{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Exercise: Mean & Median Customer Spend"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Here's some code that will generate some random e-commerce data; just an array of total amount spent per transaction. Select the code block, and hit \"play\" to execute it:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAEsJJREFUeJzt3W2MneV95/HvrziQh25iCIa6tlmT1n3ImwCdEtq03Ra6bYAo5kXQsooab5bKUkSqPPTJaaSuutoXpq2aFKkisiBZ001DKE2KldI21CFb7QtITAIE4qRMCcVTO9hpAk2LmpT2vy/OZXFin/GceTzHF9+PNDr3fd3XmfnPNTO/c53r3OeeVBWSpH5916QLkCStLoNekjpn0EtS5wx6SeqcQS9JnTPoJalzBr0kdc6gl6TOGfSS1Ll1ky4A4Nxzz62tW7dOugxJOq088MADX6uqDQv1m4qg37p1KwcOHJh0GZJ0Wknyd+P0c+lGkjpn0EtS5wx6SeqcQS9JnTPoJalzBr0kdc6gl6TOGfSS1DmDXpI6NxXvjJUmbeuuP1v0fZ7YffUqVCKtPGf0ktQ5g16SOmfQS1Lnxgr6JOuT3JnkS0kOJvmxJOckuSfJY+327NY3SW5KMpvk4SSXrO63IEk6lXFn9L8P/EVV/RDwGuAgsAvYX1XbgP1tH+BKYFv72AncvKIVS5IWZcGgT/Jy4KeAWwGq6ttV9TSwHdjbuu0Frmnb24HbauA+YH2SjSteuSRpLOPM6F8FHAM+lOTzSW5J8jLg/Ko6AtBuz2v9NwGHhu4/19okSRMwTtCvAy4Bbq6qi4F/5vllmlEyoq1O6pTsTHIgyYFjx46NVawkafHGecPUHDBXVfe3/TsZBP1TSTZW1ZG2NHN0qP+WoftvBg6f+Emrag+wB2BmZuakBwLpdDXfm698g5UmZcGgr6qvJjmU5Aer6svAFcAX28cOYHe7vavdZR/w9iS3A68Fnjm+xCNN2lLeASud7sa9BMIvAR9OcibwOPBWBss+dyS5HngSuLb1vRu4CpgFnm19JUkTMlbQV9WDwMyIQ1eM6FvADcusS5K0QnxnrCR1zqCXpM4Z9JLUOa9HLy2RZ/DodOGMXpI6Z9BLUudculGXpnFZxXfMalKc0UtS5wx6SeqcQS9JnTPoJalzBr0kdc6gl6TOGfSS1DmDXpI6Z9BLUucMeknqnEEvSZ0z6CWpcwa9JHXOoJekzhn0ktQ5g16SOmfQS1Lnxgr6JE8k+UKSB5McaG3nJLknyWPt9uzWniQ3JZlN8nCSS1bzG5AkndpiZvQ/U1UXVdVM298F7K+qbcD+tg9wJbCtfewEbl6pYiVJi7ecpZvtwN62vRe4Zqj9thq4D1ifZOMyvo4kaRnGDfoCPpnkgSQ7W9v5VXUEoN2e19o3AYeG7jvX2iRJE7BuzH6vq6rDSc4D7knypVP0zYi2OqnT4AFjJ8AFF1wwZhlSf7bu+rOR7U/svnqNK1GvxprRV9XhdnsU+DhwKfDU8SWZdnu0dZ8DtgzdfTNweMTn3FNVM1U1s2HDhqV/B5KkU1pwRp/kZcB3VdU32/bPAf8T2AfsAHa327vaXfYBb09yO/Ba4JnjSzzSSptvNizpeeMs3ZwPfDzJ8f5/VFV/keSzwB1JrgeeBK5t/e8GrgJmgWeBt6541ZKksS0Y9FX1OPCaEe3/AFwxor2AG1akOknSsvnOWEnqnEEvSZ0b9/RKaaJ80VVaOmf0ktQ5g16SOmfQS1LnDHpJ6pxBL0mdM+glqXOeXilNKa9qqZXijF6SOmfQS1LnDHpJ6pxBL0mdM+glqXMGvSR1zqCXpM4Z9JLUOYNekjpn0EtS5wx6SeqcQS9JnTPoJalzBr0kdc6gl6TOjR30Sc5I8vkkn2j7Fya5P8ljST6a5MzWflbbn23Ht65O6ZKkcSzmH4+8AzgIvLzt3wi8r6puT/IB4Hrg5nb7jar6/iTXtX7/ZQVrVsfm+2cbkpZurBl9ks3A1cAtbT/A5cCdrcte4Jq2vb3t045f0fpLkiZg3KWb9wO/Bvx7238l8HRVPdf254BNbXsTcAigHX+m9f8OSXYmOZDkwLFjx5ZYviRpIQsGfZI3AEer6oHh5hFda4xjzzdU7amqmaqa2bBhw1jFSpIWb5w1+tcBb0xyFfBiBmv07wfWJ1nXZu2bgcOt/xywBZhLsg54BfD1Fa9ckjSWBWf0VfWeqtpcVVuB64BPVdWbgXuBN7VuO4C72va+tk87/qmqOmlGL0laG8s5j/7XgXcnmWWwBn9ra78VeGVrfzewa3klSpKWYzGnV1JVnwY+3bYfBy4d0edfgGtXoDZJ0grwnbGS1DmDXpI6Z9BLUucMeknq3KJejJU0efNdD+iJ3VevcSU6XTijl6TOGfSS1DmDXpI6Z9BLUucMeknqnGfdaCL8T1LS2nFGL0mdM+glqXMGvSR1zqCXpM4Z9JLUOc+6kTrhNXA0H2f0ktQ5g16SOmfQS1LnDHpJ6pxBL0mdM+glqXMGvSR1bsGgT/LiJJ9J8lCSR5P8Vmu/MMn9SR5L8tEkZ7b2s9r+bDu+dXW/BUnSqYwzo/8WcHlVvQa4CHh9ksuAG4H3VdU24BvA9a3/9cA3qur7gfe1fpKkCVkw6Gvgn9rui9pHAZcDd7b2vcA1bXt726cdvyJJVqxiSdKijLVGn+SMJA8CR4F7gL8Fnq6q51qXOWBT294EHAJox58BXjnic+5MciDJgWPHji3vu5AkzWusoK+qf6uqi4DNwKXAD4/q1m5Hzd7rpIaqPVU1U1UzGzZsGLdeSdIiLeqsm6p6Gvg0cBmwPsnxi6JtBg637TlgC0A7/grg6ytRrCRp8cY562ZDkvVt+yXAzwIHgXuBN7VuO4C72va+tk87/qmqOmlGL0laG+NcpngjsDfJGQweGO6oqk8k+SJwe5L/BXweuLX1vxX4wySzDGby161C3ZKkMS0Y9FX1MHDxiPbHGazXn9j+L8C1K1KdJGnZ/McjWlXz/TMMSWvHSyBIUucMeknqnEEvSZ0z6CWpcwa9JHXOoJekzhn0ktQ5z6OXOjffexme2H31GleiSXFGL0mdM+glqXMGvSR1zqCXpM4Z9JLUOYNekjpn0EtS5zyPXivC685L08sZvSR1zqCXpM4Z9JLUOdfopRcor4HzwuGMXpI6Z9BLUucMeknq3IJBn2RLknuTHEzyaJJ3tPZzktyT5LF2e3ZrT5KbkswmeTjJJav9TUiS5jfOjP454Jer6oeBy4Abkrwa2AXsr6ptwP62D3AlsK197ARuXvGqJUljWzDoq+pIVX2ubX8TOAhsArYDe1u3vcA1bXs7cFsN3AesT7JxxSuXJI1lUWv0SbYCFwP3A+dX1REYPBgA57Vum4BDQ3eba22SpAkYO+iTfDfwJ8A7q+ofT9V1RFuN+Hw7kxxIcuDYsWPjliFJWqSx3jCV5EUMQv7DVfWx1vxUko1VdaQtzRxt7XPAlqG7bwYOn/g5q2oPsAdgZmbmpAcCTScvXiadfsY56ybArcDBqvq9oUP7gB1tewdw11D7W9rZN5cBzxxf4pEkrb1xZvSvA34B+EKSB1vbbwC7gTuSXA88CVzbjt0NXAXMAs8Cb13RiiVJi7Jg0FfV/2P0ujvAFSP6F3DDMuuSJK0QL2om6Tt4sbP+eAkESeqcQS9JnXPpRiN5GqXUD2f0ktQ5g16SOmfQS1LnDHpJ6pxBL0mdM+glqXMGvSR1zqCXpM4Z9JLUOYNekjpn0EtS5wx6SeqcFzWTNJZTXejOa9VPN2f0ktQ5g16SOmfQS1LnXKN/AfOfi0gvDM7oJalzBr0kdc6gl6TOLRj0ST6Y5GiSR4bazklyT5LH2u3ZrT1Jbkoym+ThJJesZvGSpIWNM6P/38DrT2jbBeyvqm3A/rYPcCWwrX3sBG5emTIlSUu1YNBX1V8DXz+heTuwt23vBa4Zar+tBu4D1ifZuFLFSpIWb6lr9OdX1RGAdntea98EHBrqN9faJEkTstLn0WdEW43smOxksLzDBRdcsMJlSFpL870nw2vgTIelzuifOr4k026PtvY5YMtQv83A4VGfoKr2VNVMVc1s2LBhiWVIkhay1KDfB+xo2zuAu4ba39LOvrkMeOb4Eo8kaTIWXLpJ8hHgp4Fzk8wB/wPYDdyR5HrgSeDa1v1u4CpgFngWeOsq1CxJWoQFg76q/us8h64Y0beAG5ZblCRp5XhRsxcAL14mvbAZ9JJWjWfjTAevdSNJnTPoJalzLt1IWnMu6awtg74jvugqaRSXbiSpcwa9JHXOoJekzhn0ktQ5g16SOmfQS1LnDHpJ6pxBL0mdM+glqXO+M/Y05DtgJS2GQS9pangNnNVh0E8xZ+7SgA8Ay+MavSR1zqCXpM4Z9JLUOYNekjrni7GSTlu+SDseg34V+MsnaZqsStAneT3w+8AZwC1VtXs1vs7pxtMlpbXhZOs7rXjQJzkD+APgPwNzwGeT7KuqL67015KkxXihPgCsxouxlwKzVfV4VX0buB3YvgpfR5I0htVYutkEHBranwNeuwpfB3A5RNLyTTJH1uLZxGoEfUa01Umdkp3Azrb7T0m+PObnPxf42hJrWwvTXN801wbTXd801wbTXd801wYTri83nvLwQrX9x3G+xmoE/RywZWh/M3D4xE5VtQfYs9hPnuRAVc0svbzVNc31TXNtMN31TXNtMN31TXNtMN31rVRtq7FG/1lgW5ILk5wJXAfsW4WvI0kaw4rP6KvquSRvB/6SwemVH6yqR1f660iSxrMq59FX1d3A3avxuVnCcs8am+b6prk2mO76prk2mO76prk2mO76VqS2VJ30OqkkqSNe1EySOjfVQZ9kS5J7kxxM8miSd7T2c5Lck+Sxdnv2BGs8I8nnk3yi7V+Y5P5W20fbC9KTqm19kjuTfKmN4Y9Ny9gleVf7mT6S5CNJXjzJsUvywSRHkzwy1DZyrDJwU5LZJA8nuWQCtf1O+7k+nOTjSdYPHXtPq+3LSX5+NWubr76hY7+SpJKc2/bXdOxOVV+SX2pj9GiS3x5qX7Pxm+dne1GS+5I8mORAkktb+9LHrqqm9gPYCFzStv8D8DfAq4HfBna19l3AjROs8d3AHwGfaPt3ANe17Q8Ab5tgbXuBX2zbZwLrp2HsGLyp7ivAS4bG7L9NcuyAnwIuAR4Zahs5VsBVwJ8zeM/IZcD9E6jt54B1bfvGodpeDTwEnAVcCPwtcMZa19fatzA4KePvgHMnMXanGL+fAf4KOKvtnzeJ8Zuntk8CVw6N16eXO3ZTPaOvqiNV9bm2/U3gIIOQ2M4gxGi310yiviSbgauBW9p+gMuBO6egtpcz+CW6FaCqvl1VTzMlY8fgRICXJFkHvBQ4wgTHrqr+Gvj6Cc3zjdV24LYauA9Yn2TjWtZWVZ+squfa7n0M3q9yvLbbq+pbVfUVYJbBZUlWzTxjB/A+4Nf4zjdMrunYnaK+