{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Linear Regression"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Let's fabricate some data that shows a roughly linear relationship between page speed and amount purchased:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAGdCAYAAADqsoKGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABIPUlEQVR4nO3de3xTdZo/8M9JaJNS20BBmhRLrQhiKbeiQAvigIDlJiIrCIPghVFAZ63uMMAISgWsyGtQgRFGVwelw2VnldtwLaJgsVKgFIH6k4KFcmmmSy9JW+iF5Pz+6CQ0bZImbdJzkn7er1der21ycvqku24evt/n+zyCKIoiiIiIiHycQuoAiIiIiDyBSQ0RERH5BSY1RERE5BeY1BAREZFfYFJDREREfoFJDREREfkFJjVERETkF5jUEBERkV9oI3UALclsNuP69esICQmBIAhSh0NEREQuEEURZWVliIiIgELheD2mVSU1169fR2RkpNRhEBERURNcuXIF99xzj8PXW1VSExISAqD2jxIaGipxNEREROQKo9GIyMhI6/e4I60qqbFsOYWGhjKpISIi8jGNlY6wUJiIiIj8ApMaIiIi8gtMaoiIiMgvMKkhIiIiv8CkhoiIiPwCkxoiIiLyC0xqiIiIyC8wqSEiIiK/0Kqa73mbySwiM68YhWWV6BSixoDoMCgVnDFFRETUEpjUeMi+swVI3pWDAkOl9TmdRo23x8cgMVYnYWREREStA7efPGDf2QLMSc2ySWgAQG+oxJzULOw7WyBRZERERK0Hk5pmMplFJO/KgWjnNctzybtyYDLbu4KIiIg8hUlNM2XmFTdYoalLBFBgqERmXnHLBUVERNQKMalppsIyxwlNU64jIiKipmFS00ydQtQevY6IiIiahklNMw2IDoNOo4ajg9sCak9BDYgOa8mwiIiIWh0mNc2kVAh4e3wMADRIbCw/vz0+hv1qiIiIvIxJjQckxuqwbnoctBrbLSatRo110+PYp4aIiKgFsPmehyTG6jAyRsuOwkRERBJhUtNMHI1AREQkD0xqmoGjEYiIiOSDNTVNxNEIRERE8sKkpgk4GoGIiEh+3E5qjhw5gvHjxyMiIgKCIGD79u02r4uiiCVLliAiIgJBQUH4zW9+g3PnztlcU1VVhd///vfo2LEjgoOD8cQTT+Dq1auN/u6PP/4Y0dHRUKvV6N+/P77//nt3w/cIjkYgIiKSH7eTmoqKCvTp0wdr1661+/r777+PVatWYe3atTh+/Di0Wi1GjhyJsrIy6zVJSUnYtm0btmzZgvT0dJSXl2PcuHEwmUwOf+/WrVuRlJSEN998E6dOncIjjzyC0aNHIz8/392P0GwcjUBERCQ/giiKTd4jEQQB27Ztw5NPPgmgdpUmIiICSUlJmD9/PoDaVZnw8HCsWLECL7/8MgwGA+6++25s3LgRU6ZMAQBcv34dkZGR2LNnDx5//HG7v2vgwIGIi4vDunXrrM89+OCDePLJJ5GSkuJSvEajERqNBgaDAaGhoU392Mi4WISpn/7Y6HWbfzcI8V07NPn3EBERkevf3x6tqcnLy4Ner8eoUaOsz6lUKjz66KP44YcfAAAnT55ETU2NzTURERGIjY21XlNfdXU1Tp48afMeABg1apTD9wC1CZXRaLR5eIInRyOYzCIyLhZhR/Y1ZFwsQvVts83PrMshIiJyjUePdOv1egBAeHi4zfPh4eG4fPmy9ZrAwEC0b9++wTWW99d348YNmEwmu/d19B4ASElJQXJystufozGW0QhzUrMgADYFw+6MRrB3JFwhAHXzGB4RJyIico1XTj8Jgu2XuSiKDZ6rz5Vr3L3vwoULYTAYrI8rV640ErnrmjsawdGR8PoLMzwiTkRE5BqPrtRotVoAtasxOt2dL/XCwkLrKotWq0V1dTVKSkpsVmsKCwuRkJBg974dO3aEUqlssCpT9772qFQqqFSqJn+exjR1NIKzI+H1iahd/UnelYORMVp2KyYiInLAoys10dHR0Gq1SEtLsz5XXV2Nw4cPWxOW/v37IyAgwOaagoICnD171mFSExgYiP79+9u8BwDS0tIcvqelKBUC4rt2wIS+nRHftYNLSUdjR8Lr4xFxIiKixrm9UlNeXo4LFy5Yf87Ly0N2djbCwsLQpUsXJCUl4d1330W3bt3QrVs3vPvuu2jbti2mTZsGANBoNHjxxRfxX//1X+jQoQPCwsLwhz/8Ab169cKIESOs933ssccwceJEvPrqqwCAN954A88++yweeughxMfH45NPPkF+fj5mz57d3L9Bi2vqUe/67+PcKSIiojvcTmpOnDiBYcOGWX9+4403AAAzZ87Ehg0b8Mc//hG3bt3C3LlzUVJSgoEDB+LAgQMICQmxvueDDz5AmzZtMHnyZNy6dQuPPfYYNmzYAKVSab3m4sWLuHHjhvXnKVOmoKioCO+88w4KCgoQGxuLPXv2ICoqqkkfXEqdQtSNX9TI+zh3ioiIyFaz+tT4Gk/1qWkuk1nEkBWHoDdUulRXI6C2ADl9/nAoFYK1yLj+ey1rNK4UKhMREfkKSfrUkGssR8IBOOx1Y1H/iDjnThEREdnHpEYijo6E1y+JqX9EnHOniIiI7PPokW5yj70j4f2j2uPk5RKHxb+cO0VERGQfkxqJWY6E1+VsXpSrRcZNLUYmIiLyVdx+8jGWuVOOuDN3ioiIyJ8wqfExSoWAJ/o4P9nkytwpIiIif8OkxsfsO1uAT47kOXz9paHRPM5NREStEpMaH9LYzCgBwM7TBTzOTURErRKTGh/SlOPcJrOIjItF2JF9DRkXi5jwEBGR3+LpJx/i7nFujlIgIqLWhCs1PsSd49yWUQr1V3b0hkrMSc3CvrMF3giRiIhIMkxqfIjlOLejc02W49z9o9pzlAIREbU6TGp8iLOZUXVnRJ28XMJRCkRE1OowqfExjmZG1Z0RxVEKRETUGrFQ2AfZmxlVd0aUq7U3N8qqsCP7mt0ZU0RERL6GSY2PsjczysJSe6M3VDrsaaMQgKW7f7b+zFNRRETk67j95Iec1d5Y1K8R5qkoIiLydUxq/JSj2htHO0w8FUVERL6O209+rH7tzY2yKpstp/rqnopytLVFREQkV0xq/Fzd2psd2ddceg9PRRERkS/i9lMr4k5HYiIiIl/DpKYVcaUjsTZUBbMocgAmERH5HG4/tSKWU1FzUrMgADbHvS0/V94247f/fcz6PI96ExGRr+BKTSvj6FSUpm0AAKD0Zo3N846OepvMIjIuFnFFh4iIZIMrNa1Q/VNRHYNV+K9/nAZQ0+BaEbWrOMm7cjAyRgulQsC+swVI3pVjM18qOFCJWY/ch/98rBs7ExMRkSSY1LRSdU9FZVwsgt7o2gBMw61qzEnNatCpuKLahI++ycWn3/+KVZP7cLuKiIhaHLefyOUj3HrDLSTvynE4egEAblabMLuJnYm5pUVERM3BlRpy+Qh3cUW1zZaTM0t2nrNuV7nC3pYWi5SJiMgdXKkhl4566zRqhN2lcvmeemMVMvOKXbp239kCzEnNapAwcR4VERG5g0kNOR2Aafn57fEx0Ia615TPlW0tk1l0uKXFeVREROQObj8RgDtHvetvAWk1ajzzcBdU3TbDbBbRvm0ASm42PCVlj2Vby2QWbU5aQQBulFehU4gaZrPodEuL86iIiMhVTGrIqv5R70s3KrA5Mx8fHDxvvaZtoGuLe9pQFQZEh9mtlamrXVCAS/fjPCoiImoMt5/IhuWot6qNAh8ezIXeWGXz+s1qs0v3WfJET6Tl6O3WytRVesu9VR8iIiJHvJLUlJWVISkpCVFRUQgKCkJCQgKOHz9ufV0QBLuPlStXOrznhg0b7L6nspL/gvc0Z3UujWnXNgDrp8dhZIy2yfeoy1KkPCA6rJl3IiIif+eV7adZs2bh7Nmz2LhxIyIiIpCamooRI0YgJycHnTt3RkGB7WmWvXv34sUXX8SkSZOc3jc0NBS//PKLzXNqNf8F72mZecUuH90GgLtUSsyMvxcJXTtiUNcOUCoEZFwscusejogAxsTWbokNiA5jt2IiInLI40nNrVu38NVXX2HHjh0YOnQoAGDJkiXYvn071q1bh2XLlkGr1dq8Z8eOHRg2bBjuu+8+p/cWBKHBe8nz3K1fKa8yYUi3u20KeZ11KHakXVCAzXaUQgDMIvDZ0Uv47Ogl9q0hIiKnPL79dPv2bZhMpgYrKEFBQUhPT29w/b/+9S/s3r0bL774YqP3Li8vR1RUFO655x6MGzcOp06dcnp9VVUVjEajzYMa15T6lbqJ0L6zBVj6z3Nu3+O5hHvx9xcHYnRsOIDahKYu9q0hIiJnPJ7UhISEID4+HkuXLsX169dhMpmQmpqKY8eONdh2AoAvvvgCISEheOqpp5zet0ePHtiwYQN27tyJzZs3Q61WY/DgwcjNzXX4npSUFGg0GusjMjKy2Z+vNbA043OHJRGyNNIrrnCtALiuD7/Jxe82nsDes/+y+zr71hARkTOCKIoe/3a4ePEiXnjhBRw5cgRKpRJxcXHo3r07srKykJOTY3Ntjx49MHLkSKxZs8at32E2mxEXF4ehQ4di9erVdq+pqqpCVdWd0ztGoxGRkZEwGAwIDQ11/4O1IvvOFmB2apZL13YIDkTmmyMAAENWHPJILU1jNv9uEPvWEBG1EkajERqNptHvb6+cfuratSsOHz6M8vJyXLlyBZmZmaipqUF0dLTNdd9//z1++eUXzJo1y+3foVAo8PDDDztdqVGpVAgNDbV5kGsSY3X4eFo/uFKXu3RCLJQKwe0C4+Y4mKNvkd9DRES+w6t9aoKDg6HT6VBSUoL9+/djwoQJNq9/9tln6N+/P/r06eP2vUVRRHZ2NnQ6Fo16y5jeEVg7Nc7pNS8PjcaY3rX/O2jJBnnbsq9xC4qIiGx4JanZv38/9u3bh7y8PKSlpWHYsGF44IEH8Pzzz1uvMRqN+Mc//uFwlWbGjBlYuHCh9efk5GTs378fv/76K7Kzs/Hiiy8iOzsbs2fP9sZHoH8b01uH9dPjGtTYhAUH4ONp/bBwTIz1uZZskFdcUePywEwiImodvNKnxmAwYOHChbh69SrCwsIwadIkLF++HAEBd1rib9myBaIoYurUqXbvkZ+fD4XiTs5VWlqKl156CXq9HhqNBv369cORI0cwYMAAb3wEqqP++IROIWq7PWMsBcZ6Q2Wzm+65gqMTiIioLq8UCsuVq4VG1HSW008t8X9Ui8c+iI4hKodJFhER+QdXv7+Z1JDH7TtbgAVfnXF5rlNTWBrzWYQFB+LJvhEYGaNF/6j2OHm5xOmqEhER+Q4mNXYwqWk5Ry/cwG//+5gkv7t+wsNOxEREvk3SI91Eg+7rAJ1GDSnWR9iJmIiodWJSQ16hVAh4e3ztyaj6iY3w78fYXi0zx4udiImIWgcmNeQ1ibE6rJseB2294+BajRrrpsdh9dQ4tGsb4ODdniUCKDBU8hg4EZEf88qRbiKLxo6Dv/dUrxY7LQXwGDgRkT9jUkNep1QIDuc0Jcbq8NLQaPz1SF6LxNKSDQKJiKhlMakhSZnMInaebpkCXoUAlFRUw2QWG20kSEREvodJDUmqJYdgmkVg7qYstA1U4ma1yfo8j3wTEfkHFgqTpKSocamb0AC1BcSzU7Ow56frLR4LERF5DpMakpScalxe3XwKe35iLxsiIl/F7SeS1IDoMLQLCvDqSAVXWbanXi/sjns7tmW9DRGRj2FSQ5JSKgQ8PzgaHxw8L3UoVnVjYb0NEZHv4PYTSe7V4fe3WBM+d3HEAhGR72BSQ5JTKgS891QvqcOwiyMWiIh8B5MakoXEWB3WT4+Drt5IBZ1GjXZtAyQZjGnBEQtERL6BNTUkG45GKqTl6DEnNQsC0GLjFOw5euEGC4eJiGRMEEWx1aypG41GaDQaGAwGhIaGSh0OuWHf2QIk78ppsUZ9jrBwmIio5bn6/c3tJ/IJibE6pM8fjr/PGoh2QdIVFbNwmIhIvpjUkM9QKgQMvr8j3pvUS7IaGxYOExHJF5Ma8jmJsTqsmx4HbahKkt/PwmEiInliUkM+KTFWh6MLHsPrI7pLFsPRC//H1RoiIhlhoTD5PHtFxB2CA1FUUe31360NVWHqgC64t2MwxyoQEXmJq9/fTGrIL5jMos1R8L6R7dDz7X1o6YUUno4iIvI8V7+/2aeG/IJSISC+awfrzxkXi1o8oQFqa21mp2bh9RHd8erw+7lqQ0TUglhTQ36psEzafjYfHDyPwe99g31nC2Ayi8i4WIQd2deQcbGIdThERF7ClRryS51C1I1f5GV6YxVmp2ahXdsAlN6ssT7PLSoiIu/gSg35pQHRYdBp1JLOjLKom9AA9hv4cTWHiKj5uFJDfkmpEPD2+BhZzIyqTwQgoLaB38gYLdJy9A1Ob3E1h4jIfVypIb9lbdKnkX4rqj5LA7+1hy5gTmpWg5lWHMdAROQ+JjXk1ywzo14ddr/Uodj1t6N5dleROI6BiMh9TGrI71lmRslR6a0ah69xHAMRkXu8ktSUlZUhKSkJUVFRCAoKQkJCAo4fP259/bnnnoMgCDaPQYMGNXrfr776CjExMVCpVIiJicG2bdu8ET75ITkVDlu0DVS6dJ3Ux9OJiHyFV5KaWbNmIS0tDRs3bsSZM2cwatQojBgxAteuXbNek5iYiIKCAutjz549Tu+ZkZGBKVOm4Nlnn8Xp06fx7LPPYvLkyTh27Jg3PgL5GUvhMIAGiY1UiY7ZxWbecjieTkTkCzw+JuHWrVsICQnBjh07MHbsWOvzffv2xbhx47Bs2TI899xzKC0txfbt212+75QpU2A0GrF3717rc4mJiWjfvj02b97s0j04JoHszYnSadRYPPZBLN39M/SGyhY9KSUIgKP/AgUAWo0a6fOHszMxEbVqko1JuH37NkwmE9Rq239dBgUFIT093frzd999h06dOqFdu3Z49NFHsXz5cnTq1MnhfTMyMvD666/bPPf444/jww8/9Gj85N8SY3UYGaO1mRNlGUKpUAgtfgTc2T8pRABP9NExoSEicpHHt59CQkIQHx+PpUuX4vr16zCZTEhNTcWxY8dQUFB7PHX06NH4+9//jkOHDuHPf/4zjh8/juHDh6OqqsrhffV6PcLDw22eCw8Ph16vd/ieqqoqGI1GmweRZU7UhL6dEd+1gzVpkOMR8E+O5PFYNxGRi7xSU7Nx40aIoojOnTtDpVJh9erVmDZtGpTK2sLIKVOmYOzYsYiNjcX48eOxd+9enD9/Hrt373Z6X0Gw/RerKIoNnqsrJSUFGo3G+oiMjGz+hyO/ZjkCvvl3g/DBlL4ICw6QNB4RPNZNROQqryQ1Xbt2xeHDh1FeXo4rV64gMzMTNTU1iI6Otnu9TqdDVFQUcnNzHd5Tq9U2WJUpLCxssHpT18KFC2EwGKyPK1euNO0DUatiWcnRhqpRXOH4yHVLqW3S5/i/DSIiquXVPjXBwcHQ6XQoKSnB/v37MWHCBLvXFRUV4cqVK9DpHLeEj4+PR1pams1zBw4cQEJCgsP3qFQqhIaG2jyIXCWno9QfHMzlNhQRUSO8ktTs378f+/btQ15eHtLS0jBs2DA88MADeP7551FeXo4//OEPyMjIwKVLl/Ddd99h/Pjx6NixIyZOnGi9x4wZM7Bw4ULrz6+99hoOHDiAFStW4P/9v/+HFStW4ODBg0hKSvLGRyCS3VFqbkMRETnnlYGWBoMBCxcuxNWrVxEWFoZJkyZh+fLlCAgIwO3bt3HmzBl8+eWXKC0thU6nw7Bhw7B161aEhIRY75Gfnw+F4k7OlZCQgC1btmDRokVYvHgxunbtiq1bt2LgwIHe+AhE1oZ9LX3M25ECQyU2HM1D2F0qFJdXISw4EFpNkPX0FhFRa+fxPjVyxj415K59ZwswJzULgLwmfdfFid5E5O9c/f7m7CciJxwd85bTwkiBoRKzU7Ow5yfW3BBR68aVGiIXmMyiTcO+kooqvLLpFAD5rOAoBGDt1H4Y0ztC6lCIiDxKso7CRP7Icsy7rnUKocHIBSmZRWDuplN4vbAcrw7vxjobImp1uFJD1Awms4gfLxbhlU1ZKL0lfU8bC01QAF4YHI1Xh9/P5IaIfB5raohagFIhYHC3jnhvUi8IkG7id32GWzX44OB59F+Wxv42RNRqMKkh8gA5zo0CgNKbNZidmsXEhohaBSY1RB5imRu1eOyDUofSABv3EVFrwKSGyIOUCgEdQ1RSh9FAgaESc1JP4rPvf0X1bbPU4RAReQWTGiIPk9t4BYsDOf/C0t0/44FFe/H7TSe5ckNEfodJDZGHWcYrOCsabhugRLdOwS0WU10igF0/6dF7yX7W2hCRX2FSQ+RhSoWAt8fHAGh4GspyQmrVlD4YGN2h/ltbVEW1CXNYRExEfoRJDZEXODoNpdWosW56HBJjdYjuKM1KTV0iWERMRP6DHYWJvCQxVoeRMVqb8Qp1J2o/G38vlu35GVK3vywwVCIzr7hBx2QiIl/DpIbIi+yNV6j7WlCAEjerTS0cVUOFZfIY9UBE1BxMaogkkplXLIuEBgC+P38DABqsJhER+RImNUQSkdPqyP9mXcX/Zl0FAOg0arw9PgaJsTqJoyIicg8LhYkkItd+NgWGSo5WICKfxKSGSCKu9LOR0n/9z2meiiIin8KkhkgizvrZyEFFtQm//e8fsSP7GjIuFjHBISLZE0RR6gOlLcdoNEKj0cBgMCA0NFTqcIgAAPvOFiB5Vw4KDHdqbHQaNQy3amRTSAwA2lA1nnk4ErfNIgAR8fd1xKCuHVhUTERe5+r3N5MaIhkwmcUG/WzScvSYnZoldWhOtWsbgPee6sWiYiLyKiY1djCpIV+z56cCvLIpC3L/j3T9v7skExF5g6vf36ypIZKxMb11+Mu0flKH0aiFX/+E6ttmqcMgolaOSQ2RzI3pHYH10+OgDVVJHYpDJTdvY1DKNzwGTkSSYlJD5AMSY3U4uuAx/EdcZ6lDcai4opr9bYhIUkxqiHyEUiHgke53Sx1GoxZ8fYbHv4lIEkxqiHyIXLsQ11V6swZrvsmVOgwiaoWY1BD5kAHRYQgLDpA6jEZ9+E0u9vx0HUDtcfWMi0Vs4kdEXseBlkQ+RKkQsGxCLOZuOiV1KI2au+kUXr5aip2nCxo0FuTATCLyBq7UEPmYMb0j8PLQaKnDcMlfj+TZJDQAoDdUYg4LionIC5jUEPmghWNi8PG0OIQFB0oditssm0/Ju3K4FUVEHsXtJyIfNaa3Do/HapGZV4yjF25g7bcXpA7JZSKAAkMlfrxYBIVCsBkPwVlSRNRUTGqIfJhSISC+awcUllU2fjGAlZN6YeG2M5BL898XvzyOypo7wbDehoiawyvbT2VlZUhKSkJUVBSCgoKQkJCA48ePAwBqamowf/589OrVC8HBwYiIiMCMGTNw/fp1p/fcsGEDBEFo8KisdO3/mRP5M1ePet8TFoxHZdTrpm5CA7DehoiaxysrNbNmzcLZs2exceNGREREIDU1FSNGjEBOTg7uuusuZGVlYfHixejTpw9KSkqQlJSEJ554AidOnHB639DQUPzyyy82z6nV8u/bQeRtA6LDoNOooTdU2h1+KQDQatToH9Uer2wqbeHoXCeiNtbkXTkIUQXgRkUVt6WIyGUen9J969YthISEYMeOHRg7dqz1+b59+2LcuHFYtmxZg/ccP34cAwYMwOXLl9GlSxe7992wYQOSkpJQWlra5Ng4pZv82b6zBZiTmgUANomNJRVYNz0OmqBATP30xxaPrbm4LUXUukk2pfv27dswmUwNVlCCgoKQnp5u9z0GgwGCIKBdu3ZO711eXo6oqCjcc889GDduHE6dct6ro6qqCkaj0eZB5K8SY3VYNz0OWo3tf3tajRrrpschMVbncu2N3HBbiohc4fHtp5CQEMTHx2Pp0qV48MEHER4ejs2bN+PYsWPo1q1bg+srKyuxYMECTJs2zWn21aNHD2zYsAG9evWC0WjERx99hMGDB+P06dN27wsAKSkpSE5O9thnI5K7xFgdRsbUnoiyd6LIF8Ys2FP3GPjIGC23oojILo9vPwHAxYsX8cILL+DIkSNQKpWIi4tD9+7dkZWVhZycHOt1NTU1ePrpp5Gfn4/vvvvOrS0hs9mMuLg4DB06FKtXr7Z7TVVVFaqqqqw/G41GREZGcvuJWi2TWcSQFYcc1t74gr/PGojB93eUOgwiakGSbT8BQNeuXXH48GGUl5fjypUryMzMRE1NDaKj73RBrampweTJk5GXl4e0tDS3kwyFQoGHH34YubmOB+epVCqEhobaPIhaM6VCwNvjY6QOo1nm/p3bUERkn1c7CgcHB0On06GkpAT79+/HhAkTANxJaHJzc3Hw4EF06NDB7XuLoojs7GzodCwcJHKHpfbGFwZj2mO4VcP6GiKyyyvbT/v374coinjggQdw4cIFzJs3DyqVCunp6RAEAZMmTUJWVhb++c9/Ijw83Pq+sLAwBAbWtn2fMWMGOnfujJSUFABAcnIyBg0ahG7dusFoNGL16tXYuHEjjh49igEDBrgUF08/Ed1RfduMQSnfoLiiWupQmkSnUSN9/nDW1xC1ApJuPxkMBrzyyivo0aMHZsyYgSFDhuDAgQMICAjA1atXsXPnTly9ehV9+/aFTqezPn744QfrPfLz81FQcOdfYqWlpXjppZfw4IMPYtSoUbh27RqOHDnickJDRLYC2yjw7sRYCLhz7NuXFBgqkZlXLHUYRCQjXlmpkSuu1BA1tO9sAZJ35dhM07b0hQGAJTvPQW+scvR2SX0wuQ8mxt0jdRhE5GWufn9z9hNRK9fYMXDLa3pjJZb+8xyKK2okjviOw+f/D1pNEDsOExEAJjVEhDuDMZ29lnGxSFYJDQBsz76O7dnXoQ1VYckTPdlxmKiV8+rpJyLyH3LuRqw3VmE2T0QRtXpMaojIJb7QjXjB12dgMreaMkEiqodJDRG5xDIJXM6VK6U3a/DnA78g42KR0+TGZBaRcbEIO7KvNXotEfkOnn4iIpc5mgQuR44mezs77cWaHCJ5cvX7m0kNEbnFUVLwzMNdcG/HtugUosbVkpuY978/SRjlHev/PaEcuJOU1f9/epbVp3V1riUi+eCRbiLyisaOgAPARwfl0xRvwddnMDJGC6B2yre9f8WJqE1sOAWcyLcxqSEitzk7Am4yi9icmd/CETlWerMGa77JRYi6jc3qUn0i7nQpdvTZiEjemNQQkUdZGvXJyUff5LpcAyTno+tE5BxPPxGRR8kxKXCncNAXjq4TkX1cqSEij/LVpEAAoNXU1gcRkW/iSg0ReZQv9LNx5O3xMSwSJvJhTGqIyKOUCsE64duX0oMRMZ14nJvIxzGpISKPS4zVYd30OGg1vrMVlZZTiJQ9OQ2eZ/dhIt/B5ntE5DUms4jMvGKk5ejx+dFLUofjkvPLRiOwTe2/99h9mEgeXP3+5koNEXmNpZ/NW+N7Yv30OOh8YOVm+J+/hcksWrsP1+9tozdUYg4nghPJEldqiKjFWFZuCssq0fEuFTLzivHFD5dQeqtG6tBsaNRtICgElN50HJdOo0b6/OEsLCZqAZz9ZAeTGiL5sSQ6emMllv7zHIor5JXgOLP5d4PYfZioBXD2ExH5hLojF4ICFJj97yngvkBunZOJWjvW1BCRbCTG6vDxtH4+cxS8uLxK6hCIqA4mNUQkK2N6R2DWI9FSh+GSsOBAqUMgojqY1BCRrJjMIv75k2+cLNJqgqQOgYjqYFJDRLKSmVfc4Bi1HOk4J4pIdpjUEJGsyHHKtz1P9NHxODeRzPD0ExHJiq9M+f7rkTzUmESMjNFiQHQYExwiGWBSQ0SyYpnyrTdUQu5NtD4/egmfH72EsOBAPNk3ggkOkcS4/UREsuKLU76LK6rx+dFLmPrpjxiy4hBHKBBJhEkNEcmOoynf7doGYFxvHQTIN+EpMFRiNmdDEUmCYxKISLbqzorqFKK2bu3Ym54tN+3aBuDkopHciiLyAM5+soNJDZH/qJvwXLpRgU3HLuNfZdVSh2Uj6bFuSBrZ3fqzoySNiJxjUmMHkxoi/2Uyi1j9TS4++iZX6lBsfDytH8b0jsC+swVYsjPHZl6UNlSNJU/EIDFWJ2GERPLHpMYOJjVE/i9lTw7+eiRP6jBsvDw02mlM66fHMbEhcsLV72+vFAqXlZUhKSkJUVFRCAoKQkJCAo4fP259XRRFLFmyBBEREQgKCsJvfvMbnDt3rtH7fvXVV4iJiYFKpUJMTAy2bdvmjfCJyIctHBODj6fFyWou0yffO0+yFn59BiZzq/n3JZHXeCWpmTVrFtLS0rBx40acOXMGo0aNwogRI3Dt2jUAwPvvv49Vq1Zh7dq1OH78OLRaLUaOHImysjKH98zIyMCUKVPw7LPP4vTp03j22WcxefJkHDt2zBsfgYh82JjeOhx/cwReH9FN6lAAAI2th5fcrMEPF24g42IRdmRfQ8bFIiY5RE3g8e2nW7duISQkBDt27MDYsWOtz/ft2xfjxo3D0qVLERERgaSkJMyfPx8AUFVVhfDwcKxYsQIvv/yy3ftOmTIFRqMRe/futT6XmJiI9u3bY/PmzS7Fxu0notbDZBYxZMUhWZ+QqitYpURFlcn6s06jxtvjWW9DBEi4/XT79m2YTCao1bb9JYKCgpCeno68vDzo9XqMGjXK+ppKpcKjjz6KH374weF9MzIybN4DAI8//rjT91RVVcFoNNo8iKh18JXBmBZ1ExoA0BsqMYf9bojc4vGkJiQkBPHx8Vi6dCmuX78Ok8mE1NRUHDt2DAUFBdDr9QCA8PBwm/eFh4dbX7NHr9e7/Z6UlBRoNBrrIzIyshmfjIh8ia8MxnTEsoSevCuHW1FELvJKTc3GjRshiiI6d+4MlUqF1atXY9q0aVAqldZrBMG2N4Moig2eq8/d9yxcuBAGg8H6uHLlShM+DRH5Il8ZjOmMiNoOxZl5xVKHQuQTvJLUdO3aFYcPH0Z5eTmuXLmCzMxM1NTUIDo6GlqtFgAarLAUFhY2WImpS6vVuv0elUqF0NBQmwcRtQ6WwZj+0NrO11ediFqKV2c/BQcHQ6fToaSkBPv378eECROsiU1aWpr1uurqahw+fBgJCQkO7xUfH2/zHgA4cOCA0/cQUevlymDMcb18owjXH1adiFpCG2/cdP/+/RBFEQ888AAuXLiAefPm4YEHHsDzzz8PQRCQlJSEd999F926dUO3bt3w7rvvom3btpg2bZr1HjNmzEDnzp2RkpICAHjttdcwdOhQrFixAhMmTMCOHTtw8OBBpKene+MjEJEfsAzGrD8nqu7JonEynyMlACipqJI6DCKf4JWkxmAwYOHChbh69SrCwsIwadIkLF++HAEBAQCAP/7xj7h16xbmzp2LkpISDBw4EAcOHEBISIj1Hvn5+VAo7iwkJSQkYMuWLVi0aBEWL16Mrl27YuvWrRg4cKA3PgIR+YnEWB1Gxmgdzlyq+/rBHD0+O3pJ2oDrEQHM3XQKHwNoH6zi3CgiJzgmgYiojo8O5uKDg+elDqNR7GNDrYmkYxKIiHzVq8PvR3iISuowGlVgqMTs1Cx8mHaeXYiJ/s0r209ERL5KqRCQPKEnZqdmSR2KSz6sM5WcqzfU2nGlhoionsRYHV577H6pw3AbuxBTa8ekhojIjv98rDvaBQVIHYZbxH8/Fnx9Bkdzb3A7ilodJjVERHYoFQLem9RL6jCapPRmDX772TEMWXGIqzbUqjCpISJyIDFWh/XT46ANlX/hsD2WYuKlu86xkJhaBR7pJiJqhMksIjOvGHpjJZJ3nkXprdtSh9QkLCQmX8Uj3UREHqJUCIjv2gET+3XG84OjpQ6nyQpYSEx+jkkNEZEb7u0YLHUIzSICSN6Vw60o8ktMaoiI3OAPwyULDJXIzCuWOgwij2NSQ0TkhgHRYdBp1A4nf/uKwjJ5DvAkag4mNUREblAqBLw9PkbqMJrNH1aciOpjUkNE5KbEWB3WTY+DTuObiUGH4EAMiA6TOgwij+PsJyKiJkiM1WFkjBaZecVIy9Fje/Z1FFdUW1+/S6XEI93uxgPhd+HDby5IGGlDzw6KkjoEIq9gnxoiIg+w9LIpLKtEpxA1BkSHQamorbzZd7YAC776SVb9bdizhnyJq9/fTGqIiFqAySxi/v+exv9mXZM6FACwFjqvmx7HxIZkz9Xvb24/ERG1AKVCwCPd75ZNUmP51+yftp1BcEAbFN+qbrDCRORrmNQQEbUQOZ44Kq6owbN/y7T+zG0p8mU8/URE1EIGRIehXVCA1GE4ZRmC+dHB8+w6TD6HSQ0RUQtRKgSfmR31wcFcDH7vEPb8dB0ZF4uwI/saJ32T7LFQmIioBZnMIvovS0PpzRqpQ2kSbagaS57g9hS1LE7pJiKSIaVCwHtP9ZI6jCbTG2u3pzjpm+SISQ0RUQtLjNVh/fQ42dfXOLPw6zPciiLZYVJDRCSBxFgd/vLbOKnDaLKSmzX48dciqcMgssGkhohIIoPu6+DTE78zLtpPakxmkcXFJAn2qSEikohl4vec1CwIuNMQz1eIqE1e6o6GSMvRI3lXDgoMldbr2PuGWgpPPxERSWzf2YIGiYBCAOS+wNE2QMDNmjtBtmsbYPdUF0cyUHNx9pMdTGqISK7qD8QsqajGK5uyAPjeCo49AgCtRo30+cM5hoHcxtlPREQ+RKkQEN+1g81z6xRxDVZwfJWI2m7FmXnFDT4nkacwqSEikqnEWB1GxmiRmVcMvbESb+04g7JKk9RhNUthme8naCRfPP1ERCRjlhUcbaja5xMaQJ5DPcl/cKWGiMgH+MMKh06jRv+o9g1OTLHGhjyFSQ0RkQ9wdYVDzkfDYzuH4tGV3/K4N3mNx7efbt++jUWLFiE6OhpBQUG477778M4778BsNluvEQTB7mPlypUO77thwwa776ms9P1/vRARNWZAdBh0msYTmzXP9MMrw7q2QETuS8spbFD0XGConSX10cHzbNJHzebxpGbFihVYv3491q5di59//hnvv/8+Vq5ciTVr1livKSgosHl8/vnnEAQBkyZNcnrv0NDQBu9Vq7k/S0T+z9Koz9lGzctDozGubwSG3H93i8XlKR8czMXg9w5xUCY1i8e3nzIyMjBhwgSMHTsWAHDvvfdi8+bNOHHihPUarVZr854dO3Zg2LBhuO+++5zeWxCEBu8lImotEmN1WDe94THvsOAALJsQizG9IwDcWdXxtaPgemMl5qRmsUkfNZnHk5ohQ4Zg/fr1OH/+PLp3747Tp08jPT0dH374od3r//Wvf2H37t344osvGr13eXk5oqKiYDKZ0LdvXyxduhT9+vVzeH1VVRWqqqqsPxuNRrc/DxGRnNQ95u2o2Lbu+AVf3NBJ3pWDkTFaFhCT2zy+/TR//nxMnToVPXr0QEBAAPr164ekpCRMnTrV7vVffPEFQkJC8NRTTzm9b48ePbBhwwbs3LkTmzdvhlqtxuDBg5Gbm+vwPSkpKdBoNNZHZGRksz4bEZEcWI55T+jbGfFdO9j98res6rhShyMndZv0EbnL42MStmzZgnnz5mHlypXo2bMnsrOzkZSUhFWrVmHmzJkNru/RowdGjhxpU3PjCrPZjLi4OAwdOhSrV6+2e429lZrIyEiOSSCiVsPe+IWlu+XfpfijZ/piQt/OUodBMiHZmIR58+ZhwYIFeOaZZwAAvXr1wuXLl5GSktIgqfn+++/xyy+/YOvWrW7/HoVCgYcfftjpSo1KpYJKpXL73kRE/sLe+IXHY7X4IO081n57QaKoGscmfdQUHt9+unnzJhQK29sqlUqbI90Wn332Gfr3748+ffq4/XtEUUR2djZ0OhaTERG5Q6kQMPj+jlKHYZeA2t41A6LDpA6FfJDHk5rx48dj+fLl2L17Ny5duoRt27Zh1apVmDhxos11RqMR//jHPzBr1iy795kxYwYWLlxo/Tk5ORn79+/Hr7/+iuzsbLz44ovIzs7G7NmzPf0RiIj8nuWElJxKcS2NA0fH1hZCs28Nucvj209r1qzB4sWLMXfuXBQWFiIiIgIvv/wy3nrrLZvrtmzZAlEUHRYQ5+fn26z4lJaW4qWXXoJer4dGo0G/fv1w5MgRDBgwwNMfgYjI71lOSM1OzZI6FCtBAEQR+PzoJXx+9BK7DZPbPF4oLGeuFhoREbUW7+w6h8+PXpI6DKc+nhaHMb2Z2LRmrn5/c0o3EVErNjJG/g1NX92chT0/XZc6DPIBTGqIiFoxV2dKScksAnM3neIIBWoUkxoiolbMlZlScpG8K4fFw+QUkxoiolbOUffhDsGB+N0j0bJZySkwVGLD0TwmNuQQC4WJiAhAw+7DlplSJrOIOakncCCnUOoQAcDuqShHsZN/kKyjMBER+SZ73Yctzw+M7iCbpEZvsJ3mve9sAZbsPAe98c5YHG2oCkue6Mnj4K0MV2qIiKhR1bfN6LF4L+Sy8yMACAsOxBN9dPjbD5cdXvf6iG64t2MwV298nKvf30xqiIjIJSl7cvDXI3lSh9FkbObnu9inhoiIPGrhmBi8PDTaJ05K2WPZtuLRcP/FpIaIiFy2cEwMvnzBN8fTWLYleDTcfzGpISIitxTfrJY6hCYTUXs0PDOvWOpQyAuY1BARkVs6hcijb01zFJZVSh0CeQGTGiIicotltEJTamt+P6yrLGpy/CExo4aY1BARkVssoxUAuJygCADatw3AP05ehdTVLAoB6B/VXuIoyBuY1BARkdssoxW0LoxQEFBby1Jys8amQZ5UzCJw8nKJ1GGQF7CjMBERNUlirA4jY7Q24wlKKqqxdHcOCgx3ala0GjVu1ZhQerNGwmhtsabGPzGpISKiJrM3WuHxWNtEx2wW8dvPjkkUoX2sqfFPTGqIiMij6ic6O7KvSRhNQ+3aBmBAdJjUYZAXsKaGiIi8Sm6rIrdNInZmX0PGxSI24fMzXKkhIiKvshwB1xsqJT/5BADlVbfx+v+cBsB5UP6GKzVERORVTTkC3lI4D8q/MKkhIiKvc+cIeEsS//3407YzqL5tljocaiZBFEU5rAa2CFdHlxMRkXeYzKL1ZNSlGxXYnJlv07smOFCJimqTJLGFBQfi3Ymx3IqSIVe/v5nUEBGRZOomOZ1C1BgQHYa9P13H77dkS1J/IwBYNz3OJrGxF6NSIbeNNP/m6vc3C4WJiEgy9vrcdAhRS1pQ/Oa2s7hVbYJWE2S3mSCLi+WLSQ0REcmKlN1+RQBFFdXW01H2WIqL66/okPRYKExERLLijb42bTy4XWRZRUrelcM+NzLDpIaIiGTF0tfGk1UrHe8KxNpn+iJErfTI/UQABYZKZOYVe+R+5BlMaoiISFbq9rXxFL2xCm/tykFZpWdPVnEwprwwqSEiItmx9LXRebCvTXFFtcfuZSG3ERCtHQuFiYhIlhJjdRgZUzvxOy1Hj/85cRXlVbelDgtA7dFvrUbNwZgyw6SGiIhky3LkO75rB7w5NgY/XixCxq83IIpAu7aB6HhXIDqFqvH6liwUltc0+fcEBShwq8a1jsKWWp+3x8ewX43MMKkhIiKfoFQIGNytIwZ369jgtXee7IU5qVkA0KQeN9Ed70JOgdGla7XsUyNbHq+puX37NhYtWoTo6GgEBQXhvvvuwzvvvAOz+U4G/Nxzz0EQBJvHoEGDGr33V199hZiYGKhUKsTExGDbtm2eDp+IiHyQo9lSYcEBLr3f1YRm8dgHkT5/OBJjdTCZRWRcLMKO7GvIuFjE490y4PGVmhUrVmD9+vX44osv0LNnT5w4cQLPP/88NBoNXnvtNet1iYmJ+Nvf/mb9OTAw0Ol9MzIyMGXKFCxduhQTJ07Etm3bMHnyZKSnp2PgwIGe/hhERORj6tbgWEYa9I9qj0dXfgu9odLhCo5CAFzJR3QaNZ4bHA2lQsC+swVI3sVOw3Lj8dlP48aNQ3h4OD777DPrc5MmTULbtm2xceNGALUrNaWlpdi+fbvL950yZQqMRiP27t1rfS4xMRHt27fH5s2bXboHZz8REbU++84W2N2aEuDeVtXH0/phTO8I7PmpAHM3ZTV43VJdw07Dnufq97fHt5+GDBmCb775BufPnwcAnD59Gunp6RgzZozNdd999x06deqE7t2743e/+x0KCwud3jcjIwOjRo2yee7xxx/HDz/84PA9VVVVMBqNNg8iImpdHG1NaTVqvDj4Xpfv0z5YhT0/XcermxsmNEBtgiSCnYal5PHtp/nz58NgMKBHjx5QKpUwmUxYvnw5pk6dar1m9OjRePrppxEVFYW8vDwsXrwYw4cPx8mTJ6FSqezeV6/XIzw83Oa58PBw6PV6h7GkpKQgOTnZMx+MiIh8lr2tqQHRYcjMK8ZnRy+5dI+0HD0+d+FaS6fh+oM6yfs8ntRs3boVqamp2LRpE3r27Ins7GwkJSUhIiICM2fOBFC7lWQRGxuLhx56CFFRUdi9ezeeeuoph/cWBNujc6IoNniuroULF+KNN96w/mw0GhEZGdnUj0ZERD7M3kTwkooql7ehtmdfd/l36Y3sNCwFjyc18+bNw4IFC/DMM88AAHr16oXLly8jJSXFmtTUp9PpEBUVhdzcXIf31Wq1DVZlCgsLG6ze1KVSqRyu/BARUeu272wBXtl0yqWEJiw4wK2OxDfKqpoeGDWZx2tqbt68CYXC9rZKpdLmSHd9RUVFuHLlCnQ6x4VV8fHxSEtLs3nuwIEDSEhIaF7ARETU6pjMIpJ35biU0AgAJvbt7Nb9S256fiQDNc7jKzXjx4/H8uXL0aVLF/Ts2ROnTp3CqlWr8MILLwAAysvLsWTJEkyaNAk6nQ6XLl3Cn/70J3Ts2BETJ0603mfGjBno3LkzUlJSAACvvfYahg4dihUrVmDChAnYsWMHDh48iPT0dE9/BCIi8nOZecU2x7Ed6RAciOUTY6EJCnS59gYArpfegsksQqkQYDKL1lqejnepABG4UVFlrethV2LP8XhSs2bNGixevBhz585FYWEhIiIi8PLLL+Ott94CULtqc+bMGXz55ZcoLS2FTqfDsGHDsHXrVoSEhFjvk5+fb7Pik5CQgC1btmDRokVYvHgxunbtiq1bt7JHDRERuc3V6dqLxj5obbSn06hdSoSA2vqbY3nFeKKPDjtPFzh8H3vbeJbH+9TIGfvUEBERAGRcLMLUT39s9LrNvxtkLS629Lvx5Jcme9u4RrI+NURERHI3IDoMOo0ajjZ+BNSuotSdwm3pd9OurWujF1xhSZDY28YzmNQQEVGro1QIeHt8DAA0SGycTeFOjNXh5KKReH1EN2jUnqngEHGntw01D5MaIiJqlZx1Gna2HaRUCHhtRHccXzQSE/tGeCweV+t8yDGPFwoTERH5Ckedhhs7kWRvoGVzdQpRN34ROcWkhoiIWjV7nYad8UbBcP36HWoabj8RERG5yJ2mfe6wV79D7mNSQ0RE5CJXm/a54/UR3Xmc20OY1BAREbnI08W82lAVXh1+v0fv2ZoxqSEiInKRJ4t5BQBLnujJbScPYqEwERGRiyxN+/SGymbV1dgbj1B3RhTnQjUNkxoiIiIXWZr2zUnNggC4ldiEqtvgP/rfg5Ex2gYJi70j4jqNGovHPoj2wSomOi7i7CciIiI3udunJiw4AD8uHIHANg2rPtw5It5aB2C6+v3NpIaIiKgJ6m4XXbpxEx8ePA/AdvWmsYGVJrOIISsOuXWiSnByP3/l6vc3t5+IiIiaoH7Tvge0dzVYvdE2srLSlCPiImoHYI6M0XIrqh4mNURERB7QlJELTT0iXmCoxAdpv2Dw/XezzqYOJjVEREQe4u7IheYcEV/77UWs/faiwzqb1niaikkNERGRRDxxRFxvqMSc1CxrnY3JLGLtoVz87egllN6qsV7XGoqM2XyPiIhIIpYj4sCdomJ3WZKh5F052PNTAfovS8MHB3NtEhrgTvKz72xB0wOWOSY1REREEkqM1WHd9DhoNU3fihJRW2czd1MWSm/WOLwGqE1+TGb/PPjM7SciIiKJ1S0yPpijx2dHL3nl91iSn8y8Yqe1P75aj8OkhoiISAYsRcaWZMNbiQ3g/NSVo+7GvlCPw+0nIiIimRkRo/Xq/R2durJ0N67fO8dX6nGY1BAREcmM5VSUKxs+7m4K6TS120n1mcwiknfl2D2F5Sv1OExqiIiIZMadU1FajRrPJUS5fO+3x8fYrY9prLtx3XocuWJNDRERkQxZTkXZq2955uEuuLdjW2sRb2ZeMTb8cLnRe74+opvDuhhXuxs3tQtyS2BSQ0REJFOujl4YEB2Gdm0DHB7nBoB2bQPw6vBuDl93tbtxc7ogexuTGiIiIhlzdfSCKDqvdWlsG6ux7sYCare67NXjyAVraoiIiHzc2kMXYLh12+k1JTdrnNbDOKvjsfzsqB5HLpjUEBER+bB9ZwvwwcHzLl2blqN3+rqj7sZajdo6W0rOuP1ERETkoyzHsF21I/s63hzrfLXF1ToeOWJSQ0RE5KMaO4ZdX1FFdaMjEgDX63jkhkkNERGRj2rK8Wpn7/HVmU8WTGqIiIh8VFOOV3cKUdtNXtJy9D4788nC44XCt2/fxqJFixAdHY2goCDcd999eOedd2A2mwEANTU1mD9/Pnr16oXg4GBERERgxowZuH79utP7btiwAYIgNHhUVsq3CRAREZE3uTtOQadRo6SiCkNWHMLUT3/Ea1uyMfXTH9F/WRpm+/DMJwuPJzUrVqzA+vXrsXbtWvz88894//33sXLlSqxZswYAcPPmTWRlZWHx4sXIysrC119/jfPnz+OJJ55o9N6hoaEoKCiweajV8m0CRERE5E2ujlOwvPZEHx1e2XSqQfLiqGmfr8x8svD49lNGRgYmTJiAsWPHAgDuvfdebN68GSdOnAAAaDQapKWl2bxnzZo1GDBgAPLz89GlSxeH9xYEAVqtdyeXEhER+RJH4xTq0mrUWDw2Bkt32x9Y6UzdmU9yLx72eFIzZMgQrF+/HufPn0f37t1x+vRppKen48MPP3T4HoPBAEEQ0K5dO6f3Li8vR1RUFEwmE/r27YulS5eiX79+Dq+vqqpCVVWV9Wej0ejuxyEiIpK9+sewOwarAAG4UV5lMx/KnZNS9cl55pOFx5Oa+fPnw2AwoEePHlAqlTCZTFi+fDmmTp1q9/rKykosWLAA06ZNQ2hoqMP79ujRAxs2bECvXr1gNBrx0UcfYfDgwTh9+jS6dbM/yyIlJQXJycke+VxERERy1tgx7OYmJXKe+WQhiI0Ni3DTli1bMG/ePKxcuRI9e/ZEdnY2kpKSsGrVKsycOdPm2pqaGjz99NPIz8/Hd9995zSpqc9sNiMuLg5Dhw7F6tWr7V5jb6UmMjISBoPBrd9FRETk6zIuFmHqpz+6/T7LzKf0+cMlO95tNBqh0Wga/f72+ErNvHnzsGDBAjzzzDMAgF69euHy5ctISUmxSWpqamowefJk5OXl4dChQ24nGQqFAg8//DByc3MdXqNSqaBSqZr2QYiIiPxIYwMr7fGVmU8WHj/9dPPmTSgUtrdVKpXWI93AnYQmNzcXBw8eRIcO7hceiaKI7Oxs6HS+cXaeiIhISq4MrGzXNsDmeV+Z+WTh8ZWa8ePHY/ny5ejSpQt69uyJU6dOYdWqVXjhhRcA1Pax+Y//+A9kZWXhn//8J0wmE/T62gFbYWFhCAwMBADMmDEDnTt3RkpKCgAgOTkZgwYNQrdu3WA0GrF69WpkZ2fjL3/5i6c/AhERkV9ydFJK++8me74688nC40nNmjVrsHjxYsydOxeFhYWIiIjAyy+/jLfeegsAcPXqVezcuRMA0LdvX5v3fvvtt/jNb34DAMjPz7dZ8SktLcVLL70EvV4PjUaDfv364ciRIxgwYICnPwIREZHfamxgpdyPbTvj8UJhOXO10IiIiIjkQ7JCYSIiIvJfch56yaSGiIiIXLLvbIGsh156/PQTERER+Z99ZwswR+ZDL7lSQ0RERE6ZzCKSd9mfG2V57k/bzuBWjRnaUOm2pJjUEBERkVOuzI0qrqjB61uzAUi3JcXtJyIiInLK3blRUm1JMakhIiIip9wdZmnZkkrelQOTueU6xzCpISIiIqcsc6PcqZIRARQYKpGZV+ytsBpgUkNEREROOZsb1Rh3t66ag0kNERERNcoyN0qrcW8ryt2tq+bg6SciIiJySd25UXrDLSzd/TNKKqrtHvUWUDsoc0B0WIvFx6SGiIiIXKZUCNahl0GBSsxJzYIA2CQ2li2qt8fHtGi/Gm4/ERERUZM42pLSatRYNz2uxfvUcKWGiIiImqzulpTUQy6Z1BAREVGz1N2SkhK3n4iIiMgvMKkhIiIiv8CkhoiIiPwCkxoiIiLyC0xqiIiIyC8wqSEiIiK/wKSGiIiI/AKTGiIiIvILTGqIiIjIL7SqjsKiWDtuy2g0ShwJERERucryvW35HnekVSU1ZWVlAIDIyEiJIyEiIiJ3lZWVQaPROHxdEBtLe/yI2WzG9evXERISAkFouUFbRqMRkZGRuHLlCkJDQ1vs9/oa/p1cw7+Ta/h3cg3/To3j38g13vw7iaKIsrIyREREQKFwXDnTqlZqFAoF7rnnHsl+f2hoKP+DcAH/Tq7h38k1/Du5hn+nxvFv5Bpv/Z2crdBYsFCYiIiI/AKTGiIiIvILTGpagEqlwttvvw2VSiV1KLLGv5Nr+HdyDf9OruHfqXH8G7lGDn+nVlUoTERERP6LKzVERETkF5jUEBERkV9gUkNERER+gUkNERER+QUmNV728ccfIzo6Gmq1Gv3798f3338vdUiyc+TIEYwfPx4REREQBAHbt2+XOiTZSUlJwcMPP4yQkBB06tQJTz75JH755Repw5KddevWoXfv3tbmX/Hx8di7d6/UYcleSkoKBEFAUlKS1KHIypIlSyAIgs1Dq9VKHZYsXbt2DdOnT0eHDh3Qtm1b9O3bFydPnmzxOJjUeNHWrVuRlJSEN998E6dOncIjjzyC0aNHIz8/X+rQZKWiogJ9+vTB2rVrpQ5Ftg4fPoxXXnkFP/74I9LS0nD79m2MGjUKFRUVUocmK/fccw/ee+89nDhxAidOnMDw4cMxYcIEnDt3TurQZOv48eP45JNP0Lt3b6lDkaWePXuioKDA+jhz5ozUIclOSUkJBg8ejICAAOzduxc5OTn485//jHbt2rV4LDzS7UUDBw5EXFwc1q1bZ33uwQcfxJNPPomUlBQJI5MvQRCwbds2PPnkk1KHImv/93//h06dOuHw4cMYOnSo1OHIWlhYGFauXIkXX3xR6lBkp7y8HHFxcfj444+xbNky9O3bFx9++KHUYcnGkiVLsH37dmRnZ0sdiqwtWLAAR48elcVOBFdqvKS6uhonT57EqFGjbJ4fNWoUfvjhB4miIn9hMBgA1H5hk30mkwlbtmxBRUUF4uPjpQ5Hll555RWMHTsWI0aMkDoU2crNzUVERASio6PxzDPP4Ndff5U6JNnZuXMnHnroITz99NPo1KkT+vXrh08//VSSWJjUeMmNGzdgMpkQHh5u83x4eDj0er1EUZE/EEURb7zxBoYMGYLY2Fipw5GdM2fO4K677oJKpcLs2bOxbds2xMTESB2W7GzZsgVZWVlcNXZi4MCB+PLLL7F//358+umn0Ov1SEhIQFFRkdShycqvv/6KdevWoVu3bti/fz9mz56N//zP/8SXX37Z4rG0qindUhAEweZnURQbPEfkjldffRU//fQT0tPTpQ5Flh544AFkZ2ejtLQUX331FWbOnInDhw8zsanjypUreO2113DgwAGo1Wqpw5Gt0aNHW//nXr16IT4+Hl27dsUXX3yBN954Q8LI5MVsNuOhhx7Cu+++CwDo168fzp07h3Xr1mHGjBktGgtXarykY8eOUCqVDVZlCgsLG6zeELnq97//PXbu3Ilvv/0W99xzj9ThyFJgYCDuv/9+PPTQQ0hJSUGfPn3w0UcfSR2WrJw8eRKFhYXo378/2rRpgzZt2uDw4cNYvXo12rRpA5PJJHWIshQcHIxevXohNzdX6lBkRafTNfhHw4MPPijJoRgmNV4SGBiI/v37Iy0tzeb5tLQ0JCQkSBQV+SpRFPHqq6/i66+/xqFDhxAdHS11SD5DFEVUVVVJHYasPPbYYzhz5gyys7Otj4ceegi//e1vkZ2dDaVSKXWIslRVVYWff/4ZOp1O6lBkZfDgwQ1aTJw/fx5RUVEtHgu3n7zojTfewLPPPouHHnoI8fHx+OSTT5Cfn4/Zs2dLHZqslJeX48KFC9af8/LykJ2djbCwMHTp0kXCyOTjlVdewaZNm7Bjxw6EhIRYVwA1Gg2CgoIkjk4+/vSnP2H06NGIjIxEWVkZtmzZgu+++w779u2TOjRZCQkJaVCPFRwcjA4dOrBOq44//OEPGD9+PLp06YLCwkIsW7YMRqMRM2fOlDo0WXn99deRkJCAd999F5MnT0ZmZiY++eQTfPLJJy0fjEhe9Ze//EWMiooSAwMDxbi4OPHw4cNShyQ73377rQigwWPmzJlShyYb9v4+AMS//e1vUocmKy+88IL1v7e7775bfOyxx8QDBw5IHZZPePTRR8XXXntN6jBkZcqUKaJOpxMDAgLEiIgI8amnnhLPnTsndViytGvXLjE2NlZUqVRijx49xE8++USSONinhoiIiPwCa2qIiIjILzCpISIiIr/ApIaIiIj8ApMaIiIi8gtMaoiIiMgvMKkhIiIiv8CkhoiIiPwCkxoiIiLyC0xqiIiIyC8wqSEiIiK/wKSGiIiI/AKTGiIiIvIL/x8lrmMvY6oS5gAAAABJRU5ErkJggg==",
      "text/plain": [
       "<Figure size 640x480 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "%matplotlib inline\n",
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "from pylab import *\n",
    "\n",
    "pageSpeeds = np.random.normal(3.0, 1.0, 1000)\n",
    "purchaseAmount = 100 - (pageSpeeds + np.random.normal(0, 0.1, 1000)) * 3\n",
    "\n",
    "scatter(pageSpeeds, purchaseAmount)\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "As we only have two features, we can keep it simple and just use scipy.state.linregress:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "from scipy import stats\n",
    "\n",
    "slope, intercept, r_value, p_value, std_err = stats.linregress(pageSpeeds, purchaseAmount)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Not surprisngly, our R-squared value shows a really good fit:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0.990508036744472"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "r_value ** 2"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Let's use the slope and intercept we got from the regression to plot predicted values vs. observed:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAGdCAYAAADqsoKGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABg/0lEQVR4nO3de1yO9/8H8NfdrZNWEaM7opZjQjIRxhwXSk5zPs1hGL5iIzZGM7PYnCebHTI5bSaHEGEOkWNCMpKaU605dUDJ3f39o3XVpbu6T7nv6vV8PO7H43e97+v6XJ/6/fbr7XN4fyQKhUIBIiIiojLOSN8dICIiItIFJjVERERULjCpISIionKBSQ0RERGVC0xqiIiIqFxgUkNERETlApMaIiIiKheY1BAREVG5UEnfHXidcnJycP/+fVhaWkIikei7O0RERKQChUKB9PR02NnZwcio6PGYCpXU3L9/H/b29vruBhEREWngzp07qF27dpHfV6ikxtLSEkDuL8XKykrPvSEiIiJVpKWlwd7eXvg7XpQKldTkTTlZWVkxqSEiIipjSlo6woXCREREVC4wqSEiIqJygUkNERERlQtMaoiIiKhcYFJDRERE5QKTGiIiIioXmNQQERFRucCkhoiIiMqFClV8r7TJcxQ4m/AIKemZqGFpBndHG0iNeMYUERHR68CkRkfCYpLgvycWSamZQkxmbYb53s7wdJHpsWdEREQVA6efdCAsJgmTgqNECQ0AJKdmYlJwFMJikvTUMyIiooqDSY2W5DkK+O+JhULJd3kx/z2xkOcou4OIiIh0hUmNls4mPCo0QlOQAkBSaibOJjx6fZ0iIiKqgJjUaCklveiERpP7iIiISDNMarRUw9JMp/cRERGRZpjUaMnd0QYyazMUtXFbgtxdUO6ONq+zW0RERBUOkxotSY0kmO/tDACFEpu86/nezqxXQ0REVMqY1OiAp4sMgcPdYGstnmKytTZD4HA31qkhIiJ6DVh8T0c8XWTo5mzLisJERER6wqRGS/IcBW6t/AFVNwXhzuLlcO/SmokMERGRHnD6SQthMUloH3AExl/4o/qF02jR3QPBnYexgjAREZEeMKnRUMGjEQI6jhLio45tgWdTO4SfvanH3hEREVU8TGo08OrRCPsbtUeLqZtE93RrXR/yXbtff+eIiIgqKLWTmuPHj8Pb2xt2dnaQSCTYuXOn6HuFQoEFCxbAzs4O5ubmePfdd3H16lXRPVlZWZg6dSqqV68OCwsL9O7dG3fv3i3x3WvXroWjoyPMzMzQsmVLnDhxQt3u64SyoxEeV7aGg18o/nDpLMSkfXwADw9AwXOfiIiISpvaSc3Tp0/RvHlzrFmzRun3S5YswbJly7BmzRqcO3cOtra26NatG9LT04V7fH19ERISgq1btyIiIgIZGRnw8vKCXC4v8r3btm2Dr68vPvvsM1y8eBHvvPMOevTogdu3b6v7I2ituCMPPu41A71HLssPnD4NGBkBNzkdRUREVJokCoXmwwgSiQQhISHo06cPgNxRGjs7O/j6+sLPzw9A7qhMzZo1ERAQgAkTJiA1NRVvvvkmNm7ciEGDBgEA7t+/D3t7e+zbtw/vvfee0ne1bt0abm5uCAwMFGKNGzdGnz59sHjxYpX6m5aWBmtra6SmpsLKykrTHxuR8Q8xZP3pYu+R5sjx149jYPz4YX7w888Bf3+N30tERFQRqfr3W6drahISEpCcnIzu3bsLMVNTU3Ts2BGnTp0CAFy4cAHZ2dmie+zs7ODi4iLc86oXL17gwoULomcAoHv37kU+A+QmVGlpaaKPLqhyNEKNqhYwevAv8P33+V988QUgkQDPngkheY4CkfEPsSv6HiLjH+LFyxzRtTyHU1dERESq0GmdmuTkZABAzZo1RfGaNWvi77//Fu4xMTFB1apVC92T9/yrHjx4ALlcrrTdop4BgMWLF8O/FEZG8o5GmBQcBQmAgmlHoaMRPvwQ8PEBbG3zb7KwAPbtQ5i9K/z3xIrW5xhJgIJ5jMzaDPO9nVmVmIiIqASlsvtJIhGPYSgUikKxV6lyj7rtzpkzB6mpqcLnzp07JfRcdWodjVCzZu5i4SFD8mM9e6Jqz+5IevJc9PyrAzPJqZmYFBzF2jdEREQl0OlIje1/oxHJycmQyfL/qKekpAijLLa2tnjx4gUeP34sGq1JSUlB27ZtlbZbvXp1SKXSQqMyBdtVxtTUFKamphr/PCVR+2iEzZuBqVOB/37O1ndikLjEG+0n/Ii7VWyVPqJA7uiP/55YdHO2ZbViIiKiIuh0pMbR0RG2trYIDw8XYi9evMCxY8eEhKVly5YwNjYW3ZOUlISYmJgikxoTExO0bNlS9AwAhIeHF/nM6yI1ksDDqRp8XGvBw6layUmHhwdOX0tCuom5EIr4fhwmn9pW5CMKAEmpmTib8EhHvSYiIip/1E5qMjIyEB0djejoaAC5i4Ojo6Nx+/ZtSCQS+Pr64quvvkJISAhiYmIwevRoVK5cGUOHDgUAWFtbY+zYsfj4449x+PBhXLx4EcOHD0fTpk3RtWtX4T1dunQRbRufMWMGfvzxR/z888+4du0apk+fjtu3b2PixIla/gpev38y5Wg6/Xd83nWCEJt5YiMSA7xgmp1V5HOvbiV/dZExFxUTEVFFpvb00/nz59GpUyfhesaMGQCAUaNGISgoCLNmzcLz58/x0Ucf4fHjx2jdujUOHjwIS0tL4Znly5ejUqVKGDhwIJ4/f44uXbogKCgIUqlUuCc+Ph4PHjwQrgcNGoSHDx/iiy++QFJSElxcXLBv3z7UrVtXox9cn2pY5q7D+bWlN/Y3bIdz340Uvru+rD+GD1yICMcWRT4H5B7T8OoiYy4qJiKiikyrOjVlja7q1GhLnqNA+4AjSE7NFHZOrQtZBM8bkcI9xx1aYOTA3C3gEuQuQI7w6wypkUQ4d+rV/8XlTXwVWqhMRERUhumlTg2pJm9LOJCfiEzs+xneH/q1cE+HxItIXOKNWmkpAPK3iL967lRBeTH/PbGciiIiogqHSY2eKNsSfs7eBQ1nhiBLaizETgaOQdiLSGHkRdm5UwVxUTEREVVUOt3STepRtiW8Zd2quDAhCW8ErkbTb3MLBzZcvghYvgh4/rzYc6cKUvU+IiKi8oJJjZ7lbQkvyMOpGvDNAsB3HGBvn/+FuTnqbQwBYIySFFxUTEREVBFw+smQ1a6dW4m4Z08h1GREXwTv+rLIRyTI3QXl7mjzGjpIRERkOJjUlAV79wJHjgiX7f86jcQAL9imPVB6u3DuFBERUQXCpKas6NQJeC4+J+p04GiMObdLFPuwgyO3cxMRUYXEpKYMkZuYwuOrQ/i642gh9vmR9bj+TR8Yy7MhAbD7UhK3cxMRUYXEpKYMydvOva7NALSb+LMQN5W/RNw3fdHy7tVC27l5lAIREVUU3P1UhhTcpn3PugYcZu3Bxm3z8M7f0QCA7Zv8sL9BW6QM/g0Aj1IgIqKKhSM1ZUihbdoSCUYM/hLDBy4UQj1unIJPi9r4889oTAqOKlSoLzk1E5OCoxAWk/Q6ukxERPTaMKkpQ9wdbSCzNsOr+5oiHFug4Yw/RLFOnVtgeFRooTZ4lAIREZVXTGrKEGVnRuV5YWwKR79Q3JgyS4gtDF+HK8vfRyX5S9G9PEqBiIjKIyY1ZYyyM6OA3FO8A4e7ocHqAISHnhLili+e4+Y3feB271qhtniUAhERlScShUJRYeYgVD26vCyQ5yhEZ0a5O9oIBfci4x9iyA+R2LZlDlrfiRGe2dW4I6b1nilcz+vVGNUtTQs9T0REZEhU/fvNpKYckuco0D7gCJJTM9Ex/hyCtvuLvm85JRiP36iCgktquCuKiIgMlap/vzn9VA4VXHtzzKkVGk/fLvr+wprhGHgxTBTjrigiIirrmNSUUwXX3jw3MYODXyhWth0sfP/1gTW4sGoopDlyANwVRUREZR