap());
  EXPECT_TRUE(cast<OverflowingBinaryOperator>(
                  Builder.CreateShl(C, C, "", /* NUW */ false, /* NSW */ true))
                  ->hasNoSignedWrap());

  EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNUWAdd(C, C))
                  ->hasNoUnsignedWrap());
  EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNUWSub(C, C))
                  ->hasNoUnsignedWrap());
  EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNUWMul(C, C))
                  ->hasNoUnsignedWrap());
  EXPECT_TRUE(cast<OverflowingBinaryOperator>(
                  Builder.CreateShl(C, C, "", /* NUW */ true, /* NSW */ false))
                  ->hasNoUnsignedWrap());
}

TEST_F(IRBuilderTest, RAIIHelpersTest) {
  IRBuilder<> Builder(BB);
  EXPECT_FALSE(Builder.getFastMathFlags().allowReciprocal());
  MDBuilder MDB(M->getContext());

  MDNode *FPMathA = MDB.createFPMath(0.01f);
  MDNode *FPMathB = MDB.createFPMath(0.1f);

  Builder.setDefaultFPMathTag(FPMathA);

  {
    IRBuilder<>::FastMathFlagGuard Guard(Builder);
    FastMathFlags FMF;
    FMF.setAllowReciprocal();
    Builder.setFastMathFlags(FMF);
    Builder.setDefaultFPMathTag(FPMathB);
    EXPECT_TRUE(Builder.getFastMathFlags().allowReciprocal());
    EXPECT_EQ(FPMathB, Builder.getDefaultFPMathTag());
  }

  EXPECT_FALSE(Builder.getFastMathFlags().allowReciprocal());
  EXPECT_EQ(FPMathA, Builder.getDefaultFPMathTag());

  Value *F = Builder.CreateLoad(GV->getValueType(), GV);

  {
    IRBuilder<>::InsertPointGuard Guard(Builder);
    Builder.SetInsertPoint(cast<Instruction>(F));
    EXPECT_EQ(F, &*Builder.GetInsertPoint());
  }

  EXPECT_EQ(BB->end(), Builder.GetInsertPoint());
  EXPECT_EQ(BB, Builder.GetInsertBlock());
}

TEST_F(IRBuilderTest, createFunction) {
  IRBuilder<> Builder(BB);
  DIBuilder DIB(*M);
  auto File = DIB.createFile("error.swift", "/");
  auto CU =
      DIB.createCompileUnit(dwarf::DW_LANG_Swift, File, "swiftc", true, "", 0);
  auto Type = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None));
  auto NoErr = DIB.createFunction(
      CU, "noerr", "", File, 1, Type, 1, DINode::FlagZero,
      DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized);
  EXPECT_TRUE(!NoErr->getThrownTypes());
  auto Int = DIB.createBasicType("Int", 64, dwarf::DW_ATE_signed);
  auto Error = DIB.getOrCreateArray({Int});
  auto Err = DIB.createFunction(
      CU, "err", "", File, 1, Type, 1, DINode::FlagZero,
      DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized, nullptr,
      nullptr, Error.get());
  EXPECT_TRUE(Err->getThrownTypes().get() == Error.get());
  DIB.finalize();
}

TEST_F(IRBuilderTest, DIBuilder) {
  IRBuilder<> Builder(BB);
  DIBuilder DIB(*M);
  auto File = DIB.createFile("F.CBL", "/");
  auto CU = DIB.createCompileUnit(dwarf::DW_LANG_Cobol74,
                                  DIB.createFile("F.CBL", "/"), "llvm-cobol74",
                                  true, "", 0);
  auto Type = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None));
  auto SP = DIB.createFunction(
      CU, "foo", "", File, 1, Type, 1, DINode::FlagZero,
      DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized);
  F->setSubprogram(SP);
  AllocaInst *I = Builder.CreateAlloca(Builder.getInt8Ty());
  auto BarSP = DIB.createFunction(
      CU, "bar", "", File, 1, Type, 1, DINode::FlagZero,
      DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized);
  auto BadScope = DIB.createLexicalBlockFile(BarSP, File, 0);
  I->setDebugLoc(DILocation::get(Ctx, 2, 0, BadScope));
  DIB.finalize();
  EXPECT_TRUE(verifyModule(*M));
}

TEST_F(IRBuilderTest, createArtificialSubprogram) {
  IRBuilder<> Builder(BB);
  DIBuilder DIB(*M);
  auto File = DIB.createFile("main.c", "/");
  auto CU = DIB.createCompileUnit(dwarf::DW_LANG_C, File, "clang",
                                  /*isOptimized=*/true, /*Flags=*/"",
                                  /*Runtime Version=*/0);
  auto Type = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None));
  auto SP = DIB.createFunction(
      CU, "foo", /*LinkageName=*/"", File,
      /*LineNo=*/1, Type, /*ScopeLine=*/2, DINode::FlagZero,
      DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized);
  EXPECT_TRUE(SP->isDistinct());

