/**
 * \file
 *
 * \brief Commonly used includes, types and macros.
 *
 * Copyright (C) 2012-2016 Atmel Corporation. All rights reserved.
 *
 * \asf_license_start
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 *
 * 3. The name of Atmel may not be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * 4. This software may only be redistributed and used in connection with an
 *    Atmel microcontroller product.
 *
 * THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
 * EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 * \asf_license_stop
 *
 */
/*
 * Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
 */

#ifndef UTILS_COMPILER_H_INCLUDED
#    define UTILS_COMPILER_H_INCLUDED

/**
 * \defgroup group_sam0_utils Compiler abstraction layer and code utilities
 *
 * Compiler abstraction layer and code utilities for Cortex-M0+ based Atmel SAM devices.
 * This module provides various abstraction layers and utilities to make code compatible between different compilers.
 *
 * @{
 */

#    if (defined __ICCARM__)
#        include <intrinsics.h>
#    endif

#    include <stddef.h>
//#include <parts.h>
//#include <status_codes.h>
//#include <preprocessor.h>
//#include <io.h>

#    ifndef __ASSEMBLY__

#        include <stdio.h>
#        include <stdbool.h>
#        include <stdint.h>
#        include <stdlib.h>

/**
 * \def UNUSED
 * \brief Marking \a v as a unused parameter or value.
 */
#        define UNUSED(v) (void)(v)

/**
 * \def barrier
 * \brief Memory barrier
 */
#        ifdef __GNUC__
#            define barrier() asm volatile("" ::: "memory")
#        else
#            define barrier() asm("")
#        endif

/**
 * \brief Emit the compiler pragma \a arg.
 *
 * \param[in] arg  The pragma directive as it would appear after \e \#pragma
 *             (i.e. not stringified).
 */
#        define COMPILER_PRAGMA(arg) _Pragma(#        arg)

/**
 * \def COMPILER_PACK_SET(alignment)
 * \brief Set maximum alignment for subsequent struct and union definitions to \a alignment.
 */
#        define COMPILER_PACK_SET(alignment) COMPILER_PRAGMA(pack(alignment))

/**
 * \def COMPILER_PACK_RESET()
 * \brief Set default alignment for subsequent struct and union definitions.
 */
#        define COMPILER_PACK_RESET() COMPILER_PRAGMA(pack())

/**
 * \brief Set aligned boundary.
 */
#        if (defined __GNUC__) || (defined __CC_ARM)
#            define COMPILER_ALIGNED(a) __attribute__((__aligned__(a)))
#        elif (defined __ICCARM__)
#            define COMPILER_ALIGNED(a) COMPILER_PRAGMA(data_alignment = a)
#        endif

/**
 * \brief Set word-aligned boundary.
 */
#        if (defined __GNUC__) || defined(__CC_ARM)
#            define COMPILER_WORD_ALIGNED __attribute__((__aligned__(4)))
#        elif (defined __ICCARM__)
#            define COMPILER_WORD_ALIGNED COMPILER_PRAGMA(data_alignment = 4)
#        endif

/**
 * \def __always_inline
 * \brief The function should always be inlined.
 *
 * This annotation instructs the compiler to ignore its inlining
 * heuristics and inline the function no matter how big it thinks it
 * becomes.
 */
#        if !defined(__always_inline)
#            if defined(__CC_ARM)
#                define __always_inline __forceinline
#            elif (defined __GNUC__)
#                define __always_inline __attribute__((__always_inline__))
#            elif (defined __ICCARM__)
#                define __always_inline _Pragma("inline=forced")
#            endif
#        endif

/**
 * \def __no_inline
 * \brief The function should never be inlined
 *
 * This annotation instructs the compiler to ignore its inlining
 * heuristics and not inline the function no matter how small it thinks it
 * becomes.
 */
#        if defined(__CC_ARM)
#            define __no_inline __attribute__((noinline))
#        elif (defined __GNUC__)
#            define __no_inline __attribute__((noinline))
#        elif (defined __ICCARM__)
#            define __no_inline _Pragma("inline=never")
#        endif

/** \brief This macro is used to test fatal errors.
 *
 * The macro tests if the expression is false. If it is, a fatal error is
 * detected and the application hangs up. If \c TEST_SUITE_DEFINE_ASSERT_MACRO
 * is defined, a unit test version of the macro is used, to allow execution
 * of further tests after a false expression.
 *
 * \param[in] expr  Expression to evaluate and supposed to be nonzero.
 */
#        if defined(_ASSERT_ENABLE_)
#            if defined(TEST_SUITE_DEFINE_ASSERT_MACRO)
#                include "unit_test/suite.h"
#            else
#                undef TEST_SUITE_DEFINE_ASSERT_MACRO
#                define Assert(expr)                 \
                    {                                \
                        if (!(expr)) asm("BKPT #0"); \
                    }
#            endif
#        else
#            define Assert(expr) ((void)0)
#        endif

/* Define WEAK attribute */
#        if defined(__CC_ARM)
#            define WEAK __attribute__((weak))
#        elif defined(__ICCARM__)
#            define WEAK __weak
#        elif defined(__GNUC__)
#            define WEAK __attribute__((weak))
#        endif