+nn8q5gmtvHqRnYePGQzi6foLont4jl+GyrIFwvWV8G3g4VXvdXSUiIlKK008EIHcqysOpGnxca6G6pSkSbWrBYdYeXJQ1FO7Z/esMLN27QrjmrigiIiqLmNRUIEJFYokEfUd+i3H95gnfvR9zCIkBXrB5llq4cjEREVEZwKSmAnm1IvGh+q3hPP130T1Rq4eh+u+beAAmERGVOUxqKhBlFYmfmZjDwS8Ua9sMEO6rP2caWr/TDMO+P4n2AUe4I4qIiMoEJjUVTFEViX/oMR5dxgUK17YZj3BrqQ9sblxVutVbnqNAZPxDjugQEZHB4O6nCqrgrqjqFqb4+PdLSE7LBBQK7A2ahiYpt4R7Nzf3xOpBnyDCrzOkRhKExSTBf0+s6ARwCxMpxr3zFv7XpT4rExMRkU6xorASTGqUi4x/iCHrT4ti710/he93fiWKnTsfh4emFpgUHIWi/o+msokUywY2Z2ViIiLSGW7pJpUp28J9oGFbuPj+Joq1ers+Tn+xqsiEBgCevZBjooaViTmlRURE2uBIDSkdqSnosyM/Yvy5ncL131Vs8e6HP0AhKTontrUyxcnZXVSeilI2pcXzqIiICOBIDanh1a3er/qq8zgMnfajcF33STISlvRGo5SEIttMTsvC2YRHKr0/LCYJk4KjRAkNwPOoiIhIPUxqSOlW7zx51yPH9UTkjRTcqFZH+C7sl6lYEL6uyHZVqUwsz1HAf0+s0iktnkdFRETqYFJDAIre6m1rbQbfrg2Q9TIHOZBg0P/WY0rvWcL3o6NCkRjgBavMjEJt5lUmLrhW5mTcA5y8+UBYN3M6/mGhEZqCFACSUjNVHvUhIqKKi2tqSKTgVu/EB0+x5extJKdlCd9XNjHCsxc5sMrMwOWVg0XPTuk9C6GNOwDIX1MTHptcaK1MQVXMjfHkeXaJ/Vo52BU+rrW0+MmIiKis4poa0kjeAZimlYyw4lCcKKEBgGcvcgAAaWZvwMEvFBvcegnfrdm9BIfWT4REkYMFvZsgPDZZ6VqZglRJaADwPCoiIipRqSQ16enp8PX1Rd26dWFubo62bdvi3LlzwvcSiUTpZ+nSpUW2GRQUpPSZzEyeKK1rxa1zedX8bpPg+cFq4breo7tIWNIb3fBI5TaKI0HuLih3RxstWyIiovKuVJKacePGITw8HBs3bsSVK1fQvXt3dO3aFffu3QMAJCUliT4///wzJBIJ+vfvX2y7VlZWhZ41M+O/4HXtbMKjYkdXXnXXvh6+CY3Bc3sHISZt6oIxIWu07osCQE8XW5xNeMTFwkREVCydJzXPnz/HH3/8gSVLlqBDhw6oV68eFixYAEdHRwQG5p4tZGtrK/rs2rULnTp1wltvvVVs2xKJpNCzpHuq7FoqKCNLjnaNbGF+OwHYuFGIjz+3E4kBXngj65lK7VQxNxZd55W4+elkIoasP83DNYmIqFg6T2pevnwJuVxeaATF3NwcERERhe7/559/sHfvXowdO7bEtjMyMlC3bl3Url0bXl5euHjxYrH3Z2VlIS0tTfShkmmyfkVIhIYPx+GIq6LvYlYMhOf1kyW2MbqtAzaNbY0eLjUBAK8OzLBuDRERFUfnSY2lpSU8PDywcOFC3L9/H3K5HMHBwThz5gySkgr/MdqwYQMsLS3Rr1+/Yttt1KgRgoKCsHv3bmzZsgVmZmZo164d4uLiinxm8eLFsLa2Fj729vZa/3wVQV4xPnXkJUJhMUkYtycBDn6h2NzcU/h+3c7F2PfLVKCYzXYrDsdh/Mbz2B/zj9LvWbeGiIiKUypbuuPj4zFmzBgcP34cUqkUbm5uaNCgAaKiohAbGyu6t1GjRujWrRtWr15dRGvK5eTkwM3NDR06dMCqVauU3pOVlYWsrPzdO2lpabC3t+eWbhWExSRhYnCUSvdWszDB2c+6AgDaBxwRrcdpknwTezf4iu7vPG4dblWrrVX/toxvAw+nalq1QUREZYNet3Q7OTnh2LFjyMjIwJ07d3D27FlkZ2fD0dFRdN+JEydw/fp1jBs3Tu13GBkZoVWrVsWO1JiamsLKykr0IdV4usiwdmgLqHJ000IfF0iNJEoXGF+1rYe3Zu7CfcvqQuzIjxMx61iQVv07FJus1fNERFT+lGqdGgsLC8hkMjx+/BgHDhyAj4+P6PuffvoJLVu2RPPmzdVuW6FQIDo6GjIZDzssLT2b2WHNELdi75nQwRE9m+X+76CoBcY5RlK0/SgIM3tME2Ifnd6OxAAvVH7xXKO+hUTf4xQUERGJlEpSc+DAAYSFhSEhIQHh4eHo1KkTGjZsiA8++EC4Jy0tDb///nuRozQjR47EnDlzhGt/f38cOHAAt27dQnR0NMaOHYvo6GhMnDixNH4E+k/PZjKsG+5WaI2NjYUx1g5tgTk9nYVYSQuMf2/WDS2mbhLFYpe/j65xZ9Tu16On2Tw6gYiIRCqVRqOpqamYM2cO7t69CxsbG/Tv3x+LFi2CsXH+lt2tW7dCoVBgyJAhStu4ffs2jIzyc64nT57gww8/RHJyMqytrdGiRQscP34c7u7upfEjUAGeLjJ0c7YVjk+oYZlbDE/6ytxU3gLj5NTMIovuPa5sDQe/UHyzdzkGxBwGAPy4YyEuyhqi74hvAIkK813/UXfrORERlW88+4l0KiwmCZOCo1SqJNws6QZ2/zpDFOv44Q/4u6qdSu+a16sxqluaFplkERFR+aDq328mNaRzYTFJmP3HFZXOdZLmyHHmu5Go/ixViK1sOwTL3xlW7HNGEnEdGxsLE/RxtUM3Z1u0rFsVF/5+XOyoEhERlR1MapRgUvP6nLz5AMN+VH2tzJDoMCw+ID5WofH07Xhuon4hwFcTHpm1GeZ7O8PThYvKiYjKIp7STXrV5q1qkFmbQdXxkS2unmg5JVgUu7Z8AN6NP6/2u1mJmIioYmJSQ6VCaiTBfO/cnVGvJjaS/z69morP7npoUQUOfqHY1bijEAvavgDbNvkVW4m4JKxETERUMTCpoVLj6SJD4HA32L6yHdzW2gyBw92waogbqlQ2LvTctN4z0W/4UuG69d2rSFzijdpPNC+4pwCQlJrJbeBEROUY19RQqZPnKIrcDl7cbqlK8peIWjUUVi/yT/n+5p3hWNN2sMZ9WTnYFT6utTR+noiIXj+uqSGDITWSwMOpGnxca8HDqZpoJ5KniwwfdnBU+txLaSU0m/4b5nXLL7D4yYlgJAZ4wTQ7S+kzJdHkBHIiIiobmNSQXslzFNh9qfgFvBvdvNBq8q+i2PVl/dE+4aJa7zKSAI+fvoA8R4HI+IfYFX0PkfEPuc6GiKic4PQT6VVk/EMMWX9a5fsDQ75CjxunhOuIus0xfNCXalUirmwixbMXcuGaW76JiAwbp5+oTFD3qINJfT/F+0O/Fq7b/30JiUu8YZeWonIbBRMaIHcB8cTgKOy7fF+tvhARkWFhUkN6pckal3P2Lqj/SQgyK5kIsVOBYzDhzHat+jJly0Xsu8xaNkREZRWnn0iv5DkKtFwYrtKRCsqMObcLnx9ZL4o1/HgHsgokPOqa3rUBHKpX5hELREQGgsckKMGkxjCtPBSH5YduaPy8bdoDnA4cLYoNGfwVIus207JnXG9DRGQIuKaGyowpnespLcKnqmSr6nDwC8Vhp1ZCbMvWT/HTdn+t+8YjFoiIyg4mNaR3UiMJvu7XVOt2xg6YjyGDvxKuu8SfQ2KAF2zTHmjcJo9YICIqO5jUkEHwdJFh3XA3yF45UkFmbYYqlY1VPhgzsm4zNPx4hyh2OnA0xp7bqXHfeMQCEVHZwDU1ZFCUHakQHpuMScFRAKD0OIWiTDizHXOOBgnXWdJKcJn+O7Klmk11TelUD9O7NeDCYSKi14wLhZVgUlN2hcUkwX9PLJJS1atrY5eWglOBY0Sx94d+jXP2Lhr1gwuHiYhePyY1SjCpKdvkOQqcvvUQkzdFqbcFXKHAr799jg6J+ccq7G/QFpP6fqp2H/LGaAKHuzGxISJ6Tbj7icodqZEE7epVx9f9m6q8xgYAIJFg5KCFGD5woRDqceMUEgO88GaGeutkuHCYiMhwMamhMsfTRYbA4W6wtTJV67kIxxZoOOMPUezcdyMxIipUrXa4cJiIyDAxqaEyydNFhpOzu2B61wZqPZdlbAoHv1B8885wIbYwfB1ilr+PSvKXarV18ua/HK0hIjIgXFNDZZ6yRcTVLEzw8OmLYp+r/SQZEd+PE8X6DV+KqFqNVX63rZUphrjXgUN1Cx6rQERUSrhQWAkmNeXXq1vBXe2roMn8MJQ4kKJQYNuWOWh9J0YI7W7cAf/rPUujfnB3FBGR7jGpUYJJTcURGf8QQ9afVvn+d+PPI2j7AlHs7Skb8cCiqkbvn961AaZ0rsdRGyIiHeDuJ6rQUtLVq2dz1OltNJqxXRQ7v2YEhkSHafT+5YduoN3XhxEWkwR5jgKR8Q+xK/oeIuMfch0OEVEp4UgNlUvqjtQUNP3EJkw7tUW4fmRuhVZTNkJuJNWovSqVjfHkWX5dHU5RERGphyM1VKG5O9pAZm2mXj2b/yx/Zxg6fviDcG3zPA3xS33QLOmGRn0pmNAAyk/+5mgOEZH2OFJD5VZYTJJGZ0YJFArsCP4EbvevC6HtLl3wSa/pWvdNAsDW2gwRfp0RHptcaPcWR3OIiPJxobASTGoqHk3PjCqoa9wZ/LhjoSjmNnUTHlW21rZ7mN61AVYculEo6eJxDERE+Tj9RITcIn0Rfp0xpVM9jds4VL81nKf/LopFrR6G9y+Ha9s9/HIyQekoEo9jICJSH5MaKvfyzozSxjMTczj4hWJtmwFCbOn+lTj93UgY5cg1bre4gzl5HAMRkXpKJalJT0+Hr68v6tatC3Nzc7Rt2xbnzp0Tvh89ejQkEono06ZNmxLb/eOPP+Ds7AxTU1M4OzsjJCSkNLpP5ZA2C4cLWtJxNDqPWydc22Y8wq2lPmiSfFPttiqbqLabSt3t6UREFVWpJDXjxo1DeHg4Nm7ciCtXrqB79+7o2rUr7t27J9zj6emJpKQk4bNv375i24yMjMSgQYMwYsQIXLp0CSNGjMDAgQNx5syZ0vgRqJyRGkkw39sZAAolNuomOreq1YbDrD24WuMtIbZ3gy++ClutVjs5Ki5nq2Fppla7REQVlc4XCj9//hyWlpbYtWsXevXqJcRdXV3h5eWFL7/8EqNHj8aTJ0+wc+dOldsdNGgQ0tLSsH//fiHm6emJqlWrYsuWLcU8mY8LhUnZwmGZtRnm9WqMhXuvITk1U62dUu9dP4Xvd34lijX/3xakmluq9LxEAhT1X2DBHVKsTExEFZneFgq/fPkScrkcZmbif12am5sjIiJCuD569Chq1KiBBg0aYPz48UhJSSm23cjISHTv3l0Ue++993Dq1CnddZ7KvbyFw1vGt8HKwa7YMr4NIvw6o2czuyJHcopzoGFbuPj+JopdWjUEfa7+qdLzxf2TQgGgd3MZExoiIhXpPKmxtLSEh4cHFi5ciPv370MulyM4OBhnzpxBUlJusbEePXpg06ZNOHLkCL799lucO3cOnTt3RlZWVpHtJicno2bNmqJYzZo1kZycXOQzWVlZSEtLE32IpEYSeDhVg49rLXg4VROSBk8XGQKHu8HWWr3pngzTynDwC8UPrfoKsRWh3+L4urGQKHK06usPxxNERfqIiKhopbKmZuPGjVAoFKhVqxZMTU2xatUqDB06FFJp7sLIQYMGoVevXnBxcYG3tzf279+PGzduYO/evcW2K5GI/8WqUCgKxQpavHgxrK2thY+9vb32PxyVawVHcpYPcoWNhbHKz37VeSy6jl0rXNdJ/QcJS3qjUUqCxv1RgNu6iYhUVSpJjZOTE44dO4aMjAzcuXMHZ8+eRXZ2NhwdHZXeL5PJULduXcTFxRXZpq2tbaFRmZSUlEKjNwXNmTMHqampwufOnTua/UBUoeSN5NhameHR06K3XCtzs3odOM7ajRvV6gixsF+mwj88UOP+JKVmYs2Rov/bICKiXKVap8bCwgIymQyPHz/GgQMH4OPjo/S+hw8f4s6dO5DJiq6c6uHhgfBwcbGzgwcPom3btkU+Y2pqCisrK9GHSFWabqVWSIzQfdxaTOk9S4iNitqLxAAvWGVmaNTm8kNxnIYiIipBqSQ1Bw4cQFhYGBISEhAeHo5OnTqhYcOG+OCDD5CRkYFPPvkEkZGRSExMxNGjR+Ht7Y3q1aujb9/8NQkjR47EnDlzhOtp06bh4MGDCAgIwF9//YWAgAAcOnQIvr6+pfEjEGm9lTq0cQc0m7ZVFLu8cjC8rh3XqD1OQxERFa9UkprU1FRMnjwZjRo1wsiRI9G+fXscPHgQxsbGkEqluHLlCnx8fNCgQQOMGjUKDRo0QGRkJCwt87fB3r59W1hYDABt27bF1q1b8csvv6BZs2YICgrCtm3b0Lp169L4EYh0UrAvzewNOPiFIsjNS4it2b0Eh9ZPVHsRcVJqJoJOJiDk4j38dOIWQqLu8kRvIqICeKAlUTG0Pum7gEYpCQj7Zaoo1m3Md4h7s65W7fJEbyIq73igJZEOFLXNW5PSMX/VcITjrN1IrJKffIT/PBlzD6/Xqo9JqZmYGByFfZe55oaIKjaO1BCpQJ6jwNmER0hJz0QNSzM8fpqFyZsvAtBsBMfn6p9YGfqtKObi+xsyTCtr3EcjCbBmSAv0bGancRtERIZI1b/fTGqINKTsyAV1WD9Px6VVQ0SxiX3mIKxhO636Nb1rfUzpXJ+ViImo3GBSowSTGtI1eY4Cp+MfYvLmKDx5rl5Nmzxfha3B0EthwvW1Nx3Q44PVuQdDacja3Bhj2jliSud6TG6IqMxjUqMEkxoqLdouKG7yTzz2Bk0TxbqMC0R8Ne2qYFepbIyv+zXlImIiKtO4UJjoNdL03Kg8V2s64a2Zu3DfsroQO/zjJPgdDdKqX0+eZWNicBQL9xFRhcCRGiIdkucoEHQyAQv3XtO4jfcvh2Pp/pWimPP03/HMxFzjNmXWZojw68ypKCIqkzhSQ6QHUiMJqluaatXG7826ocXUTaJY7PL30S3utMZtJqVmYlLwBfx04hZevNTu5HAiIkPFpIZIx7Q9XgEAHle2hoNfKH536SrE1u/4Ejt/nQ5oOLh6MPYfLNx7DQ3n7sfUzRdYiZiIyh0mNUQ6psrxCpWNpahfw6LEtmb28kXvkcuEa9ekOCQu8YbDo3sa908BYM/lZDRbcIBrbYioXGFSQ6RjUiMJ5ns7A0ChxEby32fZoOZo7VhNpfYuyxrAaeYu/Fu5ihA7un4Cpp8I1qqfT1/IMYmLiImoHGFSQ1QKitoNZWtthsDhbvB0kcGxeskjNXnkRlK0mhqM2e9NEWLTTm1FYoAXzF9oVvwPyB214enfRFRecPcTUSl69XgFd0cbYQfSi5c5aDhvv9pLZKo9fYILa4aLYqMHzMdRp1Ya93PL+DbwcFJt5IiI6HXj7iciAyA1ksDDqRp8XGvBw6maaEu11EgCc2Op2m0+tKgCB79Q7GrcUYgFbffHb5tmabyIOCVd89EeIiJDwaSGSE/OJjzCsxdyjZ+f1nsm+g1fKly7341F4hJv2D9JVrutEzceYFf0PUTGP+RUFBGVWUxqiPREF6MjUbUao94nO5Fmkn+694nvx2HKqa1qtbM96i6mbY3GkPWn0T7gCBcPE1GZxKSGSE90Uc8GAF5KK6HZ9N8wt9skIfbJiWAkBnjBNDtL7faSUjN5tAIRlUlMaoj0RJV6NuoIduuFVpN/FcWuL+uPdxKiNGrv498ucSqKiMoUJjVEelJcPRtN/fuGDRz8QrGvQVshtvG3z/F7sPqLiJ++kGPYj6e51oaIygxu6SbSs7CYJPjviUVSav4aG5m1GVKfZ2u1kPjtu1exfZOfKOb5wWr8VcNRo/ZsrcwwuJU9XuYoACjg8VZ1tHllRxcRUWlQ9e83kxoiA6Csnk14bDImBms2dZTHWJ6NuG/6imKHnFph3ID5WrWbp0plY3zdryk8XWQ6aY+ISBkmNUowqaGyZt/lJEzeHAVt/yNdtXsJel87Loo1nr4dz010s1h53X9VkomISgOL7xGVAz2byfDd0BZat/O/3rPQZWygKHZt+QC8f/mg1m0DwJwdl/HiZY5O2iIi0hRHaojKgLCYJCzYfRXJaepv0X5VYoBXoZiDX6jW7dpYmOCrvi4csSEineNIDVE54ukiw8nZXTDArZbWbTn4heKTnr6iWGKAF+o9uK1Vu4+evmB9GyLSKyY1RGWE1EiCdxq8qZO2tjftisbTt4tih376CGt2fq1127N3XOH2byLSCyY1RGWIrqoQA8BzEzM4+IXiQP02QszreoTGlYjzPHmWjdWH43TRRSIitTCpISpD3B1tYGNhrNM2J/Sbi/fGrBHFri/rjz5X/9S4zRWH47Dv8n0AudvVI+MfsogfEZU6LhQmKmP2Xb6PjzZf1H3DCgUSl3gXCmuziHhCB0fsvpRUqLDgfG9nLigmIpVxoTBROdWzmR0mdNCsKnCxJBI4+IVizntTROHEAC84PrqnUZPfH08QJTQAkJyaiUlcUExEpYBJDVEZNKenM9YOdYONhYnO297i6okmvr+JYn+un4BvQ7/VSft5Q8P+e2I5FUVEOsXpJ6IyLO94hZM3H2DNnzd13v6G3z5Hx1dO+W748Q5kVdJNMrVpbGsYGUlEx0PwLCkiehWPSVCCSQ2VV7ui72Ha1ugS71vavynmhFyBOsV/m/wTj71B00Sxyb39sLfxO2r2sjAzYyNkZud3huttiEgZva6pSU9Ph6+vL+rWrQtzc3O0bdsW586dAwBkZ2fDz88PTZs2hYWFBezs7DBy5Ejcv3+/2DaDgoIgkUgKfTIzM4t9jqgiUHWrd20bC3RUs9bN1ZpOcJi1RxT7bncA4pb6qNWOMgUTGoDrbYhIO6WS1IwbNw7h4eHYuHEjrly5gu7du6Nr1664d+8enj17hqioKMybNw9RUVHYsWMHbty4gd69e5fYrpWVFZKSkkQfMzPd1e0gKqvcHW0gszZDURM3EuSOgrSsWxUX7zxR/wX/LSKe33WCEDLOkSMxwAv2T5I16bJSBdfbnIx7wG3gRKQWnU8/PX/+HJaWlti1axd69eolxF1dXeHl5YUvv/yy0DPnzp2Du7s7/v77b9SpU0dpu0FBQfD19cWTJ0807hunn6g8C4tJwqTg3PUvBf+jzkt0Aoe7wdrcBEPWn9bqPZZZT3FlxSBRbHPz9/Cp51St2i0Op6WIKja9TT+9fPkScrm80AiKubk5IiIilD6TmpoKiUSCKlWqFNt2RkYG6tati9q1a8PLywsXLxZfqyMrKwtpaWmiD1F55ekiQ+BwN9hai//bs7U2Q+BwN3i6yJCSrv10bbqpBRz8QnHa3kWIDb10AIkBXjCWZ2vdvjKcliIiVZTKQuG2bdvCxMQEmzdvRs2aNbFlyxaMHDkS9evXx/Xr10X3ZmZmon379mjUqBGCg4OLbPP06dO4efMmmjZtirS0NKxcuRL79u3DpUuXUL9+faXPLFiwAP7+/oXiHKmh8ixvR5SyHUWR8Q+1HqkpqFnSDez+dYYoNqHvpzjQoK3O3lGQzNoMEX6duUOKqILR6+6n+Ph4jBkzBsePH4dUKoWbmxsaNGiAqKgoxMbGCvdlZ2fj/fffx+3bt3H06FG1Eo2cnBy4ubmhQ4cOWLVqldJ7srKykJWVf4ZNWloa7O3tmdRQhSXPUaB9wBEkp2ZCZ//hK6lEnG5ijqbTf9fVG0Q2jWuNdvWql0rbRGSY9Lr7ycnJCceOHUNGRgbu3LmDs2fPIjs7G46O+VVQs7OzMXDgQCQkJCA8PFztJMPIyAitWrVCXFzRB+eZmprCyspK9CGqyKRGEsz3dtZto/8tIv6y0xghZPniORIDvFArNUW37wLw0SZOQxGRcqVaUdjCwgIymQyPHz/GgQMH4OOTuwU0L6GJi4vDoUOHUK1aNbXbVigUiI6OhkzGhYNE6shbe6PrgzF/dO+H5v/bIoqdXDcGC8LX6fQ9qc+zub6GiJQqlemnAwcOQKFQoGHDhrh58yZmzpwJU1NTREREQCKRoH///oiKikJoaChq1qwpPGdjYwMTk9xKpSNHjkStWrWwePFiAIC/vz/atGmD+vXrIy0tDatWrcLGjRtx8uRJuLu7q9Qv7n4iyvfiZQ7aLD6MR09f6Lztnb/OgGvSDVGs3ic78VJaSWfv4PoaoopDr9NPqampmDx5Mho1aoSRI0eiffv2OHjwIIyNjXH37l3s3r0bd+/ehaurK2QymfA5deqU0Mbt27eRlJT/L7EnT57gww8/ROPGjdG9e3fcu3cPx48fVzmhISIxk0pG+KqvCyRAkfVtNNVn5DL0G7ZUFLv5TR90ij+ns3ckpWbibMIjnbVHRGUfj0kgquDCYpLgvydWdJp2Xl0YAFiw+yqS07KKerxYEkUOEpaIC2v+a1EFraYUvdNRHcsHNkdft9o6aYuIDBfPflKCSQ2RcsVtA8/7LjktEwtDr+LRU/Vr0XwU+RtmHf9VFGszKQjJVtrtYurjaodBrerwIEyico5JjRJMaog0p22Nm6rPUnFx9TBR7IdWffFV57Hadg22VqZY0LsJKw4TlVN6XVNDROWPttWIH1e2hoNfKK696SDEPjwXgsQAL0hz5Fq1nZyWhYncEUVU4TGpISKVqHoSeEl6jFmDQUMWi2LxS33wTkKU1m3P3nGFh18SVWBMaohIJSWdBK6OM3WawnHWblFs42+f48Q67aainjzLxrcHr5d4src8R4HI+Ic8BZyonOGaGiJSWVEngWtj+olNmHZKXLSv2bStSDN7Q6t2izrZu7jdXlyTQ2SYuFBYCSY1RNorKikY3KoOHKpXRg1LM9x9/Awzt19Wuc3qTx/j/JoRothU75nY49xR6/6u+++E8ry+TwqOKpSQ5Y0+BRa4l4gMB5MaJZjUEOlGcVvAAWDloTgsP3SjmBaU2/vL/9Ak5ZZwHW9TG13HrYVCovlMeZXKxrgwtxsAoH3AEVEyVpAEgC2rFBMZJO5+IqJSIzWSwMOpGnxca8HDqZooCZDnKLDl7G2N2u31wSq8N2aNcO306C4SlvRG/X//1rivT55lY/XhOASdTCgyoQFyp9NYpZiobGNSQ0Q6lVeoT1PX33SA46zdSKiaPw0U/vNkzD28XuM2Vx6Ow8K911S6V9ut60SkP0xqiEindJEUKCRG6PThekzz+liIjTu/C4kBXrDMeqp+e2rcq6ut60T0+jGpISKd0mVSsKtJJzT/n3hn1JUVg+B5/aTO3pFHgtwFz+6ONjpvm4heDyY1RKRTuqxnAwCp5pZw8AvFJldPIbZu52Ls/3kKoON9DvO9nblImKgMY1JDRDolNZIIJ3zrMj347L0p6DV6pXDd+N9EJC7xhtPDOzppv6tzDW7nJirjmNQQkc55usgQONwNtta6XZ9ytaYT3pq5C/ct80/3PvzjJPgdDdK67fDYFCzeF1sozurDRGUH69QQUanJq2cTHpuMn08m6rTtAVcO4Zt9K0SxJr6/4alpZa3avfFlD5hUyv33HqsPExkGFt9TgkkNkf4oSxC0VfVZKi6uHiaKje83F+H122jcZu2qZjg2szPCY5NZfZjIQDCpUYJJDZF+FaxEXP0NU5xNeIQNpxLx5Hm2Vu0u3bsC78ccEq4v2daHz8hlgESzVT3WZpUgMZLgybOi+yVj9WGi14ZJjRJMaogMT16ik5yWiYWhV/HoqWYJTtOkOOz5dboo9u7475FoU0sX3VRqy/g28HCqVmrtE1EuHpNARGVC3pELfVvUwld9m2rczhVZfTjN3IV/K1cRYkfXT8CM4xt10EvltKmcTES6x6SGiAyGp4sMa4e20HgruNxIilZTg+HnOVWI/S9yGxIDvGD+QvcJyKOMLJ23SUSaY1JDRAalZzM7jHvHUas2tjV/Dy2nBIti15YPwLvx57Rq91U2FiY6bY+ItMOkhogMijxHgdDLSVq389CiChz8QrHTuaMQC9ruj982zdJZJWJba3OdtENEusGkhogMytmERzrd9u3rPRN9h38jXLvfjUXiEm/YP0nWql2eE0VkeJjUEJFB0cUp36+6WKsR6n2yE2mmFkLsxPfjMPXklmKeKl7v5jJu5yYyMExqiMig6PKU74JeSiuhme82zO02SYh9HLEJiQFeMM1Wf8Hv98cT8MWeqzw6gciAsE4NERkUeY4C7QOOIDk1s1A1X115M+Mxzn03QhQbMfALnHB006g9GwsT9HG1QzdnW7g72nAEh0jHWHxPCSY1RGVDWEwSJgVHAUCpJTYAsDbkK/S8cUq4Plm3GYYNWqRxJWKAZ0MRlQYW3yOiMquoU76rVDaGVzMZJIDGtWwK+qjvpxgwLEC4bvf3ZSQu8Uat1BSN20xKzcTE4CiExWi/g4uI1MORGiIyWAXPiqphaSZM7ej6cExjeTaurBgEs5cvhNjXHUdjXZsBGrdZpbIxLsztxqkoIh3g9JMSTGqIyo+CCU/ig6fYfOZv/JP+ouQHizHm3C58fmS9KNbw4x3IqqRZkT3fLvXh262B0j4XTNKIqHhMapRgUkNUfslzFFh1OA4rD8dp1U7N9Ac4s3a0KDZk8CJE1m2uUXtrh7ZAz2Z2CItJwoLdsaLzomytzLCgN9ffEJWESY0STGqIyr/F+2Lx/fEErdtZ/8cX6HbzrHD951st8cH7/hq1NaGDY7F9WjfcjYkNUTH0ulA4PT0dvr6+qFu3LszNzdG2bVucO5d/5opCocCCBQtgZ2cHc3NzvPvuu7h69WqJ7f7xxx9wdnaGqakpnJ2dERISUhrdJ6IybE5PZ6wd6qb1uUzj+3+OwUO+Eq473bqAxAAv2KY9ULutH04Un2TN2XGFtW6IdKBUkppx48YhPDwcGzduxJUrV9C9e3d07doV9+7dAwAsWbIEy5Ytw5o1a3Du3DnY2tqiW7duSE9PL7LNyMhIDBo0CCNGjMClS5cwYsQIDBw4EGfOnCmNH4GIyrCezWQ491lXTO9aX6t2TtdphgYfh0Auyf9/lacDR2PsWfX+QVXSePjjZ9k4dfMBIuMfYlf0PRb0I9KQzqefnj9/DktLS+zatQu9evUS4q6urvDy8sLChQthZ2cHX19f+Pn5AQCysrJQs2ZNBAQEYMKECUrbHTRoENLS0rB//34h5unpiapVq2LLFtVKnXP6iajiyCvip6sdUuPP7MBnR38WrrONpGgyfTteVDLWSfsWplI8zZIL16x3Q5RPb9NPL1++hFwuh5mZuL6Eubk5IiIikJCQgOTkZHTv3l34ztTUFB07dsSpU6debU4QGRkpegYA3nvvvWKfycrKQlpamuhDRBWDrg/GXN+6H9pOyk9qjHPkuPFtX7jfidFJ+wUTGgBITs3EJNa7IVKLzpMaS0tLeHh4YOHChbh//z7kcjmCg4Nx5swZJCUlITk592TcmjVrip6rWbOm8J0yycnJaj+zePFiWFtbCx97e3stfjIiKktK42DM+1Y14OAXimMFjlP4bfNsfL/jS52/K28I3X9PLKeiiFRUKmtqNm7cCIVCgVq1asHU1BSrVq3C0KFDIZVKhXskr5QhVygUhWKvUveZOXPmIDU1VfjcuXNHg5+GiMqi0joYEwBGDfwCwwblJzLvxZ1GYoAXaqQ/1Ol7FMitUHw24ZFO2yUqr0olqXFycsKxY8eQkZGBO3fu4OzZs8jOzoajoyNsbW0BoNAIS0pKSqGRmIJsbW3VfsbU1BRWVlaiDxFVDO6ONpBZm+nkOAVlTjq4ouGMP0Sxs2tHYeSFPTp/V2mMOhGVR6V69pOFhQVkMhkeP36MAwcOwMfHR0hswsPDhftevHiBY8eOoW3btkW25eHhIXoGAA4ePFjsM0RUcUmNJJjv7Qyg6HOivJpqtwg3y9gUDn6hWNJhpBD74tD3uLpsACrJX2rVdkGlOepEVJ6USlJz4MABhIWFISEhAeHh4ejUqRMaNmyIDz74ABKJBL6+vvjqq68QEhKCmJgYjB49GpUrV8bQoUOFNkaOHIk5c+YI19OmTcPBgwcREBCAv/76CwEBATh06BB8fX1L40cgonKgqIMxZdZmWDfcDWuGuWHdcDfIrLVLGtZ6DET7CT8K1xbZmbj5TR+43b2mVbtAbkL2+GmW1u0QVQSlUlH4t99+w5w5c3D37l3Y2Nigf//+WLRoEaytrQHkroXx9/fH999/j8ePH6N169b47rvv4OLiIrTx7rvvwsHBAUFBQUJs+/btmDt3Lm7dugUnJycsWrQI/fr1U7lf3NJNVDGVdOZS3veHYpPx08lEzV+kUGDL1k/hcfuKENrT6B1M9fHTove51g5tgaoWpjw3iiokHpOgBJMaIirJykNxWH7ohlZtdLx1ARt+ny+KvT1lIx5YVNWq3YJYx4YqEiY1SjCpIaKSyHMUaLv4MP5J127Kxyw7E38tGyCKffreZGx27aFVu6/y7VIfjm9acPSGyjUmNUowqSEiVYTFJGFicJRO2vKN2ATfk/lVz5+YvYGWUzdBbiQt5inNcPSGyiu9HmhJRFSWebrIMK1LPZ20taL9MHT4cL1wXSUzA/FLfdD8/nWdtF8QqxBTRcekhohIif91aYAq5ro51+l2VRkcZu3BBbtGQmzXxo/x7d5lOmk/j+K/z+wdV3Ay7gErEVOFw+knIqIi6HIaKk+Xm2fw0x8LRTG3qZvwqLK1Tt8DcDqKyg9OPxERacnTRYZ1w91ga2WqszYP12sN5+m/i2JRq4fh/csHdfaOPEmpmZgYHIWFe64iMv4hR26o3ONIDRFRCfLq2CSnZcJ/dwyePNdNteCZxzZg8un8BOefN2zgMekX5JTCImKAIzdUdnGkhohIR6RGEng4VUPfFrXwQTtHnbW7tOModBr/vXBdM+MRbi31gUvyTZ29o6AkLiSmco5JDRGRGhyqW+i0vQSbWnCYtQdXajoJsdANvvh6/yqdviePAoD/nlhORVG5xKSGiEgNpXK4pEQC79ErMaHvp0Jo8OWDSAzwQpXnaTp/XVJqJs4mPNJ5u0T6xqSGiEgN7o42kFmbFXnytzYONGgLF9/fRLHoVUPRL+awzt+Vkp6p8zaJ9I1JDRGRGqRGEsz3di619jNMK8PBLxTfu+cf1rts73KcWDcWRjlynb2nVEaciPSMSQ0RkZo8XWQIHO4GmXXpJQaLO41B17FrhWv71H9wa6kPGqfc0rrtahYmcHe00bodIkPDpIaISAOeLjJE+HXGlvFtMKadA2wsTETfv2EqRQ8XW/hqcdzCzep14DhrN65XryPE9v/yP3xxMFDjNgFgRJu6Wj1PZKhYp4aISAfyatmkpGcWOjE7LCYJs/+4rFV9m17XTuC73QGiWLNpW5Fm9oZG7bFmDZUlPKVbCSY1RKQv8hwF/LZfwvaoexq3YZn1FFdWDBLFpnrPxB7njmq3lbfQOXC4GxMbMngsvkdEZECkRhK80+BNrdpIN7WAg18ofmnpLcRW71mKw+snQKLIUautvMMvPw25ghPX/8Wu6Hs8SoHKPI7UEBG9JpHxDzFk/WmdtNXw30Qc+HmKKNZ9zBrceNNBq3Y5LUWGiCM1REQGxt3RBlXMjXXS1vU3HeA4azduVbUTYgd/noJ5h9dr1W7eIZgrD93gqA2VORypISJ6jVYeisPyQzd02mbv2KNYtecbUayp7zakm2p3pIOtlRk+92qMqhamShdAE70uXCisBJMaItI3eY4CLb8Mx5Nn2Tpt1yozA5dXDhbFJvnMxv5G7XX6HlsrMyzozekper04/UREZICkRhJ83a+pzttNM3sDDn6h2OTqKcQCd32N/T9PAXT4b9fktNzpKZ70TYaISQ0R0Wvm6SLDuuFuOltfU9Bn701Br9ErhevG/yYicYk3nB7e0el75uy4wjU3ZHCY1BAR6YGniwzfDXMrlbav1nTCWzN34Z5l/hbywz9Owuyjv+jsHY+fZeP0rYc6a49IF5jUEBHpSZu3qpXaid85RlK0++gXfNxzuhCbeOYPJAZ4wSLrmU7eERmvPKmR5ygQGf+QtW/oteNCYSIiPQqLScKk4CgAucXwSkPVZ6m4uHqYKDa+31yE12+jVbuTOzmhfb03RTujwmOT4b8nFkmpmcJ9rH1D2uLuJyWY1BCRIQqLSSqUCBhJAF0PcCzZtwIDrxwSri/Z1ofPyGWARLOxosrGEjzLzu9klcrGSnd18UgG0haTGiWY1BCRoXr1QMzHT19g8mbdj+A0TYrDnl+ni2Lvjv8eiTa1dPiWwiQAbK3NEOHXmXVuSG3c0k1EVIZIjSTwcKoGH9da8HCqhp7NZAgc7gZbazOdvueKrD6cZu7Cv5WrCLGj6ydgxvGNOn3PqxTIrVZ8NuFRqb6HKjaO1BARGbC8EZzktEx8vusK0jPlOmt70KUDCAhbLYo1nr4dz010m0gVtHKwK3xcS3dUiMofjtQQEZUDeSM4tlZmOk1oAGBb8/fQckqwKHZt+QB0ij+n0/cUVMOy9BImIiY1RERlQEp6Zsk3aeChRRU4+IUixPldIfbLdn/8HjxLp5WIgdxdUC3rVuV2byo1nH4iIioDIuMfYsj60yXeJ4HmC4tb3PsLIcGfiGLvTPgRd6rYatiiWDfnGoi5l8bt3qQ2vU0/vXz5EnPnzoWjoyPMzc3x1ltv4YsvvkBOTo5wj0QiUfpZunRpke0GBQUpfSYzs3T+9UJEZEjcHW0gU2HR8OrBLTC5k5NG77hYqxHqfbITqQVO9z7x/ThMPblFo/ZeFR6bIkpogNzFwxODo7Dy0A2O2pDWdJ7UBAQEYN26dVizZg2uXbuGJUuWYOnSpVi9On8xWlJSkujz888/QyKRoH///sW2bWVlVehZMzPOzxJR+Sc1kmC+t3Ox1YcndHCEl6sd2td7s5i7ivdSWgnNfbdhbrdJQuzjiE1IDPCCaXaWxu2WZPmhOLT7+ggPyiSt6DypiYyMhI+PD3r16gUHBwcMGDAA3bt3x/nz54V7bG1tRZ9du3ahU6dOeOutt4ptWyKRFHqWiKii8HTJ3eb96oiNjYUx1g5tgTk9nQGoPqpTnGC3Xmg1WbzN+/qy/ngnIUqrdouTnJaJSTwBnLSg86Smffv2OHz4MG7cuAEAuHTpEiIiItCzZ0+l9//zzz/Yu3cvxo4dW2LbGRkZqFu3LmrXrg0vLy9cvHix2PuzsrKQlpYm+hARlWWeLjJE+HXGlvFtsHKwK7aMb4Nzn3VDz2Z2wj2qjOqo4t83qsLBLxR7G7YTYht/+xybtn6q80XEBfnvieVUFGlE50mNn58fhgwZgkaNGsHY2BgtWrSAr68vhgwZovT+DRs2wNLSEv369Su23UaNGiEoKAi7d+/Gli1bYGZmhnbt2iEuLq7IZxYvXgxra2vhY29vr9XPRkRkCF4t1KesQm9RozqamNxnDgYMCxCu2/19GYlLvFErNUXrtl/FIn2kDZ3vftq6dStmzpyJpUuXokmTJoiOjoavry+WLVuGUaNGFbq/UaNG6Natm2jNjSpycnLg5uaGDh06YNWqVUrvycrKQlZW/hxwWloa7O3tufuJiCoMZccvLNwbW2jBriqM5dm4smIQzF6+EGIBHUchsM37uuwyABbpIzG9nf1kb2+P2bNnY/LkyULsyy+/RHBwMP766y/RvSdOnECHDh0QHR2N5s2bq/2u8ePH4+7du9i/f79K93NLNxFRbqKzPPwG1vx5U6PnPzi/C/MPrxfFGn68A1mVTHTRPQDAlvFt4OFUTWftUdmmty3dz549g5GRuFmpVCra0p3np59+QsuWLTVKaBQKBaKjoyGTsbYBEZE6pEYStKtXXePnf3nbB60/ChLFrn/bDx5/X9KyZ7l1dmTWZnB3tNG6Lap4dJ7UeHt7Y9GiRdi7dy8SExMREhKCZcuWoW/fvqL70tLS8Pvvv2PcuHFK2xk5ciTmzJkjXPv7++PAgQO4desWoqOjMXbsWERHR2PixIm6/hGIiMq9vB1Smi4m/seyOhz8QhFez12Ibdn6GX75fb7GfcorHNjDxRZnEx5xsTCpTedJzerVqzFgwAB89NFHaNy4MT755BNMmDABCxcuFN23detWKBSKIhcQ3759G0lJ+dv6njx5gg8//BCNGzdG9+7dce/ePRw/fhzu7u5KnycioqLl7ZDSNm0Y3/9zDBqyWLjudOsCEgO8IEv7V+22JP9lWD+fTMSQ9afRPoB1a0g9PCaBiKgC+2LPVfx8MlHrdkxeZuPasv6QKvKXGizsNBY/ufct5inVrB3qhp7NuNSgIuMp3UREVKJuzropYvqikjGcZu3GonfHCLF5f/6EuKU+MHmZrVXbU7ZEYd/l+9p2kSoAJjVERBWYLqoPF7S+dT+0nfSzcG2cI8eNb/vC/U6Mxm3mKICPNl/kVBSViEkNEVEFpqvqwwXdt6oBB79QHHN0E2K/bZ6N73d8qVW7rDRMJWFSQ0RUwRVVfbiahQnGv+Oo8UjOqIFfYNig/ETmvbjTSAzwQo30hxq1l5SaiaCTCUxsqEhcKExERAAKVx92d7SB1EgCeY4Ck4LP42CsZscimGZn4fqy/qLY/K4TsKGlt0btyazNMN/bGZ4u+YuHi+o7lQ96qyhsyJjUEBFp5qcTt7Bw7zWt2vgo8jfMOv6rcP3M2BTNp21FttRYrXbyUpXA4W7wdJEhLCYJC3ZfRXJa/rE4tlamWNC7iSjxobKLSY0STGqIiDTz4mUOGs3bD21nfmqn/oOIdWNFsX7DliKqdmO12pEAsLEwQe/mMvxy6u8i75vetT4cqltw9KaMY1KjBJMaIiLNLd4Xi++PJ2jfkEKBLVs/hcftK0IotNE7mOLjp33bxVA2bUVlA+vUEBGRTs3p6YwJHRy13yklkWDIkMUY9b6/EPL66wQSA7xQ/eljbVsvUnJqJiYFR3FreDnGpIaIiFQ2p6czfh2jm+Npjr3VEo1mbBfFzq8ZgWEX9+mk/VflTUtwa3j5xaSGiIjU8ujZC521lWlsBge/UCxvN1SILTq4FtErB0OaI9fZe/IokLs1/GzCI523TfrHpIaIiNRSw1J3FYjzrGw/FB0+XC9cV8nMQPxSHzS/f13n7wKAlPTMUmmX9ItJDRERqSXvaAVN1tZM7eRU5HO3q8rgMGsPztfK3wm1a+PH+Db0W436WZzSSMxI/5jUEBGRWvKOVgCgcmIjAVC1sjF+v3AXxa5mkUgwYPhSjOn/uRDqf/VPJAZ4weZZqqZdFjGSAC3rVtVJW2RYmNQQEZHa8o5WsFXhCAUJcteyPH6WLSqQV5wj9dzhPP13USxq9TAMvHRQg96K5SiAC3+X3i4r0h/WqSEiIo29ejzB46cvsHBvLJJS89esyKzN8DxbjifPsjV6xyfHf8WUyN+E63/esIHHpF+QYyTVuN8rB7vCx7WWxs/T68Xie0owqSEiKn2vJjo5OQoM++mMVm06PrqHP9dPEMW8Rq1AjG09jdrbMr4NPJyqadUnen1YfI+IiPRCaiSBh1M1+LjWgodTNTx4qtqUU3ESbGrBYdYeXC6QxIRu8MXX+1ep3VaVysZwd7TRuk9keJjUEBFRqdLZTiOJBL1HrcCEvp8KocGXDyIxwAtVnqep3MxLuQK7o+8hMv4hi/CVM5x+IiKiUiXPUaB9wBEkp2YWv/NJDRZZz3B1xUBRbEav6djh0kWtdngeVNnA6SciIjIImmwBL8lT08pw8AvF9+79hNiyvcsRETgGRmpUIuZ5UOULkxoiIip16mwBV8fiTmPQdexa4bp2WgpuLfVB45RbKj2v+O/zacgVvHiZo9O+0evH6SciInptCu6MSnzwFFvO3hbVrrEwkeLpC/XPfJIocrD/56lo9OBvIbaxRU/M6/6Rym3YWJjgq74unIoyQNzSrQSTGiIiw/Lq9m93Rxvsv3wfU7dGa7T+pudfEVi762tRrNm0rUgze0Ol5yUAAoe7iRIbZX2UGulqIo1Uoerf70qvsU9EREQiedu/C6pmaabxguJ9jdqjqeM2XFkxSIhdXjkYU71nYo9zR5Xa+CwkBs9fyGFrbV5kMUEuLjZMHKkhIiKDsiv6HqZtjda6nfmHvscHF/YI1/E2tdB1XCAUEu2Wk+aN0bw6okOlh7ufiIioTNJVXRv/rhPw3pg1wrXTo3tIWNIbDf5N1KrdvJEA/z2xrHNjYJjUEBGRQXF3tIHM2kwn27+vv+kAx1m78Xf12kLs4M9T8PmhH7RqVwEgKTUTZxMeadlD0iUmNUREZFAK1rXRBYXECB3HrsOnA2YLsTEXdiMxwAuWWU+1ajslPbPkm+i1YVJDREQGJ6+ujUyHdW02O7VHs2lbRbErKwahx18RGrepsyMgSCe4UJiIiAxW3nbq8Nhk/Hb+LjKyXuqk3S8PfIfh0fuF62tvOqDHB6sBiWqTXhIAttZmiPDrzO3drwHr1CjBpIaIqOyS5yhwOv4hIm89gEIBVKlsgupvmKCGlRmmb41CSka2Wu05/3ML+4L+J4p1GReI+Gr2xT7H3U+vH5MaJZjUEBGVT2ExSZgUHAUAatW4McqR4/j341A77V8hts69H77uNKbIZ1in5vXT25buly9fYu7cuXB0dIS5uTneeustfPHFF8jJyT9TY/To0ZBIJKJPmzZtSmz7jz/+gLOzM0xNTeHs7IyQkBBdd5+IiMqgos6WsrEwLva5HCMp2k/6BR/3nC7EJp7dgcQAL1hkPSt0/7xejRHh1xmeLjLIcxSIjH+IXdH3EBn/kNu7DYDOKwoHBARg3bp12LBhA5o0aYLz58/jgw8+gLW1NaZNmybc5+npiV9++UW4NjExKbbdyMhIDBo0CAsXLkTfvn0REhKCgQMHIiIiAq1bt9b1j0FERGWMp4sM3ZxtRUcatKxbFR2X/onk1MwiR3CMJMAfTbvgiNPbuLh6mBC/umIgPuz7GQ428ACQO0Izup0jpEYShMUkwX8PKw0bGp1PP3l5eaFmzZr46aefhFj//v1RuXJlbNy4EUDuSM2TJ0+wc+dOldsdNGgQ0tLSsH9//sIuT09PVK1aFVu2bFGpDU4/ERFVPEVNTUmgfKoqYN9KDLoSLlxfsq0Pn5HLsHaYG3o2s8O+y0n4aHNUoee41qb06G36qX379jh8+DBu3LgBALh06RIiIiLQs2dP0X1Hjx5FjRo10KBBA4wfPx4pKSnFthsZGYnu3buLYu+99x5OnTpV5DNZWVlIS0sTfYiIqGIpamrK1toMY9s5FLrfr+c0eI9cLlw3T45D4hJvyFLuYN/l+5iypXBCA+QmSAqw0rA+6Xz6yc/PD6mpqWjUqBGkUinkcjkWLVqEIUOGCPf06NED77//PurWrYuEhATMmzcPnTt3xoULF2Bqaqq03eTkZNSsWVMUq1mzJpKTk4vsy+LFi+Hv76+bH4yIiMosZVNT7o42OJvwCD+dTCx0/xVZfTjN3IXItaNR4+ljAECLbm1wwmMQcjqMKPZdeZWGXz2ok0qfzkdqtm3bhuDgYGzevBlRUVHYsGEDvvnmG2zYsEG4Z9CgQejVqxdcXFzg7e2N/fv348aNG9i7d2+xbUteqR+gUCgKxQqaM2cOUlNThc+dO3e0++GIiKjMyjsR3Me1FjycqkFqJMHjp1lFHscgN5LCfcpG+HlOFWL/i9yGxAAvmL8ovpJwchorDeuDzpOamTNnYvbs2Rg8eDCaNm2KESNGYPr06Vi8eHGRz8hkMtStWxdxcXFF3mNra1toVCYlJaXQ6E1BpqamsLKyEn2IiIiA3LU2kzdfLHEL+Lbm76HLrG2i2LXlA9Ap/lyRzzxIz9JBD0ldOk9qnj17BiMjcbNSqVS0pftVDx8+xJ07dyCTFb2wysPDA+Hh4aLYwYMH0bZtW+06TEREFY48RwH/PbEq1bSRAHi3fRM4+IUixPldIf7Ldn/8HjwLULLf5vGzFzrrK6lO50mNt7c3Fi1ahL179yIxMREhISFYtmwZ+vbtCwDIyMjAJ598gsjISCQmJuLo0aPw9vZG9erVhXsAYOTIkZgzZ45wPW3aNBw8eBABAQH466+/EBAQgEOHDsHX11fXPwIREZVzZxMeibZjF6WahQkCh7uhq7MtAGC69yfoO/wb4ftW92KRuMQb9k/EMwn3nzwXFgsXrGdz8uYDnIx7wNo2pUTnC4VXr16NefPm4aOPPkJKSgrs7OwwYcIEfP755wByR22uXLmCX3/9FU+ePIFMJkOnTp2wbds2WFpaCu3cvn1bNOLTtm1bbN26FXPnzsW8efPg5OSEbdu2sUYNERGpTdXTtef2aiwU2pNZmyEpNRMXazVCvU924vya4aiSmQEAOPH9OCxrPwyr2uVuitkZfR9nEh6hd3MZdl9KKjKBYm0b3eIxCUREVOFExj/EkPWnS7xvy/g2wi6mvHo3Bf9oDr+4D18eXCt6ptGM7cg0Vu30bta2UY3e6tQQEREZOndHG8iszYrc+SRB7iiKu6ONEMurd1Olcv7RC8EteqLV5I2iZ/9aNgAdbl1QqR95CRJr2+gGkxoiIqpwpEYSzPd2BoBCiU3e9XxvZ0iNxN96ushwYW43TO9aH9ZmuSs