  F->setSubprogram(SP);
  AllocaInst *I = Builder.CreateAlloca(Builder.getInt8Ty());
  ReturnInst *R = Builder.CreateRetVoid();
  I->setDebugLoc(DILocation::get(Ctx, 3, 2, SP));
  R->setDebugLoc(DILocation::get(Ctx, 4, 2, SP));
  DIB.finalize();
  EXPECT_FALSE(verifyModule(*M));

  Function *G = Function::Create(F->getFunctionType(),
                                 Function::ExternalLinkage, "", M.get());
  BasicBlock *GBB = BasicBlock::Create(Ctx, "", G);
  Builder.SetInsertPoint(GBB);
  I->removeFromParent();
  Builder.Insert(I);
  Builder.CreateRetVoid();
  EXPECT_FALSE(verifyModule(*M));

  DISubprogram *GSP = DIBuilder::createArtificialSubprogram(F->getSubprogram());
  EXPECT_EQ(SP->getFile(), GSP->getFile());
  EXPECT_EQ(SP->getType(), GSP->getType());
  EXPECT_EQ(SP->getLine(), GSP->getLine());
  EXPECT_EQ(SP->getScopeLine(), GSP->getScopeLine());
  EXPECT_TRUE(GSP->isDistinct());

  G->setSubprogram(GSP);
  EXPECT_TRUE(verifyModule(*M));

  auto *InlinedAtNode =
      DILocation::getDistinct(Ctx, GSP->getScopeLine(), 0, GSP);
  DebugLoc DL = I->getDebugLoc();
  DenseMap<const MDNode *, MDNode *> IANodes;
  auto IA = DebugLoc::appendInlinedAt(DL, InlinedAtNode, Ctx, IANodes);
  auto NewDL =
      DILocation::get(Ctx, DL.getLine(), DL.getCol(), DL.getScope(), IA);
  I->setDebugLoc(NewDL);
  EXPECT_FALSE(verifyModule(*M));

  EXPECT_EQ("foo", SP->getName());
  EXPECT_EQ("foo", GSP->getName());
  EXPECT_FALSE(SP->isArtificial());
  EXPECT_TRUE(GSP->isArtificial());
}

// Check that we can add debug info to an existing DICompileUnit.
TEST_F(IRBuilderTest, appendDebugInfo) {
  IRBuilder<> Builder(BB);
  Builder.CreateRetVoid();
  EXPECT_FALSE(verifyModule(*M));

  auto GetNames = [](DICompileUnit *CU) {
    SmallVector<StringRef> Names;
    for (auto *ET : CU->getEnumTypes())
      Names.push_back(ET->getName());
    for (auto *RT : CU->getRetainedTypes())
      Names.push_back(RT->getName());
    for (auto *GV : CU->getGlobalVariables())
      Names.push_back(GV->getVariable()->getName());
    for (auto *IE : CU->getImportedEntities())
      Names.push_back(IE->getName());
    for (auto *Node : CU->getMacros())
      if (auto *MN = dyn_cast_or_null<DIMacro>(Node))
        Names.push_back(MN->getName());
    return Names;
  };

  DICompileUnit *CU;
  {
    DIBuilder DIB(*M);
    auto *File = DIB.createFile("main.c", "/");
    CU = DIB.createCompileUnit(dwarf::DW_LANG_C, File, "clang",
                               /*isOptimized=*/true, /*Flags=*/"",
                               /*Runtime Version=*/0);
    auto *ByteTy = DIB.createBasicType("byte0", 8, dwarf::DW_ATE_signed);
    DIB.createEnumerationType(CU, "ET0", File, /*LineNo=*/0, /*SizeInBits=*/8,
                              /*AlignInBits=*/8, /*Elements=*/{}, ByteTy);
    DIB.retainType(ByteTy);
    DIB.createGlobalVariableExpression(CU, "GV0", /*LinkageName=*/"", File,
                                       /*LineNo=*/1, ByteTy,
                                       /*IsLocalToUnit=*/true);
    DIB.createImportedDeclaration(CU, nullptr, File, /*LineNo=*/2, "IM0");
    DIB.createMacro(nullptr, /*LineNo=*/0, dwarf::DW_MACINFO_define, "M0");
    DIB.finalize();
  }
  EXPECT_FALSE(verifyModule(*M));
  EXPECT_THAT(GetNames(CU),
              UnorderedElementsAre("ET0", "byte0", "GV0", "IM0", "M0"));