/* Define NO_INIT attribute */
#        if defined(__CC_ARM)
#            define NO_INIT __attribute__((zero_init))
#        elif defined(__ICCARM__)
#            define NO_INIT __no_init
#        elif defined(__GNUC__)
#            define NO_INIT __attribute__((section(".no_init")))
#        endif

//#include "interrupt.h"

/** \name Usual Types
 * @{ */
#        ifndef __cplusplus
#            if !defined(__bool_true_false_are_defined)
typedef unsigned char bool;
#            endif
#        endif
typedef uint16_t le16_t;
typedef uint16_t be16_t;
typedef uint32_t le32_t;
typedef uint32_t be32_t;
typedef uint32_t iram_size_t;
/** @} */

/** \name Aliasing Aggregate Types
 * @{ */

/** 16-bit union. */
typedef union {
    int16_t  s16;
    uint16_t u16;
    int8_t   s8[2];
    uint8_t  u8[2];
} Union16;

/** 32-bit union. */
typedef union {
    int32_t  s32;
    uint32_t u32;
    int16_t  s16[2];
    uint16_t u16[2];
    int8_t   s8[4];
    uint8_t  u8[4];
} Union32;

/** 64-bit union. */
typedef union {
    int64_t  s64;
    uint64_t u64;
    int32_t  s32[2];
    uint32_t u32[2];
    int16_t  s16[4];
    uint16_t u16[4];
    int8_t   s8[8];
    uint8_t  u8[8];
} Union64;

/** Union of pointers to 64-, 32-, 16- and 8-bit unsigned integers. */
typedef union {
    int64_t * s64ptr;
    uint64_t *u64ptr;
    int32_t * s32ptr;
    uint32_t *u32ptr;
    int16_t * s16ptr;
    uint16_t *u16ptr;
    int8_t *  s8ptr;
    uint8_t * u8ptr;
} UnionPtr;

/** Union of pointers to volatile 64-, 32-, 16- and 8-bit unsigned integers. */
typedef union {
    volatile int64_t * s64ptr;
    volatile uint64_t *u64ptr;
    volatile int32_t * s32ptr;
    volatile uint32_t *u32ptr;
    volatile int16_t * s16ptr;
    volatile uint16_t *u16ptr;
    volatile int8_t *  s8ptr;
    volatile uint8_t * u8ptr;
} UnionVPtr;

/** Union of pointers to constant 64-, 32-, 16- and 8-bit unsigned integers. */
typedef union {
    const int64_t * s64ptr;
    const uint64_t *u64ptr;
    const int32_t * s32ptr;
    const uint32_t *u32ptr;
    const int16_t * s16ptr;
    const uint16_t *u16ptr;
    const int8_t *  s8ptr;
    const uint8_t * u8ptr;
} UnionCPtr;

/** Union of pointers to constant volatile 64-, 32-, 16- and 8-bit unsigned integers. */
typedef union {
    const volatile int64_t * s64ptr;
    const volatile uint64_t *u64ptr;
    const volatile int32_t * s32ptr;
    const volatile uint32_t *u32ptr;
    const volatile int16_t * s16ptr;
    const volatile uint16_t *u16ptr;
    const volatile int8_t *  s8ptr;
    const volatile uint8_t * u8ptr;
} UnionCVPtr;

/** Structure of pointers to 64-, 32-, 16- and 8-bit unsigned integers. */
typedef struct {
    int64_t * s64ptr;
    uint64_t *u64ptr;
    int32_t * s32ptr;
    uint32_t *u32ptr;
    int16_t * s16ptr;
    uint16_t *u16ptr;
    int8_t *  s8ptr;
    uint8_t * u8ptr;
} StructPtr;

/** Structure of pointers to volatile 64-, 32-, 16- and 8-bit unsigned integers. */
typedef struct {
    volatile int64_t * s64ptr;
    volatile uint64_t *u64ptr;
    volatile int32_t * s32ptr;
    volatile uint32_t *u32ptr;
    volatile int16_t * s16ptr;
    volatile uint16_t *u16ptr;
    volatile int8_t *  s8ptr;
    volatile uint8_t * u8ptr;
} StructVPtr;

/** Structure of pointers to constant 64-, 32-, 16- and 8-bit unsigned integers. */
typedef struct {
    const int64_t * s64ptr;
    const uint64_t *u64ptr;
    const int32_t * s32ptr;
    const uint32_t *u32ptr;
    const int16_t * s16ptr;
    const uint16_t *u16ptr;
    const int8_t *  s8ptr;
    const uint8_t * u8ptr;
} StructCPtr;

/** Structure of pointers to constant volatile 64-, 32-, 16- and 8-bit unsigned integers. */
typedef struct {
    const volatile int64_t * s64ptr;
    const volatile uint64_t *u64ptr;
    const volatile int32_t * s32ptr;
    const volatile uint32_t *u32ptr;
    const volatile int16_t * s16ptr;
    const volatile uint16_t *u16ptr;
    const volatile int8_t *  s8ptr;
    const volatile uint8_t * u8ptr;
} StructCVPtr;

/** @} */

#    endif /* #ifndef __ASSEMBLY__ */

/** \name Usual Constants
 * @{ */
// kmod #define DISABLE   0
// kmod #define ENABLE    1

#    ifndef __cplusplus
#        if !defined(__bool_true_false_are_defined)
#            define false 0
#            define true 1
#        endif
#    endif
/** @} */