4/n2jKhz8QhHasL1w36+/z8emrZ8qXUT8KgXya9uQdpjUEBFRhVRcpeHipoOkRhJM69oA5+Z2Q19XOyE+pc9s9B+2RLhu9/dlJC7xRu3Uf1Tqj6rrfKhoXFNDREQVmjxHUajS8KsjNK9SdqBlHmN5Ni6vGAzzl/m1agI6jkJgm/eLbbPg+h0SU/XvN5MaIiIiNShbMKzM6PO7seDwD6JYw493IKuSSaF7ZdZmiPDrXGIyVVFxoTAREZGOqVO0L+jt3mj9UZAodv3bfvD4+1Khe5Wt3yH1MakhIiJSkapF+/L8Y1kdDn6hCK/nLsS2bP0MQb/NF66nd23A7dw6wqSGiIhIRZou5h3f/3MMGpJ/BuK7CReQGOCFZjmpmNK5nq66V+ExqSEiIlJRDUvViuopc6ZOUzT4OARySf6f3t1Lh0G6fJkuukZgUkNERKSykor2leRFJWM4zdqNVT0m5Ac/+QSoVAny55nCGVE8F0ozOj/7iYiIqLzKK9o3KTgKEkClBcN5rMwqYUDL2ujmbAt3x57Avc+AOnVyv5TLIa1sjhVDFuNMnaYAcndEzevVGFUtTNXabl6RcUs3ERGRmoqrU6OMjYUxTs/pCpNKhSdI/m3fGW+e/FO4Pli/DT7sN1dpOxX1AEzWqVGCSQ0REelKwaJ9iQ+eYcWhGwDEozclHVgpz1GgfcARvHXpNDZtEycy7h9tQIpl4WJ8kmLaK69Yp4aIiKgUSY0k8HCqBh/XWpjWtb5GRy7kbRE/6eCKhjP+EH+3dhRGXdhT6BkFeABmUThSQ0REpCPqHrmwK/oepm2NFsU+ivwNs47/Klw/MzZF82lbkS01Ft03pZMT2tV7s0Kss+H0kxJMaoiIyJBExj/EkPWnC8Vrp/6DiHVjRbF+w5YiqnbjQvcWtc5GkzOtDBWTGiWY1BARkSHJW1OTnJpZeCeVQoHNWz9D29uXhVBoo3cwxcdPdNur63bkOQqsORKHX04m4snzbOG+srzImEmNEkxqiIjI0OQdkAko3yLe8dYFbPh9vijWavJG/PtGVeFagtz1O/N6OePTnVfw5Fk2XlXSomVDxqRGCSY1RERkiEraIm6WnYm/lg0QxT7r/hE2teip1nvykp+ydiI4kxolmNQQEZGhylsDcyg2GT+dTFR6z7SIzZh+crNwnWpqgZZTN+GlVL1aulvGt4GHU+Ht4q/2xVDW46j695sVhYmIiAxA3hbxvGRDWWKzsv1QhDTphOM/jAcAWGc9xc1v+qDPiG8RbddQ5XcVdzCnslGjsrIeh3VqiIiIDExXZ9siv7tdVQaHWXtwvlb+TqidGz/GstBvVW6/qIM589b3vDoNlpyaiUnBUQiLSVL5HfrApIaIiMjAlHhwpkSCAcOXYkz/z4VQv6t/IjHACzbPUottW2adO530KnmOAv57YpUuVs6LGXrRPyY1REREBibv4EwAxZ4IfqSeOzrPF1cdjlo9DAMvHSzymfnezkrXx+RVNy6KAkBSaibOJjwqtu/6xKSGiIjIAHm6yJQevSCzNsP0rg2wcrArtoxvg/DPeyHy5gOs9hgk3LMkbBXOrhkBaY5c9Oz0rvWLXBdT3DobTe7TBy4UJiIiMlCeLjJ0c7YtcSeSu6MNJnmOwQ6Xzvhz/QQAQI2njxG/1Adeo1YgxrYeqlQ2xpTO9Yt8V1HrbDS9Tx84UkNERGTACh6c6eFUrcit1QqFAgk2teAwaw8u2eYnL6EbfPH1/lXFTmMBJa/jkaDo9TiGgkkNERFRGbfmyE2kPn+ZeyGRwGfUcnzY9zPh+8GXD+Li/PcQFXWzyDaKW8eTd13UehxDwaSGiIioDAuLScLyQzcKxQ828EAT399EsVatGgC//lro3jxFreOxtTYrE8crsKIwERFRGZV3IGZxu5YAYM6fP2PC2R35gTp1gFu3AKm0yHbLYkVhJjVERERlVGT8QwxZf1qle50e3MHhnyaJg9HRQPPmuu+Yjqn695vTT0RERGWUOtur46vbw3HWbqTVK3Ccgqsr8NFHwqU8R4HI+IfYFX0PkfEPDbrQnjLc0k1ERFRGqbu9WiExwtWwk3A/fxjSwf/VtQkMBAIDcSgiFvOO3y+TZz7l0flIzcuXLzF37lw4OjrC3Nwcb731Fr744gvk5OQAALKzs+Hn54emTZvCwsICdnZ2GDlyJO7fv19su0FBQZBIJIU+mZmGWwSIiIioNJV4nEIBeVuyHz/NQvtb1dDUd5vo+67tndEq8oAoVlbOfMqj86QmICAA69atw5o1a3Dt2jUsWbIES5cuxerVqwEAz549Q1RUFObNm4eoqCjs2LEDN27cQO/evUts28rKCklJSaKPmZnhFgEiIiIqTaoep5D3Xe/mMkzefBFJqZlIN7WAg18ofm6Z//d31Z6lOPLDh5AocgciysqZT3l0vlDYy8sLNWvWxE8//STE+vfvj8qVK2Pjxo1Knzl37hzc3d3x999/o06dOkrvCQoKgq+vL548eaJx37hQmIiIyqOwmCT474ktcheUzNoM83o5Y+Fe5fc0/DcRB36eIop1H7MGN950EK63jG8DD6dqOu23qlT9+63zNTXt27fHunXrcOPGDTRo0ACXLl1CREQEVqxYUeQzqampkEgkqFKlSrFtZ2RkoG7dupDL5XB1dcXChQvRokWLIu/PyspCVlaWcJ2Wlqbuj0NERGTwXj1OobqFKSABHmRkCVuyizuw8vqbDnCctRuHfpwEp0f3AAAHf56Cn1v2xhddPwRg2Gc+5dF5UuPn54fU1FQ0atQIUqkUcrkcixYtwpAhQ5Ten5mZidmzZ2Po0KHFZl+NGjVCUFAQmjZtirS0NKxcuRLt2rXDpUuXUL++8rMsFi9eDH9/f538XERERIYs7ziFopSUlCgkRugy/nv0jj2KVXu+AQCMubAbYy7sRlPfbQZ95lMenU8/bd26FTNnzsTSpUvRpEkTREdHw9fXF8uWLcOoUaNE92ZnZ+P999/H7du3cfToUbWmhHJycuDm5oYOHTpg1apVSu9RNlJjb2/P6SciIqpw1KlpY5WZgcsrB4ti8m2/QTrw/dLoWon0Vqdm5syZmD17NgYPHoymTZtixIgRmD59OhYvXiy6Lzs7GwMHDkRCQgLCw8PVTjKMjIzQqlUrxMXFFXmPqakprKysRB8iIqKKSJ2dUmlmb8DBLxTBrj2EmHTQQKBZM8CAa/bqPKl59uwZjIzEzUqlUmFLN5Cf0MTFxeHQoUOoVk39hUcKhQLR0dGQycrG3nkiIiJ9UuXAyiqVjUXx7wZ+jJO/H8wPXLkCGBkB166VXke1oPM1Nd7e3li0aBHq1KmDJk2a4OLFi1i2bBnGjBkDILeOzYABAxAVFYXQ0FDI5XIkJycDAGxsbGBiYgIAGDlyJGrVqiWM8Pj7+6NNmzaoX78+0tLSsGrVKkRHR+O7777T9Y9ARERULuUdWPnqTinb/4rsFVxsLDrz6eVLwMkJ+Pvv3AecnYGZM4ElS/T0kyin8zU16enpmDdvHkJCQpCSkgI7OzsMGTIEn3/+OUxMTJCYmAhHR0elz/7555949913AQDvvvsuHBwcEBQUBACYPn06duzYgeTkZFhbW6NFixZYsGABPDw8VO4bt3QTERFpcWDlhg3A6NHiWFoaYGlZKv3MfwUPtCyESQ0REZGWHj4EqlcXx0JCgD59Su2VPNCSiIiIdE5e1QaRNx/gb59B+cG+fYGWLfW+iJgHWhIREZFKRJWLG42ASxUPhG7wzf0yKip3EXFODiBRZY+V7nGkhoiIiEoUFpOEScFRogXGMbb1UG/mLqRYVM2/8eVLPfQuF0dqiIiIqFjyHAX898RC2eTSSyMp3KdsRLOsfzHl3XqwvJ2m+sJjHWNSQ0RERMUq7tyoPJdN38SHkalA5GnI/tsi7unyemvJcfqJiIiIiqXuYZbJqZmYFByFsJikUuqRckxqiIiIqFjqHmaZN03lvycW8pzXtyOKSQ0REREVS51zo/IoACSlZuJswqPS6lYhTGqIiIioWMWdG1USdaeutMGkhoiIiEqUd26UrbV6U1HqTl1pg7ufiIiISCWeLjLh0Mvk1OdYuPcaHj99oXSrtwS5B2W6O9q8tv4xqSEiIiKVSY0k8HCqBgAwN5FiUnAUJIAoscmboprv7fxa69Vw+omIiIg0UtSUlK21GQKHu732OjUcqSEiIiKNFZySSknPRA1LM1YUJiIiorKp4JSUPnH6iYiIiMoFJjVERERULjCpISIionKBSQ0RERGVC0xqiIiIqFxgUkNERETlApMaIiIiKheY1BAREVG5wKSGiIiIyoUKVVFYocg9bistLU3PPSEiIiJV5f3dzvs7XpQKldSkp6cDAOzt7fXcEyIiIlJXeno6rK2ti/xeoigp7SlHcnJycP/+fVhaWkIieX0HbaWlpcHe3h537tyBlZXVa3tvWcPfk2r4e1INf0+q4e+pZPwdqaY0f08KhQLp6emws7ODkVHRK2cq1EiNkZERateurbf3W1lZ8T8IFfD3pBr+nlTD35Nq+HsqGX9Hqimt31NxIzR5uFCYiIiIygUmNURERFQuMKl5DUxNTTF//nyYmprquysGjb8n1fD3pBr+nlTD31PJ+DtSjSH8nirUQmEiIiIqvzhSQ0REROUCkxoiIiIqF5jUEBERUbnApIaIiIjKBSY1pWzt2rVwdHSEmZkZWrZsiRMnTui7Swbn+PHj8Pb2hp2dHSQSCXbu3KnvLhmcxYsXo1WrVrC0tESNGjXQp08fXL9+Xd/dMjiBgYFo1qyZUPzLw8MD+/fv13e3DN7ixYshkUjg6+ur764YlAULFkAikYg+tra2+u6WQbp37x6GDx+OatWqoXLlynB1dcWFCxdeez+Y1JSibdu2wdfXF5999hkuXryId955Bz169MDt27f13TWD8vTpUzRv3hxr1qzRd1cM1rFjxzB58mScPn0a4eHhePnyJbp3746nT5/qu2sGpXbt2vj6669x/vx5nD9/Hp07d4aPjw+uXr2q764ZrHPnzuGHH35As2bN9N0Vg9SkSRMkJSUJnytXrui7Swbn8ePHaNeuHYyNjbF//37Exsbi22+/RZUqVV57X7iluxS1bt0abm5uCAwMFGKNGzdGnz59sHjxYj32zHBJJBKEhISgT58++u6KQfv3339Ro0YNHDt2DB06dNB3dwyajY0Nli5dirFjx+q7KwYnIyMDbm5uWLt2Lb788ku4urpixYoV+u6WwViwYAF27tyJ6OhofXfFoM2ePRsnT540iJkIjtSUkhcvXuDChQvo3r27KN69e3ecOnVKT72i8iI1NRVA7h9sUk4ul2Pr1q14+vQpPDw89N0dgzR58mT06tULXbt21XdXDFZcXBzs7Ozg6OiIwYMH49atW/ruksHZvXs33n77bbz//vuoUaMGWrRogfXr1+ulL0xqSsmDBw8gl8tRs2ZNUbxmzZpITk7WU6+oPFAoFJgxYwbat28PFxcXfXfH4Fy5cgVvvPEGTE1NMXHiRISEhMDZ2Vnf3TI4W7duRVRUFEeNi9G6dWv8+uuvOHDgANavX4/k5GS0bdsWDx8+1HfXDMqtW7cQGBiI+vXr48CBA5g4cSL+97//4ddff33tfalQp3Trg0QiEV0rFIpCMSJ1TJkyBZcvX0ZERIS+u2KQGjZsiOjoaDx58gR//PEHRo0ahWPHjjGxKeDOnTuYNm0aDh48CDMzM313x2D16NFD+J+bNm0KDw8PODk5YcOGDZgxY4Yee2ZYcnJy8Pbbb+Orr74CALRo0QJXr15FYGAgRo4c+Vr7wpGaUlK9enVIpdJCozIpKSmFRm+IVDV16lTs3r0bf/75J2rXrq3v7hgkExMT1KtXD2+//TYWL16M5s2bY+XKlfrulkG5cOECUlJS0LJlS1SqVAmVKlXCsWPHsGrVKlSqVAlyuVzfXTRIFhYWaNq0KeLi4vTdFYMik8kK/aOhcePGetkUw6SmlJiYmKBly5YIDw8XxcPDw9G2bVs99YrKKoVCgSlTpmDHjh04cuQIHB0d9d2lMkOhUCArK0vf3TAoXbp0wZUrVxAdHS183n77bQwbNgzR0dGQSqX67qJBysrKwrVr1yCTyfTdFYPSrl27QiUmbty4gbp16772vnD6qRTNmDEDI0aMwNtvvw0PDw/88MMPuH37NiZOnKjvrhmUjIwM3Lx5U7hOSEhAdHQ0bGxsUKdOHT32zHBMnjwZmzdvxq5du2BpaSmMAFpbW8Pc3FzPvTMcn376KXr06AF7e3ukp6dj69atOHr0KMLCwvTdNYNiaWlZaD2WhYUFqlWrxnVaBXzyySfw9vZGnTp1kJKSgi+//BJpaWkYNWqUvrtmUKZPn462bdviq6++wsCBA3H27Fn88MMP+OGHH15/ZxRUqr777jtF3bp1FSYmJgo3NzfFsWPH9N0lg/Pnn38qABT6jBo1St9dMxjKfj8AFL/88ou+u2ZQxowZI/z39uabbyq6dOmiOHjwoL67VSZ07NhRMW3aNH13w6AMGjRIIZPJFMbGxgo7OztFv379FFevXtV3twzSnj17FC4uLgpTU1NFo0aNFD/88INe+sE6NURERFQucE0NERERlQtMaoiIiKhcYFJDRERE5QKTGiIiIioXmNQQERFRucCkhoiIiMoFJjVERERULjCpISIionKBSQ0RERGVC0xqiIiIqFxgUkNERETlApMaIiIiKhf+D2hYPVvPBxQ2AAAAAElFTkSuQmCC",
      "text/plain": [
       "<Figure size 640x480 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "import matplotlib.pyplot as plt\n",
    "\n",
    "def predict(x):\n",
    "    return slope * x + intercept\n",
    "\n",
    "fitLine = predict(pageSpeeds)\n",
    "\n",
    "plt.scatter(pageSpeeds, purchaseAmount)\n",
    "plt.plot(pageSpeeds, fitLine, c='r')\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Activity"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Try increasing the random variation in the test data, and see what effect it has on the r-squared error value."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python [conda env:base] *",
   "language": "python",
   "name": "conda-base-py"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}