  {
    DIBuilder DIB(*M, true, CU);
    auto *File = CU->getFile();
    auto *ByteTy = DIB.createBasicType("byte1", 8, dwarf::DW_ATE_signed);
    DIB.createEnumerationType(CU, "ET1", File, /*LineNo=*/0,
                              /*SizeInBits=*/8, /*AlignInBits=*/8,
                              /*Elements=*/{}, ByteTy);
    DIB.retainType(ByteTy);
    DIB.createGlobalVariableExpression(CU, "GV1", /*LinkageName=*/"", File,
                                       /*LineNo=*/1, ByteTy,
                                       /*IsLocalToUnit=*/true);
    DIB.createImportedDeclaration(CU, nullptr, File, /*LineNo=*/2, "IM1");
    DIB.createMacro(nullptr, /*LineNo=*/0, dwarf::DW_MACINFO_define, "M1");
    DIB.finalize();
  }
  EXPECT_FALSE(verifyModule(*M));
  EXPECT_THAT(GetNames(CU),
              UnorderedElementsAre("ET0", "byte0", "GV0", "IM0", "M0", "ET1",
                                   "byte1", "GV1", "IM1", "M1"));
}

TEST_F(IRBuilderTest, InsertExtractElement) {
  IRBuilder<> Builder(BB);

  auto VecTy = FixedVectorType::get(Builder.getInt64Ty(), 4);
  auto Elt1 = Builder.getInt64(-1);
  auto Elt2 = Builder.getInt64(-2);
  Value *Vec = Builder.CreateInsertElement(VecTy, Elt1, Builder.getInt8(1));
  Vec = Builder.CreateInsertElement(Vec, Elt2, 2);
  auto X1 = Builder.CreateExtractElement(Vec, 1);
  auto X2 = Builder.CreateExtractElement(Vec, Builder.getInt32(2));
  EXPECT_EQ(Elt1, X1);
  EXPECT_EQ(Elt2, X2);
}

TEST_F(IRBuilderTest, CreateGlobalStringPtr) {
  IRBuilder<> Builder(BB);

  auto String1a = Builder.CreateGlobalStringPtr("TestString", "String1a");
  auto String1b = Builder.CreateGlobalStringPtr("TestString", "String1b", 0);
  auto String2 = Builder.CreateGlobalStringPtr("TestString", "String2", 1);
  auto String3 = Builder.CreateGlobalString("TestString", "String3", 2);

  EXPECT_TRUE(String1a->getType()->getPointerAddressSpace() == 0);
  EXPECT_TRUE(String1b->getType()->getPointerAddressSpace() == 0);
  EXPECT_TRUE(String2->getType()->getPointerAddressSpace() == 1);
  EXPECT_TRUE(String3->getType()->getPointerAddressSpace() == 2);
}

TEST_F(IRBuilderTest, DebugLoc) {
  auto CalleeTy = FunctionType::get(Type::getVoidTy(Ctx),
                                    /*isVarArg=*/false);
  auto Callee =
      Function::Create(CalleeTy, Function::ExternalLinkage, "", M.get());

  DIBuilder DIB(*M);
  auto File = DIB.createFile("tmp.cpp", "/");
  auto CU = DIB.createCompileUnit(dwarf::DW_LANG_C_plus_plus_11,
                                  DIB.createFile("tmp.cpp", "/"), "", true, "",
                                  0);
  auto SPType = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None));
  auto SP =
      DIB.createFunction(CU, "foo", "foo", File, 1, SPType, 1, DINode::FlagZero,
                         DISubprogram::SPFlagDefinition);
  DebugLoc DL1 = DILocation::get(Ctx, 2, 0, SP);
  DebugLoc DL2 = DILocation::get(Ctx, 3, 0, SP);

  auto BB2 = BasicBlock::Create(Ctx, "bb2", F);
  auto Br = BranchInst::Create(BB2, BB);
  Br->setDebugLoc(DL1);

  IRBuilder<> Builder(Ctx);
  Builder.SetInsertPoint(Br);
  EXPECT_EQ(DL1, Builder.getCurrentDebugLocation());
  auto Call1 = Builder.CreateCall(Callee, None);
  EXPECT_EQ(DL1, Call1->getDebugLoc());

  Call1->setDebugLoc(DL2);
  Builder.SetInsertPoint(Call1->getParent(), Call1->getIterator());
  EXPECT_EQ(DL2, Builder.getCurrentDebugLocation());
  auto Call2 = Builder.CreateCall(Callee, None);
  EXPECT_EQ(DL2, Call2->getDebugLoc());

  DIB.finalize();
}

TEST_F(IRBuilderTest, DIImportedEntity) {
  IRBuilder<> Builder(BB);
  DIBuilder DIB(*M);
  auto F = DIB.createFile("F.CBL", "/");
  auto CU = DIB.createCompileUnit(dwarf::DW_LANG_Cobol74,
                                  F, "llvm-cobol74",
                                  true, "", 0);
  MDTuple *Elements = MDTuple::getDistinct(Ctx, None);