#    ifndef __ASSEMBLY__

/** \name Optimization Control
 * @{ */

/**
 * \def likely(exp)
 * \brief The expression \a exp is likely to be true
 */
#        if !defined(likely) || defined(__DOXYGEN__)
#            define likely(exp) (exp)
#        endif

/**
 * \def unlikely(exp)
 * \brief The expression \a exp is unlikely to be true
 */
#        if !defined(unlikely) || defined(__DOXYGEN__)
#            define unlikely(exp) (exp)
#        endif

/**
 * \def is_constant(exp)
 * \brief Determine if an expression evaluates to a constant value.
 *
 * \param[in] exp Any expression
 *
 * \return true if \a exp is constant, false otherwise.
 */
#        if (defined __GNUC__) || (defined __CC_ARM)
#            define is_constant(exp) __builtin_constant_p(exp)
#        else
#            define is_constant(exp) (0)
#        endif

/** @} */

/** \name Bit-Field Handling
 * @{ */

/** \brief Reads the bits of a value specified by a given bit-mask.
 *
 * \param[in] value Value to read bits from.
 * \param[in] mask  Bit-mask indicating bits to read.
 *
 * \return Read bits.
 */
#        define Rd_bits(value, mask) ((value) & (mask))

/** \brief Writes the bits of a C lvalue specified by a given bit-mask.
 *
 * \param[in] lvalue  C lvalue to write bits to.
 * \param[in] mask    Bit-mask indicating bits to write.
 * \param[in] bits    Bits to write.
 *
 * \return Resulting value with written bits.
 */
#        define Wr_bits(lvalue, mask, bits) ((lvalue) = ((lvalue) & ~(mask)) | ((bits) & (mask)))

/** \brief Tests the bits of a value specified by a given bit-mask.
 *
 * \param[in] value Value of which to test bits.
 * \param[in] mask  Bit-mask indicating bits to test.
 *
 * \return \c 1 if at least one of the tested bits is set, else \c 0.
 */
#        define Tst_bits(value, mask) (Rd_bits(value, mask) != 0)

/** \brief Clears the bits of a C lvalue specified by a given bit-mask.
 *
 * \param[in] lvalue  C lvalue of which to clear bits.
 * \param[in] mask    Bit-mask indicating bits to clear.
 *
 * \return Resulting value with cleared bits.
 */
#        define Clr_bits(lvalue, mask) ((lvalue) &= ~(mask))

/** \brief Sets the bits of a C lvalue specified by a given bit-mask.
 *
 * \param[in] lvalue  C lvalue of which to set bits.
 * \param[in] mask    Bit-mask indicating bits to set.
 *
 * \return Resulting value with set bits.
 */
#        define Set_bits(lvalue, mask) ((lvalue) |= (mask))

/** \brief Toggles the bits of a C lvalue specified by a given bit-mask.
 *
 * \param[in] lvalue  C lvalue of which to toggle bits.
 * \param[in] mask    Bit-mask indicating bits to toggle.
 *
 * \return Resulting value with toggled bits.
 */
#        define Tgl_bits(lvalue, mask) ((lvalue) ^= (mask))

/** \brief Reads the bit-field of a value specified by a given bit-mask.
 *
 * \param[in] value Value to read a bit-field from.
 * \param[in] mask  Bit-mask indicating the bit-field to read.
 *
 * \return Read bit-field.
 */
#        define Rd_bitfield(value, mask) (Rd_bits(value, mask) >> ctz(mask))

/** \brief Writes the bit-field of a C lvalue specified by a given bit-mask.
 *
 * \param[in] lvalue    C lvalue to write a bit-field to.
 * \param[in] mask      Bit-mask indicating the bit-field to write.
 * \param[in] bitfield  Bit-field to write.
 *
 * \return Resulting value with written bit-field.
 */
#        define Wr_bitfield(lvalue, mask, bitfield) (Wr_bits(lvalue, mask, (uint32_t)(bitfield) << ctz(mask)))

/** @} */

/** \name Zero-Bit Counting
 *
 * Under GCC, __builtin_clz and __builtin_ctz behave like macros when
 * applied to constant expressions (values known at compile time), so they are
 * more optimized than the use of the corresponding assembly instructions and
 * they can be used as constant expressions e.g. to initialize objects having
 * static storage duration, and like the corresponding assembly instructions
 * when applied to non-constant expressions (values unknown at compile time), so
 * they are more optimized than an assembly periphrasis. Hence, clz and ctz
 * ensure a possible and optimized behavior for both constant and non-constant
 * expressions.
 *
 * @{ */

