/* USB Host Shield 2.0 board quality control routine */ /* To see the output set your terminal speed to 115200 */ /* for GPIO test to pass you need to connect GPIN0 to GPOUT7, GPIN1 to GPOUT6, etc. */ /* otherwise press any key after getting GPIO error to complete the test */ /**/ #include <usbhub.h> // Satisfy the IDE, which needs to see the include statment in the ino too. #ifdef dobogusinclude #include <spi4teensy3.h> #include <../../../../hardware/pic32/libraries/SPI/SPI.h> // Hack to use the SPI library #include <SPI.h> // Hack to use the SPI library #endif /* variables */ uint8_t rcode; uint8_t usbstate; uint8_t laststate; //uint8_t buf[sizeof(USB_DEVICE_DESCRIPTOR)]; USB_DEVICE_DESCRIPTOR buf; /* objects */ USB Usb; //USBHub hub(&Usb); void setup() { laststate = 0; Serial.begin(115200); #if !defined(__MIPSEL__) while(!Serial); // Wait for serial port to connect - used on Leonardo, Teensy and other boards with built-in USB CDC serial connection #endif E_Notify(PSTR("\r\nCircuits At Home 2011"), 0x80); E_Notify(PSTR("\r\nUSB Host Shield Quality Control Routine"), 0x80); /* SPI quick test - check revision register */ E_Notify(PSTR("\r\nReading REVISION register... Die revision "), 0x80); Usb.Init(); // Initializes SPI, we don't care about the return value here { uint8_t tmpbyte = Usb.regRd(rREVISION); switch(tmpbyte) { case( 0x01): //rev.01 E_Notify(PSTR("01"), 0x80); break; case( 0x12): //rev.02 E_Notify(PSTR("02"), 0x80); break; case( 0x13): //rev.03 E_Notify(PSTR("03"), 0x80); break; default: E_Notify(PSTR("invalid. Value returned: "), 0x80); print_hex(tmpbyte, 8); halt55(); break; }//switch( tmpbyte... }//check revision register /* SPI long test */ { E_Notify(PSTR("\r\nSPI long test. Transfers 1MB of data. Each dot is 64K"), 0x80); uint8_t sample_wr = 0; uint8_t sample_rd = 0; uint8_t gpinpol_copy = Usb.regRd(rGPINPOL); for(uint8_t i = 0; i < 16; i++) { for(uint16_t j = 0; j < 65535; j++) { Usb.regWr(rGPINPOL, sample_wr); sample_rd = Usb.regRd(rGPINPOL); if(sample_rd != sample_wr) { E_Notify(PSTR("\r\nTest failed. "), 0x80); E_Notify(PSTR("Value written: "), 0x80); print_hex(sample_wr, 8); E_Notify(PSTR(" read: "), 0x80); print_hex(sample_rd, 8); halt55(); }//if( sample_rd != sample_wr.. sample_wr++; }//for( uint16_t j... E_Notify(PSTR("."), 0x80); }//for( uint8_t i... Usb.regWr(rGPINPOL, gpinpol_copy); E_Notify(PSTR(" SPI long test passed"), 0x80); }//SPI long test /* GPIO test */ /* in order to simplify board layout, GPIN pins on text fixture are connected to GPOUT */ /* in reverse order, i.e, GPIN0 is connected to GPOUT7, GPIN1 to GPOUT6, etc. */ { uint8_t tmpbyte; E_Notify(PSTR("\r\nGPIO test. Connect GPIN0 to GPOUT7, GPIN1 to GPOUT6, and so on"), 0x80); for(uint8_t sample_gpio = 0; sample_gpio < 255; sample_gpio++) { Usb.gpioWr(sample_gpio); tmpbyte = Usb.gpioRd(); /* bit reversing code copied vetbatim from http://graphics.stanford.edu/~seander/bithacks.html#BitReverseObvious */ tmpbyte = ((tmpbyte * 0x0802LU & 0x22110LU) | (tmpbyte * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16; if(sample_gpio != tmpbyte) { E_Notify(PSTR("\r\nTest failed. Value written: "), 0x80); print_hex(sample_gpio, 8); E_Notify(PSTR(" Value read: "), 0x80); print_hex(tmpbyte, 8); E_Notify(PSTR(" "), 0x80); press_any_key(); break; }//if( sample_gpio != tmpbyte... }//for( uint8_t sample_gpio... E_Notify(PSTR("\r\nGPIO test passed."), 0x80); }//GPIO test /* PLL test. Stops/starts MAX3421E oscillator several times */ { E_Notify(PSTR("\r\nPLL test. 100 chip resets will be performed"), 0x80); /* check current state of the oscillator */ if(!