{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Conditional Probability Solution"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First we'll modify the code to have some fixed purchase probability regardless of age, say 40%:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from numpy import random\n",
"random.seed(0)\n",
"\n",
"totals = {20:0, 30:0, 40:0, 50:0, 60:0, 70:0}\n",
"purchases = {20:0, 30:0, 40:0, 50:0, 60:0, 70:0}\n",
"totalPurchases = 0\n",
"for _ in range(100000):\n",
" ageDecade = random.choice([20, 30, 40, 50, 60, 70])\n",
" purchaseProbability = 0.4\n",
" totals[ageDecade] += 1\n",
" if (random.random() < purchaseProbability):\n",
" totalPurchases += 1\n",
" purchases[ageDecade] += 1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Next we will compute P(E|F) for some age group, let's pick 30 year olds again:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"P(purchase | 30s): 0.3987604549010169\n"
]
}
],
"source": [
"PEF = float(purchases[30]) / float(totals[30])\n",
"print(\"P(purchase | 30s): \" + str(PEF))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we'll compute P(E)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"P(Purchase):0.4003\n"
]
}
],
"source": [
"PE = float(totalPurchases) / 100000.0\n",
"print(\"P(Purchase):\" + str(PE))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"P(E|F) is pretty darn close to P(E), so we can say that E and F are likely indepedent variables."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 1
}