  DIB.createImportedDeclaration(CU, nullptr, F, 1);
  DIB.createImportedDeclaration(CU, nullptr, F, 1);
  DIB.createImportedModule(CU, (DIImportedEntity *)nullptr, F, 2);
  DIB.createImportedModule(CU, (DIImportedEntity *)nullptr, F, 2);
  DIB.createImportedModule(CU, (DIImportedEntity *)nullptr, F, 2, Elements);
  DIB.createImportedModule(CU, (DIImportedEntity *)nullptr, F, 2, Elements);
  DIB.finalize();
  EXPECT_TRUE(verifyModule(*M));
  EXPECT_TRUE(CU->getImportedEntities().size() == 3);
}

//  0: #define M0 V0          <-- command line definition
//  0: main.c                 <-- main file
//     3:   #define M1 V1     <-- M1 definition in main.c
//     5:   #include "file.h" <-- inclusion of file.h from main.c
//          1: #define M2     <-- M2 definition in file.h with no value
//     7:   #undef M1 V1      <-- M1 un-definition in main.c
TEST_F(IRBuilderTest, DIBuilderMacro) {
  IRBuilder<> Builder(BB);
  DIBuilder DIB(*M);
  auto File1 = DIB.createFile("main.c", "/");
  auto File2 = DIB.createFile("file.h", "/");
  auto CU = DIB.createCompileUnit(
      dwarf::DW_LANG_C, DIB.createFile("main.c", "/"), "llvm-c", true, "", 0);
  auto MDef0 =
      DIB.createMacro(nullptr, 0, dwarf::DW_MACINFO_define, "M0", "V0");
  auto TMF1 = DIB.createTempMacroFile(nullptr, 0, File1);
  auto MDef1 = DIB.createMacro(TMF1, 3, dwarf::DW_MACINFO_define, "M1", "V1");
  auto TMF2 = DIB.createTempMacroFile(TMF1, 5, File2);
  auto MDef2 = DIB.createMacro(TMF2, 1, dwarf::DW_MACINFO_define, "M2");
  auto MUndef1 = DIB.createMacro(TMF1, 7, dwarf::DW_MACINFO_undef, "M1");

  EXPECT_EQ(dwarf::DW_MACINFO_define, MDef1->getMacinfoType());
  EXPECT_EQ(3u, MDef1->getLine());
  EXPECT_EQ("M1", MDef1->getName());
  EXPECT_EQ("V1", MDef1->getValue());

  EXPECT_EQ(dwarf::DW_MACINFO_undef, MUndef1->getMacinfoType());
  EXPECT_EQ(7u, MUndef1->getLine());
  EXPECT_EQ("M1", MUndef1->getName());
  EXPECT_EQ("", MUndef1->getValue());

  EXPECT_EQ(dwarf::DW_MACINFO_start_file, TMF2->getMacinfoType());
  EXPECT_EQ(5u, TMF2->getLine());
  EXPECT_EQ(File2, TMF2->getFile());

  DIB.finalize();

  SmallVector<Metadata *, 4> Elements;
  Elements.push_back(MDef2);
  auto MF2 = DIMacroFile::get(Ctx, dwarf::DW_MACINFO_start_file, 5, File2,
                              DIB.getOrCreateMacroArray(Elements));

  Elements.clear();
  Elements.push_back(MDef1);
  Elements.push_back(MF2);
  Elements.push_back(MUndef1);
  auto MF1 = DIMacroFile::get(Ctx, dwarf::DW_MACINFO_start_file, 0, File1,
                              DIB.getOrCreateMacroArray(Elements));

  Elements.clear();
  Elements.push_back(MDef0);
  Elements.push_back(MF1);
  auto MN0 = MDTuple::get(Ctx, Elements);
  EXPECT_EQ(MN0, CU->getRawMacros());

  Elements.clear();
  Elements.push_back(MDef1);
  Elements.push_back(MF2);
  Elements.push_back(MUndef1);
  auto MN1 = MDTuple::get(Ctx, Elements);
  EXPECT_EQ(MN1, MF1->getRawElements());

  Elements.clear();
  Elements.push_back(MDef2);
  auto MN2 = MDTuple::get(Ctx, Elements);
  EXPECT_EQ(MN2, MF2->getRawElements());
  EXPECT_TRUE(verifyModule(*M));
}

TEST_F(IRBuilderTest, NoFolderNames) {
  IRBuilder<NoFolder> Builder(BB);
  auto *Add =
      Builder.CreateAdd(Builder.getInt32(1), Builder.getInt32(2), "add");
  EXPECT_EQ(Add->getName(), "add");
}
}