(Usb.regRd(rUSBIRQ) & bmOSCOKIRQ)) { //wrong state - should be on E_Notify(PSTR("\r\nCurrent oscillator state unexpected."), 0x80); press_any_key(); } /* Restart oscillator */ E_Notify(PSTR("\r\nResetting oscillator\r\n"), 0x80); for(uint16_t i = 0; i < 100; i++) { E_Notify(PSTR("\rReset number "), 0x80); Serial.print(i, DEC); Usb.regWr(rUSBCTL, bmCHIPRES); //reset if(Usb.regRd(rUSBIRQ) & bmOSCOKIRQ) { //wrong state - should be off E_Notify(PSTR("\r\nCurrent oscillator state unexpected."), 0x80); halt55(); } Usb.regWr(rUSBCTL, 0x00); //release from reset uint16_t j = 0; for(j = 1; j < 65535; j++) { //tracking off to on time if(Usb.regRd(rUSBIRQ) & bmOSCOKIRQ) { E_Notify(PSTR(" Time to stabilize - "), 0x80); Serial.print(j, DEC); E_Notify(PSTR(" cycles\r\n"), 0x80); break; } }//for( uint16_t j = 0; j < 65535; j++ if(j == 0) { E_Notify(PSTR("PLL failed to stabilize"), 0x80); press_any_key(); } }//for( uint8_t i = 0; i < 255; i++ }//PLL test /* initializing USB stack */ if(Usb.Init() == -1) { E_Notify(PSTR("\r\nOSCOKIRQ failed to assert"), 0x80); halt55(); } E_Notify(PSTR("\r\nChecking USB device communication.\r\n"), 0x80); } void loop() { delay(200); Usb.Task(); usbstate = Usb.getUsbTaskState(); if(usbstate != laststate) { laststate = usbstate; /**/ switch(usbstate) { case( USB_DETACHED_SUBSTATE_WAIT_FOR_DEVICE): E_Notify(PSTR("\r\nWaiting for device..."), 0x80); break; case( USB_ATTACHED_SUBSTATE_RESET_DEVICE): E_Notify(PSTR("\r\nDevice connected. Resetting..."), 0x80); break; case( USB_ATTACHED_SUBSTATE_WAIT_SOF): E_Notify(PSTR("\r\nReset complete. Waiting for the first SOF..."), 0x80); break; case( USB_ATTACHED_SUBSTATE_GET_DEVICE_DESCRIPTOR_SIZE): E_Notify(PSTR("\r\nSOF generation started. Enumerating device..."), 0x80); break; case( USB_STATE_ADDRESSING): E_Notify(PSTR("\r\nSetting device address..."), 0x80); break; case( USB_STATE_RUNNING): E_Notify(PSTR("\r\nGetting device descriptor"), 0x80); rcode = Usb.getDevDescr(1, 0, sizeof (USB_DEVICE_DESCRIPTOR), (uint8_t*) & buf); if(rcode) { E_Notify(PSTR("\r\nError reading device descriptor. Error code "), 0x80); print_hex(rcode, 8); } else { /**/ E_Notify(PSTR("\r\nDescriptor Length:\t"), 0x80); print_hex(buf.bLength, 8); E_Notify(PSTR("\r\nDescriptor type:\t"), 0x80); print_hex(buf.bDescriptorType, 8); E_Notify(PSTR("\r\nUSB version:\t\t"), 0x80); print_hex(buf.bcdUSB, 16); E_Notify(PSTR("\r\nDevice class:\t\t"), 0x80); print_hex(buf.bDeviceClass, 8); E_Notify(PSTR("\r\nDevice Subclass:\t"), 0x80); print_hex(buf.bDeviceSubClass, 8); E_Notify(PSTR("\r\nDevice Protocol:\t"), 0x80); print_hex(buf.bDeviceProtocol, 8); E_Notify(PSTR("\r\nMax.packet size:\t"), 0x80); print_hex(buf.bMaxPacketSize0, 8); E_Notify(PSTR("\r\nVendor ID:\t\t"), 0x80); print_hex(buf.idVendor, 16); E_Notify(PSTR("\r\nProduct ID:\t\t"), 0x80); print_hex(buf.idProduct, 16); E_Notify(PSTR("\r\nRevision ID:\t\t"), 0x80); print_hex(buf.bcdDevice, 16); E_Notify(PSTR("\r\nMfg.string index:\t"), 0x80); print_hex(buf.iManufacturer, 8); E_Notify(PSTR("\r\nProd.string index:\t"), 0x80); print_hex(buf.iProduct, 8); E_Notify(PSTR("\r\nSerial number index:\t"), 0x80); print_hex(buf.iSerialNumber, 8); E_Notify(PSTR("\r\nNumber of conf.:\t"), 0x80); print_hex(buf.bNumConfigurations, 8); /**/ E_Notify(PSTR("\r\n\nAll tests passed. Press RESET to restart test"), 0x80); while(1); } break; case( USB_STATE_ERROR): E_Notify(PSTR("\r\nUSB state machine reached error state"), 0x80); break; default: break; }//switch( usbstate... } }//loop()... /* constantly transmits 0x55 via SPI to aid probing */ void halt55() { E_Notify(PSTR("\r\nUnrecoverable error - test halted!!"), 0x80); E_Notify(PSTR("\r\n0x55 pattern is transmitted via SPI"), 0x80); E_Notify(PSTR("\r\nPress RESET to restart test"), 0x80); while(1) { Usb.regWr(0x55, 0x55); } } /* prints hex numbers with leading zeroes */ void print_hex(int v, int num_places) { int mask = 0, n, num_nibbles, digit; for(n = 1; n <= num_places; n++) { mask = (mask << 1) | 0x0001; } v = v & mask; // truncate v to specified number of places num_nibbles = num_places / 4; if((num_places % 4) != 0) { ++num_nibbles; } do { digit = ((v >> (num_nibbles - 1) * 4)) & 0x0f; Serial.print(digit, HEX); } while(--num_nibbles); } /* prints "Press any key" and returns when key is pressed */ void press_any_key() { E_Notify(PSTR("\r\nPress any key to continue..."), 0x80); while(Serial.available() <= 0); //wait for input Serial.read(); //empty input buffer return; }