/** \brief Counts the leading zero bits of the given value considered as a 32-bit integer.
 *
 * \param[in] u Value of which to count the leading zero bits.
 *
 * \return The count of leading zero bits in \a u.
 */
#        if (defined __GNUC__) || (defined __CC_ARM)
#            define clz(u) ((u) ? __builtin_clz(u) : 32)
#        else
#            define clz(u) (((u) == 0) ? 32 : ((u) & (1ul << 31)) ? 0 : ((u) & (1ul << 30)) ? 1 : ((u) & (1ul << 29)) ? 2 : ((u) & (1ul << 28)) ? 3 : ((u) & (1ul << 27)) ? 4 : ((u) & (1ul << 26)) ? 5 : ((u) & (1ul << 25)) ? 6 : ((u) & (1ul << 24)) ? 7 : ((u) & (1ul << 23)) ? 8 : ((u) & (1ul << 22)) ? 9 : ((u) & (1ul << 21)) ? 10 : ((u) & (1ul << 20)) ? 11 : ((u) & (1ul << 19)) ? 12 : ((u) & (1ul << 18)) ? 13 : ((u) & (1ul << 17)) ? 14 : ((u) & (1ul << 16)) ? 15 : ((u) & (1ul << 15)) ? 16 : ((u) & (1ul << 14)) ? 17 : ((u) & (1ul << 13)) ? 18 : ((u) & (1ul << 12)) ? 19 : ((u) & (1ul << 11)) ? 20 : ((u) & (1ul << 10)) ? 21 : ((u) & (1ul << 9)) ? 22 : ((u) & (1ul << 8)) ? 23 : ((u) & (1ul << 7)) ? 24 : ((u) & (1ul << 6)) ? 25 : ((u) & (1ul << 5)) ? 26 : ((u) & (1ul << 4)) ? 27 : ((u) & (1ul << 3)) ? 28 : ((u) & (1ul << 2)) ? 29 : ((u) & (1ul << 1)) ? 30 : 31)
#        endif

/** \brief Counts the trailing zero bits of the given value considered as a 32-bit integer.
 *
 * \param[in] u Value of which to count the trailing zero bits.
 *
 * \return The count of trailing zero bits in \a u.
 */
#        if (defined __GNUC__) || (defined __CC_ARM)
#            define ctz(u) ((u) ? __builtin_ctz(u) : 32)
#        else
#            define ctz(u) ((u) & (1ul << 0) ? 0 : (u) & (1ul << 1) ? 1 : (u) & (1ul << 2) ? 2 : (u) & (1ul << 3) ? 3 : (u) & (1ul << 4) ? 4 : (u) & (1ul << 5) ? 5 : (u) & (1ul << 6) ? 6 : (u) & (1ul << 7) ? 7 : (u) & (1ul << 8) ? 8 : (u) & (1ul << 9) ? 9 : (u) & (1ul << 10) ? 10 : (u) & (1ul << 11) ? 11 : (u) & (1ul << 12) ? 12 : (u) & (1ul << 13) ? 13 : (u) & (1ul << 14) ? 14 : (u) & (1ul << 15) ? 15 : (u) & (1ul << 16) ? 16 : (u) & (1ul << 17) ? 17 : (u) & (1ul << 18) ? 18 : (u) & (1ul << 19) ? 19 : (u) & (1ul << 20) ? 20 : (u) & (1ul << 21) ? 21 : (u) & (1ul << 22) ? 22 : (u) & (1ul << 23) ? 23 : (u) & (1ul << 24) ? 24 : (u) & (1ul << 25) ? 25 : (u) & (1ul << 26) ? 26 : (u) & (1ul << 27) ? 27 : (u) & (1ul << 28) ? 28 : (u) & (1ul << 29) ? 29 : (u) & (1ul << 30) ? 30 : (u) & (1ul << 31) ? 31 : 32)
#        endif

/** @} */

/** \name Bit Reversing
 * @{ */

/** \brief Reverses the bits of \a u8.
 *
 * \param[in] u8  U8 of which to reverse the bits.
 *
 * \return Value resulting from \a u8 with reversed bits.
 */
#        define bit_reverse8(u8) ((U8)(bit_reverse32((U8)(u8)) >> 24))

/** \brief Reverses the bits of \a u16.
 *
 * \param[in] u16 U16 of which to reverse the bits.
 *
 * \return Value resulting from \a u16 with reversed bits.
 */
#        define bit_reverse16(u16) ((uint16_t)(bit_reverse32((uint16_t)(u16)) >> 16))

/** \brief Reverses the bits of \a u32.
 *
 * \param[in] u32 U32 of which to reverse the bits.
 *
 * \return Value resulting from \a u32 with reversed bits.
 */
#        define bit_reverse32(u32) __RBIT(u32)

/** \brief Reverses the bits of \a u64.
 *
 * \param[in] u64 U64 of which to reverse the bits.
 *
 * \return Value resulting from \a u64 with reversed bits.
 */
#        define bit_reverse64(u64) ((uint64_t)(((uint64_t)bit_reverse32((uint64_t)(u64) >> 32)) | ((uint64_t)bit_reverse32((uint64_t)(u64)) << 32)))

/** @} */

/** \name Alignment
 * @{ */

/** \brief Tests alignment of the number \a val with the \a n boundary.
 *
 * \param[in] val Input value.
 * \param[in] n   Boundary.
 *
 * \return \c 1 if the number \a val is aligned with the \a n boundary, else \c 0.
 */
#        define Test_align(val, n) (!Tst_bits(val, (n)-1))

/** \brief Gets alignment of the number \a val with respect to the \a n boundary.
 *
 * \param[in] val Input value.
 * \param[in] n   Boundary.
 *
 * \return Alignment of the number \a val with respect to the \a n boundary.
 */
#        define Get_align(val, n) (Rd_bits(val, (n)-1))

/** \brief Sets alignment of the lvalue number \a lval to \a alg with respect to the \a n boundary.
 *
 * \param[in] lval  Input/output lvalue.
 * \param[in] n     Boundary.
 * \param[in] alg   Alignment.
 *
 * \return New value of \a lval resulting from its alignment set to \a alg with respect to the \a n boundary.
 */
#        define Set_align(lval, n, alg) (Wr_bits(lval, (n)-1, alg))