twG7q+pbrc/RofrWbPzmqa2Al7ftV/D8+5CWPHZTHfTDkmwFLgbuB86vqiMweDAAzptQWe9n8Iv8723/lcDTQ3+AcwwemCbhVcAx4ENtaemWJC9jCsauqv4e+F3gSQYB/wzwANMzdsfNN1ajLvMxyVr/O4OZHkxJbUneCPx9VT10wqGpqA/4AeAn21Lh/03yo619Gup7J/A7SQ4x+Dt5z3JrOy2CPsl3A38CvLOq/nHS9QAkeQNwtKoeGG4e0XVSpzWtY/CU8Oaquhj4ZwbLDxPX1rq3M3hq/L3Ay4ArR3Sd1lPCpubnnOS9wHPAh483jei2prUleSnwXuA3Rx0e0TaJsVsHnM1gCeRXgTvaM/JpqO9twLuqagvwLtqzcpZR29QHfZIXMQj5D1fVx1rzU8efsrTbo/PdfxW9DnhjkicYXKHzcgYz/PVtOQLmufzDGpkD5qrq/rZ/J4Pgn4ax+1ngK1V1rKr+FfgY8ONMz9gdN99YjXWZj9WWZAfwBuDN1RZxp6S272PwIP5Q+/vYDHwuyfdMSX20Oj7WlkE+w+BZ+blTUt8OBn8TAH/M80tHS65tqoO+PcLeChysqt8bOrSPwWDQbu9a69qq6j1VtbmqtjK4zMOnqurNwL3AmyZZW6vvq8ChJD/Ymq4AvsgUjB2DJZvLkry0/YyP1zYVYzdkvrHaB7ylnQVxGfDM8SWetZLBP/f5deCNVfXs0KF9wHVJzkpyIbAN+Mxa1lZVX6iq86pqa/v7mGNwUsVXmYKxa/6UweSMJD/A4GSFrzEF48cgvP9T274ceKxtL33sVuvV5BV6RfonGDw1eRh4sH1cxWAtfH8bgP3AOROu86d5/qybVzH4xZhl8Gh81gTrugg40MbvTxk8VZ2KsQN+C/gS8AjwhwzOcpjY2AEfYfB6wb8yCKbr5xsrBk+h/4DBGRlfAGYmUNssg/Xa438XHxjq/95W25dpZ2+sdX0nHH+C58+6WdOxO8X4nQn8n/b79zng8kmM3zy1/QSD16weYvCa5I8sd+x8Z6wkdW6ql24kSctn0EtS5wx6SeqcQS9JnTPoJalzBr0kdc6gl6TOGfSS1Ln/D/F++VzGEPgjAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"%matplotlib inline\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"\n",
"incomes = np.random.normal(100.0, 20.0, 10000)\n",
"\n",
"plt.hist(incomes, 50)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now, find the mean and median of this data. In the code block below, write your code, and see if your result makes sense:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This is pretty much the world's easiest assignment, but we're just trying to get your hands on iPython and writing code with numpy to get you comfortable with it.\n",
"\n",
"Try playing with the code above to generate different distributions of data, or add outliers to it to see their effect."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 1
}