/** \brief Aligns the number \a val with the upper \a n boundary.
 *
 * \param[in] val Input value.
 * \param[in] n   Boundary.
 *
 * \return Value resulting from the number \a val aligned with the upper \a n boundary.
 */
#        define Align_up(val, n) (((val) + ((n)-1)) & ~((n)-1))

/** \brief Aligns the number \a val with the lower \a n boundary.
 *
 * \param[in] val Input value.
 * \param[in] n   Boundary.
 *
 * \return Value resulting from the number \a val aligned with the lower \a n boundary.
 */
#        define Align_down(val, n) ((val) & ~((n)-1))

/** @} */

/** \name Mathematics
 *
 * The same considerations as for clz and ctz apply here but GCC does not
 * provide built-in functions to access the assembly instructions abs, min and
 * max and it does not produce them by itself in most cases, so two sets of
 * macros are defined here:
 *   - Abs, Min and Max to apply to constant expressions (values known at
 *     compile time);
 *   - abs, min and max to apply to non-constant expressions (values unknown at
 *     compile time), abs is found in stdlib.h.
 *
 * @{ */

/** \brief Takes the absolute value of \a a.
 *
 * \param[in] a Input value.
 *
 * \return Absolute value of \a a.
 *
 * \note More optimized if only used with values known at compile time.
 */
#        define Abs(a) (((a) < 0) ? -(a) : (a))

#        ifndef __cplusplus
/** \brief Takes the minimal value of \a a and \a b.
 *
 * \param[in] a Input value.
 * \param[in] b Input value.
 *
 * \return Minimal value of \a a and \a b.
 *
 * \note More optimized if only used with values known at compile time.
 */
#            define Min(a, b) (((a) < (b)) ? (a) : (b))

/** \brief Takes the maximal value of \a a and \a b.
 *
 * \param[in] a Input value.
 * \param[in] b Input value.
 *
 * \return Maximal value of \a a and \a b.
 *
 * \note More optimized if only used with values known at compile time.
 */
#            define Max(a, b) (((a) > (b)) ? (a) : (b))

/** \brief Takes the minimal value of \a a and \a b.
 *
 * \param[in] a Input value.
 * \param[in] b Input value.
 *
 * \return Minimal value of \a a and \a b.
 *
 * \note More optimized if only used with values unknown at compile time.
 */
#            define min(a, b) Min(a, b)

/** \brief Takes the maximal value of \a a and \a b.
 *
 * \param[in] a Input value.
 * \param[in] b Input value.
 *
 * \return Maximal value of \a a and \a b.
 *
 * \note More optimized if only used with values unknown at compile time.
 */
#            define max(a, b) Max(a, b)
#        endif

/** @} */

/** \brief Calls the routine at address \a addr.
 *
 * It generates a long call opcode.
 *
 * For example, `Long_call(0x80000000)' generates a software reset on a UC3 if
 * it is invoked from the CPU supervisor mode.
 *
 * \param[in] addr  Address of the routine to call.
 *
 * \note It may be used as a long jump opcode in some special cases.
 */
#        define Long_call(addr) ((*(void (*)(void))(addr))())

/** \name MCU Endianism Handling
 *  ARM is MCU little endian.
 *
 * @{ */
#        define BE16(x) swap16(x)
#        define LE16(x) (x)

#        define le16_to_cpu(x) (x)
#        define cpu_to_le16(x) (x)
#        define LE16_TO_CPU(x) (x)
#        define CPU_TO_LE16(x) (x)

#        define be16_to_cpu(x) swap16(x)
#        define cpu_to_be16(x) swap16(x)
#        define BE16_TO_CPU(x) swap16(x)
#        define CPU_TO_BE16(x) swap16(x)

#        define le32_to_cpu(x) (x)
#        define cpu_to_le32(x) (x)
#        define LE32_TO_CPU(x) (x)
#        define CPU_TO_LE32(x) (x)

#        define be32_to_cpu(x) swap32(x)
#        define cpu_to_be32(x) swap32(x)
#        define BE32_TO_CPU(x) swap32(x)
#        define CPU_TO_BE32(x) swap32(x)
/** @} */

/** \name Endianism Conversion
 *
 * The same considerations as for clz and ctz apply here but GCC's
 * __builtin_bswap_32 and __builtin_bswap_64 do not behave like macros when
 * applied to constant expressions, so two sets of macros are defined here:
 *   - Swap16, Swap32 and Swap64 to apply to constant expressions (values known
 *     at compile time);
 *   - swap16, swap32 and swap64 to apply to non-constant expressions (values
 *     unknown at compile time).
 *
 * @{ */

/** \brief Toggles the endianism of \a u16 (by swapping its bytes).
 *
 * \param[in] u16 U16 of which to toggle the endianism.
 *
 * \return Value resulting from \a u16 with toggled endianism.
 *
 * \note More optimized if only used with values known at compile time.
 */
#        define Swap16(u16) ((uint16_t)(((uint16_t)(u16) >> 8) | ((uint16_t)(u16) << 8)))

/** \brief Toggles the endianism of \a u32 (by swapping its bytes).
 *
 * \param[in] u32 U32 of which to toggle the endianism.
 *
 * \return Value resulting from \a u32 with toggled endianism.
 *
 * \note More optimized if only used with values known at compile time.
 */
#        define Swap32(u32) ((uint32_t)(((uint32_t)Swap16((uint32_t)(u32) >> 16)) | ((uint32_t)Swap16((uint32_t)(u32)) << 16)))

/** \brief Toggles the endianism of \a u64 (by swapping its bytes).
 *
 * \param[in] u64 U64 of which to toggle the endianism.
 *
 * \return Value resulting from \a u64 with toggled endianism.
 *
 * \note More optimized if only used with values known at compile time.
 */
#        define Swap64(u64) ((uint64_t)(((uint64_t)Swap32((uint64_t)(u64) >> 32)) | ((uint64_t)Swap32((uint64_t)(u64)) << 32)))

/** \brief Toggles the endianism of \a u16 (by swapping its bytes).
 *
 * \param[in] u16 U16 of which to toggle the endianism.
 *
 * \return Value resulting from \a u16 with toggled endianism.
 *
 * \note More optimized if only used with values unknown at compile time.
 */
#        define swap16(u16) Swap16(u16)

/** \brief Toggles the endianism of \a u32 (by swapping its bytes).
 *
 * \param[in] u32 U32 of which to toggle the endianism.
 *
 * \return Value resulting from \a u32 with toggled endianism.
 *
 * \note More optimized if only used with values unknown at compile time.
 */
#        if (defined __GNUC__)
#            define swap32(u32) ((uint32_t)__builtin_bswap32((uint32_t)(u32)))
#        else
#            define swap32(u32) Swap32(u32)
#        endif

/** \brief Toggles the endianism of \a u64 (by swapping its bytes).
 *
 * \param[in] u64 U64 of which to toggle the endianism.
 *
 * \return Value resulting from \a u64 with toggled endianism.
 *
 * \note More optimized if only used with values unknown at compile time.
 */
#        if (defined __GNUC__)
#            define swap64(u64) ((uint64_t)__builtin_bswap64((uint64_t)(u64)))
#        else
#            define swap64(u64) ((uint64_t)(((uint64_t)swap32((uint64_t)(u64) >> 32)) | ((uint64_t)swap32((uint64_t)(u64)) << 32)))
#        endif

/** @} */

/** \name Target Abstraction
 *
 * @{ */

#        define _GLOBEXT_ extern   /**< extern storage-class specifier. */
#        define _CONST_TYPE_ const /**< const type qualifier. */
#        define _MEM_TYPE_SLOW_    /**< Slow memory type. */
#        define _MEM_TYPE_MEDFAST_ /**< Fairly fast memory type. */
#        define _MEM_TYPE_FAST_    /**< Fast memory type. */

#        define memcmp_ram2ram memcmp  /**< Target-specific memcmp of RAM to RAM. */
#        define memcmp_code2ram memcmp /**< Target-specific memcmp of RAM to NVRAM. */
#        define memcpy_ram2ram memcpy  /**< Target-specific memcpy from RAM to RAM. */
#        define memcpy_code2ram memcpy /**< Target-specific memcpy from NVRAM to RAM. */

/** @} */

/**
 * \brief Calculate \f$ \left\lceil \frac{a}{b} \right\rceil \f$ using
 * integer arithmetic.
 *
 * \param[in] a An integer
 * \param[in] b Another integer
 *
 * \return (\a a / \a b) rounded up to the nearest integer.
 */
#        define div_ceil(a, b) (((a) + (b)-1) / (b))

#    endif /* #ifndef __ASSEMBLY__ */
#    ifdef __ICCARM__
/** \name Compiler Keywords
 *
 * Port of some keywords from GCC to IAR Embedded Workbench.
 *
 * @{ */

#        define __asm__ asm
#        define __inline__ inline
#        define __volatile__

/** @} */

#    endif

#    define FUNC_PTR void *
/**
 * \def unused
 * \brief Marking \a v as a unused parameter or value.
 */
#    define unused(v)  \
        do {           \
            (void)(v); \
        } while (0)

/* Define RAMFUNC attribute */
#    if defined(__CC_ARM) /* Keil uVision 4 */
#        define RAMFUNC __attribute__((section(".ramfunc")))
#    elif defined(__ICCARM__) /* IAR Ewarm 5.41+ */
#        define RAMFUNC __ramfunc
#    elif defined(__GNUC__) /* GCC CS3 2009q3-68 */
#        define RAMFUNC __attribute__((section(".ramfunc")))
#    endif

/* Define OPTIMIZE_HIGH attribute */
#    if defined(__CC_ARM) /* Keil uVision 4 */
#        define OPTIMIZE_HIGH _Pragma("O3")
#    elif defined(__ICCARM__) /* IAR Ewarm 5.41+ */
#        define OPTIMIZE_HIGH _Pragma("optimize=high")
#    elif defined(__GNUC__) /* GCC CS3 2009q3-68 */
#        define OPTIMIZE_HIGH __attribute__((optimize("s")))
#    endif
// kmod #define PASS      0
// kmod #define FAIL      1
// kmod #define LOW       0
// kmod #define HIGH      1

typedef int8_t   S8;   //!< 8-bit signed integer.
typedef uint8_t  U8;   //!< 8-bit unsigned integer.
typedef int16_t  S16;  //!< 16-bit signed integer.
typedef uint16_t U16;  //!< 16-bit unsigned integer.
typedef int32_t  S32;  //!< 32-bit signed integer.
typedef uint32_t U32;  //!< 32-bit unsigned integer.
typedef int64_t  S64;  //!< 64-bit signed integer.
typedef uint64_t U64;  //!< 64-bit unsigned integer.
typedef float    F32;  //!< 32-bit floating-point number.
typedef double   F64;  //!< 64-bit floating-point number.

#    define MSB(u16) (((U8 *)&(u16))[1])  //!< Most significant byte of \a u16.
#    define LSB(u16) (((U8 *)&(u16))[0])  //!< Least significant byte of \a u16.

#    define MSH(u32) (((U16 *)&(u32))[1])   //!< Most significant half-word of \a u32.
#    define LSH(u32) (((U16 *)&(u32))[0])   //!< Least significant half-word of \a u32.
#    define MSB0W(u32) (((U8 *)&(u32))[3])  //!< Most significant byte of 1st rank of \a u32.
#    define MSB1W(u32) (((U8 *)&(u32))[2])  //!< Most significant byte of 2nd rank of \a u32.
#    define MSB2W(u32) (((U8 *)&(u32))[1])  //!< Most significant byte of 3rd rank of \a u32.
#    define MSB3W(u32) (((U8 *)&(u32))[0])  //!< Most significant byte of 4th rank of \a u32.
#    define LSB3W(u32) MSB0W(u32)           //!< Least significant byte of 4th rank of \a u32.
#    define LSB2W(u32) MSB1W(u32)           //!< Least significant byte of 3rd rank of \a u32.
#    define LSB1W(u32) MSB2W(u32)           //!< Least significant byte of 2nd rank of \a u32.
#    define LSB0W(u32) MSB3W(u32)           //!< Least significant byte of 1st rank of \a u32.

#    define MSW(u64) (((U32 *)&(u64))[1])   //!< Most significant word of \a u64.
#    define LSW(u64) (((U32 *)&(u64))[0])   //!< Least significant word of \a u64.
#    define MSH0(u64) (((U16 *)&(u64))[3])  //!< Most significant half-word of 1st rank of \a u64.
#    define MSH1(u64) (((U16 *)&(u64))[2])  //!< Most significant half-word of 2nd rank of \a u64.
#    define MSH2(u64) (((U16 *)&(u64))[1])  //!< Most significant half-word of 3rd rank of \a u64.
#    define MSH3(u64) (((U16 *)&(u64))[0])  //!< Most significant half-word of 4th rank of \a u64.
#    define LSH3(u64) MSH0(u64)             //!< Least significant half-word of 4th rank of \a u64.
#    define LSH2(u64) MSH1(u64)             //!< Least significant half-word of 3rd rank of \a u64.
#    define LSH1(u64) MSH2(u64)             //!< Least significant half-word of 2nd rank of \a u64.
#    define LSH0(u64) MSH3(u64)             //!< Least significant half-word of 1st rank of \a u64.
#    define MSB0D(u64) (((U8 *)&(u64))[7])  //!< Most significant byte of 1st rank of \a u64.
#    define MSB1D(u64) (((U8 *)&(u64))[6])  //!< Most significant byte of 2nd rank of \a u64.
#    define MSB2D(u64) (((U8 *)&(u64))[5])  //!< Most significant byte of 3rd rank of \a u64.
#    define MSB3D(u64) (((U8 *)&(u64))[4])  //!< Most significant byte of 4th rank of \a u64.
#    define MSB4D(u64) (((U8 *)&(u64))[3])  //!< Most significant byte of 5th rank of \a u64.
#    define MSB5D(u64) (((U8 *)&(u64))[2])  //!< Most significant byte of 6th rank of \a u64.
#    define MSB6D(u64) (((U8 *)&(u64))[1])  //!< Most significant byte of 7th rank of \a u64.
#    define MSB7D(u64) (((U8 *)&(u64))[0])  //!< Most significant byte of 8th rank of \a u64.
#    define LSB7D(u64) MSB0D(u64)           //!< Least significant byte of 8th rank of \a u64.
#    define LSB6D(u64) MSB1D(u64)           //!< Least significant byte of 7th rank of \a u64.
#    define LSB5D(u64) MSB2D(u64)           //!< Least significant byte of 6th rank of \a u64.
#    define LSB4D(u64) MSB3D(u64)           //!< Least significant byte of 5th rank of \a u64.
#    define LSB3D(u64) MSB4D(u64)           //!< Least significant byte of 4th rank of \a u64.
#    define LSB2D(u64) MSB5D(u64)           //!< Least significant byte of 3rd rank of \a u64.
#    define LSB1D(u64) MSB6D(u64)           //!< Least significant byte of 2nd rank of \a u64.
#    define LSB0D(u64) MSB7D(u64)           //!< Least significant byte of 1st rank of \a u64.

#    define LSB0(u32) LSB0W(u32)  //!< Least significant byte of 1st rank of \a u32.
#    define LSB1(u32) LSB1W(u32)  //!< Least significant byte of 2nd rank of \a u32.
#    define LSB2(u32) LSB2W(u32)  //!< Least significant byte of 3rd rank of \a u32.
#    define LSB3(u32) LSB3W(u32)  //!< Least significant byte of 4th rank of \a u32.
#    define MSB3(u32) MSB3W(u32)  //!< Most significant byte of 4th rank of \a u32.
#    define MSB2(u32) MSB2W(u32)  //!< Most significant byte of 3rd rank of \a u32.
#    define MSB1(u32) MSB1W(u32)  //!< Most significant byte of 2nd rank of \a u32.
#    define MSB0(u32) MSB0W(u32)  //!< Most significant byte of 1st rank of \a u32.

#    if defined(__ICCARM__)
#        define SHORTENUM __packed
#    elif defined(__GNUC__)
#        define SHORTENUM __attribute__((packed))
#    endif

/* No operation */
#    if defined(__ICCARM__)
#        define nop() __no_operation()
#    elif defined(__GNUC__)
#        define nop() (__NOP())
#    endif

#    define FLASH_DECLARE(x) const x
#    define FLASH_EXTERN(x) extern const x
#    define PGM_READ_BYTE(x) *(x)
#    define PGM_READ_WORD(x) *(x)
#    define MEMCPY_ENDIAN memcpy
#    define PGM_READ_BLOCK(dst, src, len) memcpy((dst), (src), (len))

/*Defines the Flash Storage for the request and response of MAC*/
#    define CMD_ID_OCTET (0)

/* Converting of values from CPU endian to little endian. */
#    define CPU_ENDIAN_TO_LE16(x) (x)
#    define CPU_ENDIAN_TO_LE32(x) (x)
#    define CPU_ENDIAN_TO_LE64(x) (x)

/* Converting of values from little endian to CPU endian. */
#    define LE16_TO_CPU_ENDIAN(x) (x)
#    define LE32_TO_CPU_ENDIAN(x) (x)
#    define LE64_TO_CPU_ENDIAN(x) (x)

/* Converting of constants from little endian to CPU endian. */
#    define CLE16_TO_CPU_ENDIAN(x) (x)
#    define CLE32_TO_CPU_ENDIAN(x) (x)
#    define CLE64_TO_CPU_ENDIAN(x) (x)

/* Converting of constants from CPU endian to little endian. */
#    define CCPU_ENDIAN_TO_LE16(x) (x)
#    define CCPU_ENDIAN_TO_LE32(x) (x)
#    define CCPU_ENDIAN_TO_LE64(x) (x)

#    define ADDR_COPY_DST_SRC_16(dst, src) ((dst) = (src))
#    define ADDR_COPY_DST_SRC_64(dst, src) ((dst) = (src))

/**
 * @brief Converts a 64-Bit value into  a 8 Byte array
 *
 * @param[in] value 64-Bit value
 * @param[out] data Pointer to the 8 Byte array to be updated with 64-Bit value
 * @ingroup apiPalApi
 */
static inline void convert_64_bit_to_byte_array(uint64_t value, uint8_t *data) {
    uint8_t index = 0;

    while (index < 8) {
        data[index++] = value & 0xFF;
        value         = value >> 8;
    }
}

/**
 * @brief Converts a 16-Bit value into  a 2 Byte array
 *
 * @param[in] value 16-Bit value
 * @param[out] data Pointer to the 2 Byte array to be updated with 16-Bit value
 * @ingroup apiPalApi
 */
static inline void convert_16_bit_to_byte_array(uint16_t value, uint8_t *data) {
    data[0] = value & 0xFF;
    data[1] = (value >> 8) & 0xFF;
}

/* Converts a 16-Bit value into a 2 Byte array */
static inline void convert_spec_16_bit_to_byte_array(uint16_t value, uint8_t *data) {
    data[0] = value & 0xFF;
    data[1] = (value >> 8) & 0xFF;
}

/* Converts a 16-Bit value into a 2 Byte array */
static inline void convert_16_bit_to_byte_address(uint16_t value, uint8_t *data) {
    data[0] = value & 0xFF;
    data[1] = (value >> 8) & 0xFF;
}

/*
 * @brief Converts a 2 Byte array into a 16-Bit value
 *
 * @param data Specifies the pointer to the 2 Byte array
 *
 * @return 16-Bit value
 * @ingroup apiPalApi
 */
static inline uint16_t convert_byte_array_to_16_bit(uint8_t *data) { return (data[0] | ((uint16_t)data[1] << 8)); }

/* Converts a 4 Byte array into a 32-Bit value */
static inline uint32_t convert_byte_array_to_32_bit(uint8_t *data) {
    union {
        uint32_t u32;
        uint8_t  u8[4];
    } long_addr;

    uint8_t index;

    for (index = 0; index < 4; index++) {
        long_addr.u8[index] = *data++;
    }

    return long_addr.u32;
}

/**
 * @brief Converts a 8 Byte array into a 64-Bit value
 *
 * @param data Specifies the pointer to the 8 Byte array
 *
 * @return 64-Bit value
 * @ingroup apiPalApi
 */
static inline uint64_t convert_byte_array_to_64_bit(uint8_t *data) {
    union {
        uint64_t u64;
        uint8_t  u8[8];
    } long_addr;

    uint8_t index;

    for (index = 0; index < 8; index++) {
        long_addr.u8[index] = *data++;
    }

    return long_addr.u64;
}

/** @} */

#endif /* UTILS_COMPILER_H_INCLUDED */